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Sib-pair is an extensible software package for genetic data manipulation and 
analysis. It provides interactive access to a large number of standard analyses, as well 
as some methodological novelties.  In the following, I will give an overview of the 
program, and then describe some areas of recent development: extrapolation of 
extreme Monte Carlo P-values, the use of the grouped jackknife for intraclass 
correlations in pedigree data, a multinomial version of the WQLS association test, and 
Markov Chain Monte Carlo for the fitting of Generalized Linear Mixed Models to 
pedigree data.

The first code for Sib-pair was written in 1995.  It is all standard Fortran 95, and 
compiles using multiple compilers on multiple platforms, including mobile phones. 
Creeping featurism has continued to date (71000 lines of code) .

• Simple interpreted language, over 200 commands
• Embedded Lisp (Scheme) interpreter
• Commands for linkage, association, variance components, segregation ...
• Offers the usual record-wise operations on data -- algebra, logical conditions
• Family-centric data operations -- subsetting, pruning etc
• Some elementary databasing type operations – querying, merging, editing
• Flexible data export and scripting to use other programs

Currently, there are “canned” procedures to write out data files (pedigree, locus, map 
data) for:

Arlequin, Aspex, Beagle, Cri-map, Dot, Eclipse, FBAT, FISHER, GAS, GDA, GDT, 
Genehunter, Haploview, Linkage, Loki, MENDEL, Merlin, MIM, Morgan, MQLS, 
Pap, PLINK, RAM, RELPAIR, SAGE, SAS, Simwalk, SOLAR, Structure, Superlink, 
Wombat.

Sib-pair can read data files in the formats used by:

GAS, HapMap, Linkage (pre and post), MERLIN, PLINK.



Sample data manipulations that can be done easily in Sib-pair:

• Collect summary statistics for a specific class of relatives of ego into a new 
variable

• Extract an optimal set of unrelated cases and controls from a set of related 
individuals

• Select pedigrees containing a specified number of probands meeting multiple 
criteria

• Automated testing (and imputation) of pedigree member birthdates or ages
• Generate new IDs
• Simulate genetic (pedigree) data.

> get sibling mean height newheight
> let use=(numtyp > 0.95 and height > 1.85); casecon use
> select containing 3 where isfou and height > 1.85
> test dob
> impute age
> unique_ids

> simulate pedigrees 100 3 4 5; run
> set locus trait affection
> set prevalence 0.05
> simulate trait 0.5
> describe trait
> mft trait ae



Monte Carlo P-values in Sib-pair

Geneticists are great consumers of Monte Carlo P-values (17% of the first 500 
Google Scholar results for “Monte Carlo P-values”, accessed 2011-03-29).  The key 
advantage of Monte Carlo based significance testing [Barnard 1963] is that it is an 
easily implemented approach to very many statistical problems where analysis is 
intractable, or at least, too difficult for the present writer. The classical genetic 
situations it commonly finds use in involve testing hypotheses on correlated data, and 
multiple testing of correlated hypotheses.
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where Ti is the value of the test statistic calculated for the ith of B datasets simulated 
under the null hypothesis, eg E(T)=0, and t is the test statistic value calculated for 
observed dataset.

The use of automatic digital computers makes this type of procedure reasonably 
quick, but quantities of data are expanding more quickly in this era of whole genome 
data. Sequential Monte-Carlo significance testing is one method to minimize the 
amount of calculation [Besag and Clifford 1991], which can be shown to always be 
more efficient than the usual fixed-size approach [Silva et al 2008].  This approach 
extends the standard sequential testing procedure (eg Wald 1945) to simulation under 
the null hypothesis, and has been used in Sib-pair since 1996.

However, in the multiple testing situation we are often interested in estimating very 
small P-values accurately. The minimum possible magnitude of a Monte Carlo P-
value estimate is:

1/(1+B) , 

where B is the number of simulated samples, and the Monte Carlo error around this 
value is binomial. When the critical test threshold α is set to, say, 5×10−8 , the power 
to reject the null hypothesis is far less than the appropriate analytic test, unless B is 
large. The resampling risk is the probability that repeating the Monte Carlo test 
would reach a different conclusion as to whether a result was significant at the given 
α, and the above definition of a Monte Carlo P controls this resampling risk.

In the case of genome-wide data with many “significant” tests, this can become 
tediously slow.



Approximating the cumulative distribution function of the test statistic

In the above setup, we have carried out a lot of simulations, and one would think 
would give a lot of information about the shape of  the null distribution of the test 
statistic. It would seem a more effective use of these data to carry out some type of 
curve fitting, and estimate the quantiles from this model: a higher-order 
approximation to the tail area. We can then assign P-values much smaller than 1/
(B+1) to extreme observed values. Another advantage of this approach is in the 
multiple testing situation, where we can combine information about the cdf from all 
the tests.

Approximating the tail of the cdf using extreme value theory

Several authors have pointed out that we are not particularly interested in the shape of 
most of the distribution. The extreme tail of most distributions tend to resemble one 
another, and exceedances over a threshold fall into two families of the extreme value 
distribution, Exponential or Pareto, depending on the finiteness of the index of  
regular variation, a.  Hill [1975] suggested a simple estimator of  a based only on a 
set of the highest order statistics for the sample from that distribution,

a (n /m)=m−1∑
i=1

m

[ log(X (i))−log( X (m+1))]  ,

where X(i) is the i'th order statistic, n is the total sample size, and m is the number of 
order statistics.

With a finite estimate of a in hand, then Hill [1975], and Davis and Resnick [1984] 
suggested estimating the tail probability as (per the Pareto),

P=(m /n)( x / X (m+1))
−1/a

Davis and Resnick [1984] show this estimate to be strongly consistent, and put 
bounds on this estimate.  The variance of the estimate of a(n/m) ~ 1/m, but for 
optimal behaviour m/n should approach zero.

I am unaware of any previous application to a Monte Carlo type significance testing 
setup.  It is used in Sib-pair to augment the sequential testing algorithm used for 
Monte Carlo P-values in a number of analyses.



Fig 1. Performance of Davis-Resnick estimator versus B (constant m) for normally 
distributed test statistic.  Black box-plots represents D-R estimator (m=10 highest 
statistics), upper blue boxes the naïve MC procedure, and solid line the asymptotic P-
value for a true Z={4,5,6,7,8,9,10}. Panels represent results for 100, 1000, 10000, 
100000 pseudosamples (1000 samples per condition).



Fig 2. Performance of Davis-Resnick estimator versus m (constant B) for normally 
distributed test statistic versus B.  Black box-plots represents D-R estimator, upper 
blue boxes the naïve MC procedure, and solid line the asymptotic P-value for a true 
Z={4,5,6,7,8,9,10}. Panels represent results for  m= 5, 10, 20, 50 highest statistics in 
10000 pseudosamples (1000 samples per condition).



Fig 3. Performance of Davis-Resnick estimator with larger values of B for normally 
distributed test statistic.  Black box-plots represents D-R estimator, upper blue boxes 
the naïve MC procedure, and solid line the asymptotic P-value for a true 
Z={4,5,6,7,8,9,10}. First three panels represent results for  increasing B, holding 
constant m/n=0.0005; final panel shows reduction in bias by reducing m/n to 
0.000125.

 



Resampling risk for this approach

This is easily defined, but hard to generalize upon since it depends on the size of the 
true effect, n and m, and the chosen significance threshold α.  

A small real life example

Where the recombination distance is small, we can use a simple association X2 with a 
gene-dropping test of significance to detect linkage within a single pedigree. Hall et 
al [1990] report on a pedigree in which a BRCA1 pathogenic variant is segregating. 
The LOD under a fully penetrant dominant model is 3.01, equivalent to a two-tailed 
P-value of 2x10-4 (two-tailed).  I use the two-tailed P so we can appropriately 
compare it to the gene-dropping P-value.

With B=100000 replicates, in 1000 runs the mean Monte Carlo P was 0.00021 
(SD=4.6x10-5). With a threshold equivalent to a LOD=3 (P=0.0002), the resampling 
risk is 50% and the alternative hypothesis is accepted 50% of the time, as one would 
expect straddling a hard threshold. If one used a threshold LOD of 2 to flag results for 
further iteration, then with only 200 iterations, the Davis-Resnick P-value would 
exceed this on 87% of occasions (obviously, no naïve MC P-values could exceed 
0.005).

Estimator B m Mean estimated P (SD) Reject H0 (Resampling risk) 

Asymptotic - - 0.0002 -

DR 200 10 0.0014 (0.0019) 14% (24%)

DR 500 10 0.0009 (0.0011) 23% (35%)

DR 1000 10 0.0006 (0.0007) 33% (44%)

DR 2000 10 0.00052 (0.00046) 35% (46%)

DR 5000 10 0.00038 (0.00023) 29% (41%)

DR 10000 10 0.00030 (0.00014) 39% (48%)

DR 10000 20 0.00030 (0.00014) 41% (48%)

Naive 100000 - 0.00021 (0.000046) 50.0% (50%)

In summary, this approach has the advantage of requiring relatively small amounts of 
computation. It tends to be biased towards the null, but is not exact, in the sense that 
it can sometimes exceed the correct P-value. There is some room to develop adaptive 
methods to improve accuracy efficiently, but there is an interesting trade-off between 
the sampling error due to m, the number of extreme values used to estimate the P-
value, and the bias, which will increase as m/n increases.



Delete-d jackknife for intraclass correlations

Another computer-intensive approach used by Sib-pair to analyse pedigree data is the 
delete-d jackknife.  It is known that the standard delete-1 jackknife is inconsistent 
when data is correlated in nature. Deleting larger groups at a time gets around these 
problems (Shao and Tu, 1995).

The advantages of the jackknife are that it provides:

• An estimator with reduced bias

• An “automatic” “nonparametric” estimate of the sampling variance

• Cross-validation type model diagnostics (pseudo-values)

• (Sampling density estimation) 

For experimental crosses and nuclear families, the group is easily and naturally the 
cross or family, but this breaks down for a single large kindred. The random delete-d 
jackknife, as the name implies,  randomly selects subsamples (of a specified size) of 
observations for deletion.

V JD=
n−d
dm

∑
i=1

m

(T n−d , i−
1
m
∑
j=1

m

T n−d , j)
2

where T is the test statistic, and m draws of size d from the n data have been made 
with replacement. In passing, this may be contrasted to the estimate where the data is 
partitioned into non-overlapping groups merely to ease computational load:
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I have previously used this approach to estimate jackknife standard errors for 
variance components, but this is slow, given the work required to estimate these 
quantities via maximum likelihood.  They are much more competitive when applied 
to simpler statistics, such as the pairwise estimators of intraclass and interclass 
correlations.



Here are a few simulation results (500 replicates per condition) comparing the 
jackknife estimators for the intraclass and interclass correlation to ML solutions. The 
jackknife used the Sib-pair defaults: 200 pseudosamples with d=10.

True r Sample Type REML 
Mean estimated

ML
Mean Estimated

Jackknife
Mean Estimated

r SE r SE r SE

0.33 100 sibships
(size 2)

0.329 0.106 0.321 0.105 0.323 0.128

0.33 100 sibships 
(size 2-5)

0.328 0.077 0.323 0.076 0.322 0.071

0.33 100 sibships
(size 5)

0.330 0.067 0.325 0.066 0.325 0.0

0.33 100 sibships
(size 5-8)

0.332 0.062 0.328 0.061 0.330 0.044

0.33 100 sibships
(size 8)

0.328 0.059 0.324 0.058 0.324 0.039

Generalized Linear Mixed Models (GLMMs)  

Sib-pair offers fitting of GLMMs for the binomial-normal, probit-normal and 
multifactorial threshold model, poisson-normal, and weibull-normal. This is can be 
polygenic and/or single major locus or oligogenic/finite polygenic.  Fitting is by a 
hybrid Markov Chain Monte Carlo algorithm, with Metropolis-Hastings slice sampler 
and Gibbs sampler steps. Unfortunately, this is still rather slow (and slow to mix).  It 
does (!) give correct answers for standard nongenetic and genetic example datasets 
(eg segregation analysis, litter frailty toxicity trials). Eventually, I will extend the 
survival analysis to a mixed effects Cox Proportional Hazards model. Because of the 
speed issues, utility is currently limited to examining small numbers of candidate 
genes pointed to by other screening methods (in the GWAS context).



Bourgain et al (2003) extended to categorical traits

Bourgain et al (2003) presented a quasi-likelihood score test based on the weighted 
least squares analysis of linear models for a binary trait and allelic dose.  This was 
subsequently extended by Thornton et al (2007). Sib-pair implements both the WQLS 
and MQLS tests for binary traits (as well as the BLUE for allele frequencies in 
pedigrees).

It is fairly simple to extend this to the multinomial case, at least for the corrected χ2 

version of the test.  The score equation takes the form,

S=U 2 ' I 21
−1 U 2 ,

with.

U 11=1 ' A−1 1 ;U 2=P ' A−1 G ;U 12=1 ' A−1 P ;U 22=P ' A−1 P ,

and,

I 21=U 22−(U 21 ' U 11
−1 U 21).

P is a matrix of indicators for the levels of the trait; G, the matrix of allele counts; and 
A-1, the inverse numerator relationship matrix. The test statistic for a k allele marker 
is, 

T=∑∑ (F−1)ij U 2(i ) I 21
−1U 2 ( j) ,

where F is the multinomial covariance matrix for the allele dose indicators.

An alternative approach which I have applied to SNPs is the so-called “left hand 
side” regression, fitted as a binomial-normal GLMM.  This has the advantage of 
dealing more nicely with covariates because of the better behaved link function, and 
categorical and ordinal traits are conveniently dealt with. The covariance matrix for 
the allele doses between family members is no longer quite correct, however. This is 
not feasible for GWAS data (the Sib-pair GLLM implementation is very slow, but 
even fast codes such as those in the R lme4 package still take 2-3 seconds per SNP in 
the family datasets we analyse. I suspect the multinomial WLS approach of Grizzle, 
Starmer and Koch, beloved of SAS PROC CATMOD users, might offer a faster 
alternative in a similar vein to Bourgain et al.
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