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Abstract

Davis and Resnick (Ann Statist 1984; 12:1467) describe a simple nonparametric procedure for the estimation 
of the tail of a distribution function based on a sample from that distribution, "the tail estimation problem". 
This relies on extreme value theory, and so is ideal for the types of very small P-values seen in modern large 
genome-wide association analyses, where permutation or simulation based tests are often preferred because 
they are perceived as being robust or correct in the face of familial or population clustering. Since only a 
small number of simulated statistics from the tail of the empirical distribution (usually the highest 10-20) 
need to be retained, this is computationally inexpensive. I present some applications, and show that the 
estimated P-values are conservative, but considerably better than the usual estimate 1/(1+B) (where B is the 
number of Monte-Carlo pseudo-samples) in the situation where the observed test statistic exceeded all 
simulated statistics:

Pextrapolated = (m/B)(x/X(m+1))
-1/a*

a* = m-1Σ (log(X(i))-log(X(m+1)))

where x is the observed test statistic, and m represents number of order statistics used.



Monte Carlo P-values

Geneticists are great consumers of Monte Carlo P-values (17% of the first 500 
Google Scholar results for “Monte Carlo P-values”, accessed 2011-03-29).  The key 
advantage of Monte Carlo based significance testing [Barnard 1963] is that it is an 
easily implemented approach to very many statistical problems where analysis is 
intractable, or at least, too difficult for the present writer. The classical genetic 
situations it commonly finds use in involve testing hypotheses on correlated data, and 
multiple testing of correlated hypotheses.

 
p MC=

1
B
∑
i=1

B

[T i≥ t ]      ,

where Ti is the value of the test statistic calculated for the ith of B datasets simulated 
under the null hypothesis, eg E(T)=0, and t is the test statistic value calculated for 
observed dataset.

The use of  automatic digital computers makes this type of procedure reasonably 
quick, but quantities of data are expanding more quickly in this era of whole genome 
data. Sequential Monte-Carlo significance testing is one method to minimize the 
amount of calculation [Besag and Clifford 1991], which can be shown to always be 
more efficient than the usual fixed-size approach [Silva et al 2008].  This approach 
extends the standard sequential testing procedure (eg Wald 1945) to simulation under 
the null hypothesis.

However, in the multiple testing situation we are often interested in estimating very 
small P-values accurately. The minimum possible magnitude of a Monte Carlo P-
value estimate is:

1/(1+B) , 

where B is the number of simulated samples, and the Monte Carlo error around this 
value is binomial. When the critical test threshold α is set to, say, 5×10−8 , the power 
to reject the null hypothesis is far less than the appropriate analytic test, unless B is 
large. The resampling risk is the probability that repeating the Monte Carlo test 
would reach a different conclusion as to whether a result was significant at the given 
α, and the above definition of a Monte Carlo P controls this resampling risk.

In the case of genome-wide data with many “significant” tests, this can become 
tediously slow.



Approximating the cumulative distribution function of the test statistic

In the above setup, we have carried out a lot of simulations, and one would think 
would give a lot of information about the shape of  the null distribution of the test 
statistic. It would seem a more effective use of these data to carry out some type of 
curve fitting, and estimate the quantiles from this model: a higher-order 
approximation to the tail area. We can then assign P-values much smaller than 1/
(B+1) to extreme observed values. Another advantage of this approach is in the 
multiple testing situation, where we can combine information about the cdf from all 
the tests.

In the case of the bootstrap, there has been much interest in using the saddlepoint 
approximation [Daniels 1954] for this purpose [Davison and Hinkley 1988] in that 
the relative error rates remain controlled in the tails. Unfortunately this property can 
only be guaranteed for functions such as the mean of the simulated samples (which 
arise naturally in bootstrap hypothesis testing). 

Fitting curves from the Pearson system of distributions by maximum likelihood or 
matching the first four moments is the older approach. Most of the statistics arising in 
genetic linkage and association will come from the Gamma or Beta families. 



Approximating the tail of the cdf using extreme value theory

Several authors have pointed out that we are not particularly interested in the shape of 
most of the distribution. The extreme tail of most distributions tend to resemble one 
another, and exceedances over a threshold fall into two families of the extreme value 
distribution, Exponential or Pareto, depending on the finiteness of the index of  
regular variation, a.  Hill [1975] suggested a simple estimator of  a based only on a 
set of the highest order statistics for the sample from that distribution,

a (n /m)=m−1∑
i=1

m

[ log(X (i))−log(X (m+1))]  ,

where X(i) is the i'th order statistic, n is the total sample size, and m is the number of 
order statistics.

With a finite estimate of a in hand, then Hill [1975], and Davis and Resnick [1984] 
suggested estimating the tail probability as (per the Pareto),

P=(m /n)( x /X (m+1))
−1/a

Davis and Resnick [1984] show this estimate to be strongly consistent, and put 
bounds on this estimate.  The variance of the estimate of a(n/m) ~ 1/m, but for 
optimal behaviour m/n should approach zero.

I am unaware of any previous application to a Monte Carlo type significance testing 
setup.



Fig 1. Performance of Davis-Resnick estimator versus B (constant m) for normally 
distributed test statistic.  Black box-plots represents D-R estimator (m=10 highest 
statistics), upper blue boxes the naïve MC procedure, and solid line the asymptotic P-
value for a true Z={4,5,6,7,8,9,10}. Panels represent results for 100, 1000, 10000, 
100000 pseudosamples (1000 samples per condition).



Fig 2. Performance of Davis-Resnick estimator versus m (constant B) for normally 
distributed test statistic versus B.  Black box-plots represents D-R estimator, upper 
blue boxes the naïve MC procedure, and solid line the asymptotic P-value for a true 
Z={4,5,6,7,8,9,10}. Panels represent results for  m= 5, 10, 20, 50 highest statistics in 
10000 pseudosamples (1000 samples per condition).



Fig 3. Performance of Davis-Resnick estimator with larger values of B for normally 
distributed test statistic.  Black box-plots represents D-R estimator, upper blue boxes 
the naïve MC procedure, and solid line the asymptotic P-value for a true 
Z={4,5,6,7,8,9,10}. First three panels represent results for  increasing B, holding 
constant m/n=0.0005; final panel shows reduction in bias by reducing m/n to 
0.000125.

 



Resampling risk for this approach

This is easily defined, but hard to generalize upon since it depends on the size of the 
true effect, n and m, and the chosen significance threshold α.  

A small example

Where the recombination distance is small, we can use a simple association X2 with a 
gene-dropping test of significance to detect linkage within a single pedigree. Hall et 
al [1990] report on pedigree in which a BRCA1 pathogenic variant is segregating. 
The LOD under a fully penetrant dominant model is 3.01, equivalent to a two-tailed 
P-value of 2x10-4 (two-tailed).  I use the two-tailed P so we can appropriately 
compare it to the gene-dropping P-value.

With B=100000 replicates, in 1000 runs the mean Monte Carlo P was 0.00021 
(SD=4.6x10-5). With a threshold equivalent to a LOD=3 (P=0.0002), the resampling 
risk is 50% and the alternative hypothesis is accepted 50% of the time, as one would 
expect straddling a hard threshold. If one used a threshold LOD of 2 to flag results for 
further iteration, then with only 200 iterations, the Davis-Resnick P-value would 
exceed this on 87% of occasions (obviously, no naïve MC P-values could exceed 
0.005).

Estimator B m Mean estimated P (SD) Reject H0 (Resampling risk) 

Asymptotic - - 0.0002 -

DR 200 10 0.0014 (0.0019) 14% (24%)

DR 500 10 0.0009 (0.0011) 23% (35%)

DR 1000 10 0.0006 (0.0007) 33% (44%)

DR 2000 10 0.00052 (0.00046) 35% (46%)

DR 5000 10 0.00038 (0.00023) 29% (41%)

DR 10000 10 0.00030 (0.00014) 39% (48%)

DR 10000 20 0.00030 (0.00014) 41% (48%)

Naive 100000 - 0.00021 (0.000046) 50.0% (50%)



Conclusions

This approach has the advantage of requiring relatively small amounts of 
computation. It tends to be biased towards the null, but is not exact, in the sense that 
it can sometimes exceed the correct P-value.

There is some room to develop adaptive methods to improve accuracy efficiently, but 
there is an interesting tradeoff between the sampling error due to m, the number of 
extreme values used to estimate the P-value, and the bias, which will increase as m/n 
increases.

The approach is used in my Sib-pair program [Duffy 2011] to augment the sequential 
testing algorithm used for Monte-Carlo P-values in a number of analyses.
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