Class | Analysis and data manipulation command |
Name | mixture |
Arguments | <quantitative trait> [<Number of distributions> [normal|pooled_normal|exponential|poisson]] |
Estimate mixing proportions, means and standard deviations for a 1..5 component mixture model describing the specified quantititative trait. The default is a mixture of Normal (Gaussian) distributions with different means and variances, but a common variance can alternatively be specified. Other distributions available are the exponential and Poisson. A line-printer type histogram is produced.
Example:
# A mixture of two normals from: # Everitt B.S. and Hand D.J. (1981) Finite mixture distributions. # Chapman and Hall. p.46. # # means: 19.96 26.16 # variances: 4.6225 7.6176 # proportions: 0.65 0.35 # >> macro mixexample >> if (index > %runtot and index <= (%runtot + %3)) then %1=%2 >> eval (define runtot (+ runtot %3)) >> ;;;; >> >> set loc xvar >> sim ped 1000 1 1 >> run >> eval (define runtot 0) >> mixexample xvar 15.5 10 >> mixexample xvar 16.5 21 >> mixexample xvar 17.5 56 >> mixexample xvar 18.5 79 >> mixexample xvar 19.5 114 >> mixexample xvar 20.5 122 >> mixexample xvar 21.5 110 >> mixexample xvar 22.5 85 >> mixexample xvar 23.5 85 >> mixexample xvar 24.5 61 >> mixexample xvar 25.5 47 >> mixexample xvar 26.5 49 >> mixexample xvar 27.5 47 >> mixexample xvar 28.5 44 >> mixexample xvar 29.5 31 >> mixexample xvar 30.5 20 >> mixexample xvar 31.5 11 >> mixexample xvar 32.5 4 >> mixexample xvar 33.5 4 >> >> mix xvar 1 >> mix xvar 2 ------------------------------------------------ Mixture distributions for trait "xval" ------------------------------------------------ Intvl Midpt Count Histogram ------------------------------------------------------- 15.5000 10 * 16.5000 21 ** 17.5000 56 ***** 18.5000 79 ******* 19.5000 114 | *********** 20.5000 122 | ************ 21.5000 110 + *********** 22.5000 85 | ******** 23.5000 85 | ******** 24.5000 61 | ****** 25.5000 47 | **** 26.5000 49 **** 27.5000 47 **** 28.5000 44 **** 29.5000 31 *** 30.5000 20 ** 31.5000 11 * 32.5000 4 33.0263 0 33.5000 4 Filliben correlation = 0.2732 (P=0.000) Poissonness test Z = -2477.2956 (P= NaN) Median (IQR) = 21.5000 ( 19.5000 -- 25.5000) Symmetry test J(.02) = 0.3333 (P=0.000) Distribution type = Normal No. of distributions = 2 No. of observations = 1000 No. of unique values = 19 -2*Loglikelihood = 3536.9155 Dist Mean Standard Dev Proportion --------------------------------------------- 1 20.4548 2.1459 0.6518 2 26.6588 2.7603 0.3482 >> lrt Term -2*LL NPar P-value ------ ----------- ---- ------- Model0 3666.5179 2 Model1 3536.9155 4 LRTS 129.6024 2 0.0000
<< (clreg) | Up to index | >> (lifetable) |