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Introduction

• Mendelism
• Linkage

• Statistical distributions
• Maximum likelihood linkage analysis

• The generalized single major locus model
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Mendel and Mendelism

• Mendel studiedbinary traits

• Had parental lines that bred true for traits (homozygous)

• F1 hybrid offspring were homogenous

• F2 generation exhibited Mendelian ratios

• 3:1
• 1:2:1
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Backcross

• F1 with P1 or P2

• Simpler ratios

• Simpler interpretation in case of linkage

Paternal Genotype =Ff (F1)

Slightly frizzled

F (50%) f (50%)

Maternal Genotype =FF F (50%) FF (25%) Ff (25%)

Frizzled (P1) Frizzled Slightly Frizzled

F (50%) FF (25%) Ff (25%)

Frizzled Slightly Frizzled
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The Other Backcross

Maternal Genotype =ff f (50%) Ff (25%) ff (25%)

Normal (P2) Slightly Frizzled Normal

f (50%) Ff (25%) ff (25%)

Slightly Frizzled Normal
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Dihybrid testcross

• Backcross involving two traits

• If both are dominant, see a 1:1:1:1 ratio in the (informative)testcross

Two traits in the potato plant:Tall v. Dwarf , andCut leaf v. Potato cut leaf.

Counts in the backcross generation (MacArthur 1931):Tall, Cut (F1) x Dwarf, Potato

Tall Dwarf

Cut 77 72 149

Potato 62 73 135

139 145 284
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Linkage in a dihybrid testcross

• Deviation from a 1:1:1:1 ratio is due to linkage between the trait loci

Two traits in the chicken:Frizzled v. Normal, andWhite v. Coloured.

Counts in the testcross (Hutt 1931):White, Frizzled (F1) x Coloured, Normal

White Coloured

Frizzled 18 63 81

Normal 63 13 76

81 76 157

Therecombination fraction c = (18+13)/157 = 0.197.
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Phase: Coupling and repulsion

Counts from another mating (Hutt 1933):White, Frizzled (F1) x Coloured, Normal

White Coloured

Frizzled 15 2 17

Normal 4 12 16

19 14 33

The recombination fractionc = (4+2)/33 = 0.182.

In this family, the dominant traitsWhite andFrizzled are incoupling, but in the previous
family, they were inrepulsion.
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Phase: Coupling and repulsion of frizzled and coloured

In the backcross, only one parent is doubly heterozygous and contributes to the linkage
information.

In double heterozygotes, there are two possible arrangements on the chromosomes (the pairs
of alleles on each chromosome arehaplotypes):
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Gametic frequencies

IF If iF if

IF/if (coupling) (1-c)/2 c/2 c/2 (1-c)/2

If /iF (repulsion) c/2 (1-c)/2 (1-c)/2 c/2

Chooks

43
21

1

0

1

5 7

1

45
1

6891 1 6

1

2
1

3

44 22 00 11Coloure

d

Frizzle

d

44 55 22 33Coloure

d

Frizzle

d
2 4 00 44 00 44 00 44 00 22 00 22 00 44 00 22 00 44 00 22 00 44 00 22 00Coloure

d

Frizzle

d
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Mapping and Multipoint Analysis

• The experimental cross can be extended to involve more loci:three-point cross, etc

• The recombination fractions between pairs of loci can be used to order loci in the same
linkage group

The presence ofdouble recombinantsandinterferencemeans that recombination fractions
are only roughly additive. Amapping function adjusts for one or both of these phenomena,
allowing us to estimate consistentgenetic map distances.

So they address questions like, “ifcAB=0.4 andcBC=0.4, what shouldcAC be?”. One map unit
(1 Morgan) is the (shortest) map distance that is equivalent toc=0.50.
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Mapping and Multipoint Analysis

TheMorgan mapping function is,x=c, where x is the distance in map units. This assumes
complete interference, and is adequate over small distances.

TheHaldane mapping function is:

x = 0.5 log(1-2c)

c = 0.5 (1-e-2x)
and adjusts for double recombination only. Trow’s formula assumes the Haldane mapping
function:cAC = cAB + cBC − 2cABcBC.

TheKosambi mapping function also allows for interference, but isnot multipoint
consistent, so it very occasionally causes problems in multipoint linkage analysis.

x = 0.25 log[(1+2c)/(1-2c)]

c = 0.5 (e4x-1)/(e4x+1)
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Mapping and Multipoint Analysis

Data from three-point cross of corn (colourless, shrunken, waxy) due to Stadler.

Progeny Phenotype Count

1 A B C 17959

2 a b c 17699

3 A b c 509

4 a B C 524

5 A B c 4455

6 a b C 4654

7 A b C 20

8 a B c 12

Total Tested 45832
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Statistical Underpinnings

In these experimental crosses, the numbers of offspring per mating is large, so we can neglect
statistical uncertainty about:

• The accuracy of the genotypes

• The phase of the mating

• The counts of recombinants and nonrecombinants

Recombination is a binary (yes-no, R-NR) phenomenon. For a given parental genotype of
known phase, the probability of a recombination event in production of a gamete is a constant
(c). Each meiosis is an independentBernoulli trial . The count ofrecombination events
arising from a number of meioses therefore comes from thebinomial distribution .
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The Binomial Distribution

If two loci are unlinked,c=0.50. For a testcross giving rise to 3 offspring, we expect eight
outcomes to be equally likely. While if the two loci are linked, withc=0.10 say, the outcomes
with fewer recombinants will be observed more often.

Outcome c=1/2 c=1/10

R, R, R 1/8 1/1000

R, R, NR 1/8 9/1000

R, NR, R 1/8 9/1000

R, NR, NR 1/8 81/1000

NR, R, R 1/8 9/1000

NR, R, NR 1/8 81/1000

NR, NR, R 1/8 81/1000

NR, NR, NR 1/8 729/1000
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The Binomial Distribution

If the order of the events making up each outcome is irrelevant (as it is this case), we say the
events areexchangeable, and we can summarize the outcomes as counts:

R NR c=1/2 c=1/10

3 0 1/8 1/1000

2 1 3/8 27/1000

1 2 3/8 243/1000

0 3 1/8 729/1000

The expected number of recombination events ifc=0.5 is E(R)=cN=1.5.

If c=0.1, then E(R)=cN=0.3.
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The Likelihood Ratio

If we wish to make a decision about whether two loci are linked, we usually evaluate a
likelihood ratio comparing two hypotheses about our observed data.

If in our testcross sibship we observed 0 out of 3 recombinants, then the likelihood ratio
comparing the two hypothesesc=0.1 andc=0.5 isthe ratio of the probability of observing
the data under the two hypotheses.

Since these probabilities are not “actual” probabilities, but contingent on the underlying
hypothesis, Fisher suggested we call themlikelihoods.

L(R = 0,NR = 3 | c = 0.5) = 0.125
L(R = 0,NR = 3 | c = 0.1) = 0.001
LR = 125

We interpret this as saying that the hypothesis thatc=0.1 is 125 times more likely than the
hypothesis that the loci are unlinked.
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The Lod Score

Newton Morton suggested in 1955 that a likelihood ratio testing the hypothesis of linkage
should be “significant” if it was 1000:1 in favour of a hypothesis wherec < 0.5. This was
based on a sequential testing argument and the length of thehuman genetic map. It is thus
agenome-wide critical significance level, adjusting for the number of possible tests that
could be done.

If the likelihood ratio was 100:1 in favour of thec = 0.5 null hypothesis, then he suggested
this be accepted as significant evidence forexclusion of linkagefor that value ofc (egc=0.1).
Intermediate ratios were regarded as inconclusive.

Following Barnard (1947), he presented the likelihood ratio as thedecimal log oddsor lod
score. The lod scores from different families testing the same linkage hypothesis can be
added together to obtain a total lod score for that hypothesis. Similarly, for large datasets,
the likelihoods for particular hypotheses are usually very small, somodel log likelihoodsare
a convenient summary for computations.
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Linkage in outbred human families

Human families are relatively small, so phase is harder to evaluate.

Matings are relatively random, so only a proportion of families in the population are
informative for linkage analysis at any given marker.
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Codominant marker loci and the direct method

One way to work out the phase of a mating is to genotype three generations of a family.

Where there enough doubly heterozygous parents, one can count up the recombination
events, as in a planned cross.
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Genotypes at D12S379 and D12S95 in an Amish family

D12S379 205 209 193 201 197 209 201 209

D12S95 146 152 146 158 146 158 156 158

1 2 3 4

| | | |

+----+----+ +----+----+

| |

193 205 197 201

146 158 146 156

5 6

| |

+-----------+------------+

|

+--------+--------+--------+----+----+--------+--------+--------+

| | | | | | | |

193 201 197 205 193 201 193 197 193 197 197 205 201 205 201 205

156 158 146 146 156 158 146 158 146 158 146 146 146 146 146 146

7 8 9 10 11 12 13 14
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Direct estimation of recombination fraction 2

D12S379 205 209 193 201 197 209 201 209

D12S95 146 152 158 146 146 158 156 158

1 2 3 4

| | | |

+----+----+ +----+----+

| |

193 205 197 201

158 146 146 156

5 6

The grandparental data allows us to work out that the four gametes that gave rise to the
parents5 and6 were:

{205,146} from individual1,

{193,158} from2,

{197,146} from3,

{201,156} from4.
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Direct estimation of recombination fraction 3

D12S379 205 209 193 201 197 209 201 209

D12S95 146 152 146 158 146 158 156 158

1 2 3 4

| | | |

+----+----+ +----+----+

| |

193 205 197 201

158 146 146 156

5 6

| |

+-----------+------------+

|

+--------+--------+--------+----+----+--------+--------+--------+

| | | | | | | |

193 201 197 205 193 201 193 197 193 197 197 205 201 205 201 205

158 156 146 146 158 156 158 146 158 146 146 146 156 146 146 146

7 8 9 10 11 12 13 14

NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR R
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Direct estimation of recombination fraction 4

This allows us to score the children as to whether these haplotypes have been broken up by a
recombination event or not.

Our estimate of the recombination distance between these loci from this family is

c= 1/16 = 0.0625.

Because there are so few observations, the 95% confidence interval is wide, from 0.002 to
0.302. Actually, D12S379 and D12S95 are approximately 6 cM apart.
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The Lod Score for this Example Pedigree

In our sibship of eight children, one recombinant and fifteen nonrecombinants were
observed, so the likelihood for the family is:

L(R=1, NR=15; c) = 1c (1-c 15) .

For our example pedigree, the likelihood ratio and the lod score are:

LR =
( 1
16

1) (15
16

15)

(1
2

1) (1
2

15)
= 1555.712; lod = log10

( 1
16

1) (15
16

15)

(1
2

1) (1
2

15)
= 3.19
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An Alternative Interpretation of the Lod

An alternative interpretation of the likelihood ratio, is that (aymptotically),

2loge(LR) ∼ 2χ1 , the chi-square distribution.

So, we can calculate a P-value for a lod score:

lod P-value

0 0.5

1 0.016

2 0.0012

3 0.00010

4 0.000009
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Maximizing the lod score

Computer programs for linkage analysis calculate the lod score for a grid of different values
of c. The value ofc which maximizes the lod score as themaximum likelihood estimate:

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

1.
5

3.
0

Recombination fraction

lo
d

1/16
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Evaluating the lod score for ambiguous families 1

In most situations, the grandparents are unavailable, or grandparents or parents may be
homozygous at a marker.

We can still calculate a pedigree likelihood:

• List all the possible haplotype arrangements

• Calculate a likelihood for each arrangement

• Calculating the average of these likelihoods
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Evaluating the lod score for ambiguous families 2

TC2 1 3 1 3
HLA-A a b c d

1 2
| |
+----+----+

|
+--------+--------+
| | |
1 1 1 1 1 3
a c a c a c
3 4 5

The likelihood for this family is:

L(c) = 1
4

c(1 − c)[1 − 3c(1 − c)].
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Evaluating the lod score for ambiguous families 3

This formula arises from the fact that both parents are phase unknown, as is the individual 5.
Each of the eight possible arrangements is equally likely:

Person1 Person2 Person5 Recombinants Likelihood

1a/3b 1c/3d 1a/3c NR,NR,NR,NR,NR,Rc(1-c 5)

1a/3b 1c/3d 1c/3a NR,NR,R,NR,NR,NRc(1-c 5)

1a/3b 1d/3c 1a/3c NR,NR,NR,R,R,NR 2c (1-c 4)

1a/3b 1d/3c 1c/3a NR,NR,R,R,R,R 4c (1-c 2)

1b/3a 1c/3d 1a/3c R,R,R,NR,NR,R 4c (1-c 2)

1b/3a 1c/3d 1c/3a R,R,NR,NR,NR,NR 2c (1-c 4)

1b/3a 1d/3c 1a/3c R,R,R,R,R,NR 5c (1-c)

1b/3a 1d/3c 1c/3a R,R,NR,R,R,R 5c (1-c)
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The lod for the family is the average of these eight possibilities. It reaches its maximum value
Zmaxatc=0.21.

0.0 0.1 0.2 0.3 0.4 0.5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Recombination fraction

lo
d

0.211
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Parametric linkage analysis of a trait locus 1

For highly penetrant trait loci, we can infer the underlying genotype based on the observed
phenotype.

We need to know the likely mode of inheritance, and how common the risk allele is in the
general population.

For example, for a rare familial disease that appears to be dominantly inherited, we can score
each affected person asDd, each unaffected person asdd, and take eachD allele as coming
from a single pedigree founder.

For a condition that appears to be recessively inherited, we score affected persons asDD, and
their parents asdD.
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Parametric linkage analysis of a trait locus 2

Morton (1956) analysedfamilial elliptocytosis pedigrees collected by Lawler and Sandler
(1954) for linkage to Rhesus blood group (a codominant marker).

This paper is also one of the first examples of testing for homogeneity of linkage in
different pedigrees.

We will concentrate on one of the linked pedigrees.
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Parametric linkage analysis of a trait locus 3

One needs to know that familial elliptocytosis is extremely rare, so that the population allele
frequency of the disease allele is very low.

Examination of this pedigree and others shows the inheritance is consistent with fully
penetrant autosomal dominant inheritance.

Also, the allele frequencies for the marker locus (Rhesus blood group) are well known, so for
individuals who are untyped, we can weight the possibilities appropriately (0.4076, 0.1411,
0.3886, 0.0627).
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Parametric linkage analysis of a trait locus 4

Morton (1956) gives the lod score expression for this family as:
Z = log10

202 /39168 {810c(1-c 19) + 324c(1-c 18) + 180c(1-c 17) + 72c(1-c 16) +

90 3c (1-c 17) + 72 3c (1-c 16) + 40 3c (1-c 15) + 24 3c (1-c 14) + 90 4c (1-c 15) + 20 4c (1-c 13) +
90 5c (1-c 15) + 432 5c (1-c 14) + 20 5c (1-c 13) + 104 5c (1-c 12) + 1800 6c (1-c 14) + 558 6c (1-c 13)
+ 440 6c (1-c 12) + 176 6c (1-c 11) + 90 7c (1-c 13) + 324 7c (1-c 12) + 120 7c (1-c 10) +
360 8c (1-c 12) + 378 8c (1-c 11) + 80 8c (1-c 10) + 76 8c (1-c 9) + 4 8c (1-c 4) + 180 9c (1-c 11) +
522 9c (1-c 10) + 80 9c (1-c 9) + 100 9c (1-c 8) + 10 9c (1-c 3) + 180 10c (1-c 10) + 846 10c (1-c 9) +
40 10c (1-c 8) + 216 10c (1-c 7) + 18 10c (1-c 4) + 4 10c (1-c 2) + 1170 11c (1-c 9) + 378 11c (1-c 8) +
260 11c (1-c 7) + 72 11c (1-c 6) + 45 11c (1-c 3) + 180 12c (1-c 8) + 396 12c (1-c 7) + 40 12c (1-c 5) +
18 12c (1-c 2) + 270 13c (1-c 7) + 234 13c (1-c 6) + 40 13c (1-c 5) + 52 13c (1-c 4) + 180 14c (1-c 6) +
108 14c (1-c 5) + 80 14c (1-c 4) + 16 14c (1-c 3) + 90 15c (1-c 5) + 162 15c (1-c 4) + 20 15c (1-c 3)
+ 180 16c (1-c 4) + 72 16c (1-c 3) + 90 17c (1-c 3) }

The reported peak lod score in the paper was 3.31 at a recombination distance of
approximately 5% (this may be an error as the equation above has a maximum value of only
2.84; MLINK gives a lod score of 3.40 atc=0.05).
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Multipoint linkage analysis

Multipoint linkage analysis simultaneously estimates the recombination fractions between
multiple loci. Almost all modern linkage studies will involve multiple markers that can be
combined to increase the power to detect linkage.

The usual type of analysis involves testing the position of a single test locus (which may be a
marker or a trait locus) with respect to multiple marker loci whose positions are known. The
resulting lod score is often called alocation score.

Although a likelihood involving multiplec’s is being evaluated, these are then a function
of the test locus position via themapping function. For multipoint analysis, the Haldane
function is often used, as strictly speaking, the Kosambi mapping function can bemultipoint
inconsistent.

It is known that multipoint linkage analyses are more sensitive to genotyping errors, so
one will usually also carry out atwopoint analysis testing every marker in turn versus the
test locus.
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A multipoint lod score plot
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0
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lo
d
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The Elston-Stewart algorithm for general pedigrees 1

The lod score formulae for larger pedigrees are difficult to generate and evaluate. This is
especially the case where some pedigree members are untyped, or the relationship between
phenotype and genotype is not the direct relationship of codominant loci.

Certain computer programs (actually computer algebra systems) can write out these high
order polynomials, and then evaluate them.

The standard programs such as the LINKAGE programs (MLINK or ILINK), CRI-MAP,
MENDEL, MERLIN, SUPERLINK and GENEHUNTER, do not produce a single closed
form expression. They instead numerically evaluate the likelihood in a recursive fashion.
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The Elston-Stewart algorithm for general pedigrees 2

For even large pedigrees that meet certain criteria (absence of loops, no more than one
founder× founder mating), it is possible to write the likelihood in a form,

L(c) = Σ Pr(xi|gi)Pr(gi|parents,c)…
Σ Pr(xn|gn)Pr(gn|parents,c)

where,
xi is the phenotype of theith individual,
gi is the (poly-)genotype of theith individual,
Pr(gi|parents) is the probability of observing that genotype given the parental genotypes (the
population genotype frequencies in the case of founders), and the recombination distance
between the loci contributing to the genotype.
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The Elston-Stewart algorithm for general pedigrees 3

L(c) = Σ Pr(xi|gi)Pr(gi|parents,c)…
Σ Pr(xn|gn)Pr(gn|parents,c)

The summation for each individual is over all possible genotypes consistent with their
phenotype (eg two possibilities for the phase-unknown case, two codominant loci),

The individuals are ordered by their position in the pedigree, from founders downwards
(to descendants).

The nested sums are evaluated from right to left, so the likelihood of the descendants below
a particular individual become summarised in the likelihood of that individual.
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General pedigree traversal analysis

For pedigrees where loops or multiple founder matings exist, the more complicatedpedigree
traversal algorithms used in the LINKAGE programs must be used. Given the complexity
of evaluating the lod score for large pedigrees, values are usually produced for a grid of fixed
values, such asc=(0.0,0.01,0.05,0.1,0.2…).

TheLander-Green algorithm is an alternative method of ordering the caclulations that is
faster in the case of multipoint (more than 2 loci) linkage analysis for smaller pedigrees, but
which is not usable in large pedigrees.

The program SUPERLINK tests a variety of different calculation orderings, picking the best
approach for a given pedigree using the HUGIN algorithm.
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Confidence intervals for the recombination fraction and multipoint location

The lod score or location score curve can also be used to give a confidence region forc or the
trait location. The easiest method is the “1 unit” confidence interval or “support interval”.

This is constructed by taking the closest values ofc on either side of Zmaxwhich have a lod
score of Zmax-1.

The steepness of the lod curve around the MLE does reflect the precision of the estimate, and
asymptotically, this steepness measured as the second derivative of the likelihood function
gives the sampling variance of the estimate (as the inverse of the Fisher information).
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Introducing the Generalized Single Major Locus Model

So far, we have dealt withcodominantor fully penetrant loci, where there is a simple 1:1
relationship between the underlying genotype and the scored phenotype.

Modern marker loci are invariablycodominant, but the trait loci that we wish to map are often
more complex. For example, a genotype may give rise to a particular phenotype only in a
proportion of individuals, and so must be described in a statistical manner.

The probability that a particular phenotypeP will be observed in a individual of genotypeG,
Pr(P | G), is thepenetrance.
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The Generalized Single Major Locus Model

Consider a binary trait under the control of a two allele locus (alleles A and B). We can then
write a description of the trait in the population:

Genotype Frequency in Population
(HWE)

Conditional probability, that an individual
of that genotype is

Affected Unaffected

A/A PA
2 f2 1-f2

A/B 2PA (1-PA) f1 1-f1

B/B (1-PA)2 f0 1-f0

Knowing the allele frequencies and penetrances, we can calculate the overall proportion of
the population expressing the trait (affected),

Population Risk = PA
2f2 + 2PA (1-PA)f1 + (1-PA)2f0
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SML model with covariates

In the presence of covariates such as age or sex, the model is usually extended in a stratified
fashion by definingliability classes, and defining penetrances for each liability class:

Sex PenAA PenAB PenBB

Male f0m f1m f2m

Female f0f f1f f2f

For age, we stratify into bands and specify a step function to approximate the age-at-onset
curve for each genotype.
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Estimating genotype carrier probabilities to allow linkage analysis

To carry out aparametric linkage analysis, we will use these SMLmodel parametersto
estimate the probability that an individual carries each of the possible genotypes.

Genotype A/A A/B B/B

Probability PA
2f2/R 2PA (1-PA)f1/R (1-PA)2f0/R

• We must specify the SML model in order to carry out parametric linkage analysis

• The model does not have to be correct
• But power to detect linkage is best when the model is correct

• For complex diseases, fitting two models often covers most possibilities

• All “nonparametric” linkage models have a parametric equivalent
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Non-parametric linkage analysis

If one of the loci of interest is not a simple Mendelian trait, then it becomes difficult to
determine what the underlying genotypes are.

One approach is to take penetrance and allele frequency information from other sources, and
use to those to estimate the probabilities of each genotype in each member of the pedigree.

Another is to perform simple tests looking for effects of ascertainment on segregation of the
codominant marker locus in the selected families.
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The affected sib pair (ASP) method

This method is used where a trait locusA is dichotomous (affected or unaffected), with
unknown penetrances and allele frequencies for the underlying trait locus. The other locus
B is a codominant marker (ideally). In this case, we ascertain families with two affected
children. For backcross matings, we obtain

Sibship type,Bb x BB mating Frequency of each sibship type

Child 1 Child 2 Observed Expected under null hypothesis

BB BB O1 N/4

BB bB O2 N/4

bB BB O3 N/4

bB bB O4 N/4

Total Number of Sibships N N

The null hypothesis is that there is no distortion of the segregation proportions due to linkage
between the trait locus and the marker locus.
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The affected sib pair (ASP) method 2

We can simplify this table to,

Sibship type Number of families

Children same type (both B, or both b)O1+O4 N/2

Children different types O2+O3 N/2

Total N N

Deviations in the expected counts from the null expectations occur whenc<0.5.
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The affected sib pair (ASP) method 3

We can work out theoretical expectations for particular values ofc, penetrances (f2, f1, f0)
and allele frequencies (trait PA and mmarker PB). Assuming both Hardy-Weinberg and
linkage equilibrium,

Pr(Children same type)=1/2 + (2c 2-1) (4c(c-1)(VD-1)-1+2VA+3VD)/(16R+8VA+4VD)

Pr(Different)=1/2 - (2c 2-1) (-4c(c-1)(VD-1)+1+2VA+VD)/(16R+8VA+4VD)

where,

R=PAf2+2PA(1-PA)f1+(1-PA
2) f0,

VA=2PA(1-PA)(PA(f1-f0)+(1-PA)(f2-f1
2))

VD=P 2A
(1-PA

2) (f2-2f1+f0
2) .
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The affected sib pair (ASP) method 3

Whenc is 0.5, the second term disappears, giving the null expectations. Ifc is zero, then

Pr(Children same type)= 1/2 + (2VA+3VD-1)/(16R+8VA+4VD)
Pr(Different)=1/2 - (2VA+VD+1)/(16R+8VA+4VD).

In the case of a multiallelic marker, the test is exactly the same, the numbers for each
heterozygous parent genotype still contributing to the sib pair being concordant or discordant
at the marker.
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Identity by descent and identity by state

In the backcross example above, the heterozygous parent is informative for linkage analysis,
in that we can determine whether each child received an allele from thesame parental
chromosome(or same grandparental gamete).

This is termedidentity by descentinformation. If each child received an allele from the
same grandparental gamete, this allele isidentical by descent.

If a parent is homozygous at the marker, each child receives the same allele, but we do not
know whether these came from the same grandparent.

The termidentical by statedescribes the situation where two relatives carry the same allele,
regardless of whether it was inherited from a common ancestor or not.
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Identity by descent and identity by state probabilities

In ambiguous cases, we will often calculate theidentity by descent probabilities.

For example, if one parent isBB and the otherbb, then the probability that both children carry
theB allele is 100%. The probability that theB allele in one child is identical by descent with
theB allele in the other child is 50%.

Identity by descent probabilities, oribd are useful because:

• Can be calculated for any pair of relatives

• Can be estimated where one or both relatives is untyped at a marker

• Haplotype transmission in a pedigree is encoded byibd

• Theibd probabilities are the empiricalkinship coefficientsfor that locus, and any
tightly linked trait loci

Theibd probabilities are often summarised as the mean probability of sharing an alleleibd

QIMR



at that locus (the empirical coefficient of relationship or “pi-hat” –
^
Π). The set of theseibd

coefficientsfor a pedigree is often represented as anibd matrix.
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Examples of IBD and IBS 1

D12S379 205 209 193 201

1 2

| |

+----+----+

|

193 205 197 201

5 6

| |

+-----------+------------+

|

+--------+--------+--------+----+----+

| | | |

193 201 197 205 193 201 193 197

7 8 9 10

Here are some examples. Returning to the Amish pedigree above, individuals2 and7 both
carry a 193 and a 201 (repeat) allele at the D12S379 locus.
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Therefore they share two alleles identical by state (ibs). However, the 201 allele was not
transmitted from grandparent2 to grandchild7, so they share only the 193 allele identical
by descent (ibd). Grandchild7 shares no allelesibs or ibd with his/her grandparents1and3
at D12S379.
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Examples of IBD and IBS 2

D12S379 205 209 193 201

1 2

| |

+----+----+

|

193 205 197 201

5 6

| |

+-----------+------------+

|

+--------+--------+--------+----+----+

| | | |

193 201 197 205 193 201 193 197

7 8 9 10

For the first four siblings in the third generation, theibd sharing is the same as the
ibs sharing.
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Individual7 Individual8 Individual9 Individual10

Individual7 - 0% 100% 50%

Individual8 0/2 - 0% 50%

Individual9 2/2 0/2 - 50%

Individual10 1/2 1/2 1/2 -
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Estimating IBD for sib-pairs

Mating Type Sib pair Population
frequency*

ibd=0% ibd=50% ibd=100% Meanibd

aa x aa aa, aa 4a 1/4 1/2 1/4 50%

aa x bb ab, ab 22a 2b 1/4 1/2 1/4 50%

aa x ab aa, aa 3a b 0 1/2 1/2 75%

aa, ab 32a b 1/2 1/2 0 25%

ab, ab 3a b 0 1/2 1/2 75%
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Mating
Type

Sib pair Population
frequency*

ibd=0% ibd=50% ibd=100% Meanibd

aa x bc ab, abor
ac, ac

2a bc 0 1/2 1/2 75%

ab, ac 22a bc 1/2 1/2 0 25%

ab x ab aa, aaor
bb, bb

2a 2b /4 0 0 1 100%

aa, bb 2a 2b /2 1 0 0 0%

aa, abor
bb, ab

2a 2b 0 1 50% 0

ab, ab 2a 2b 1/2 0 1/2 50%
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Mating
Type

Sib pair Population
frequency*

ibd=0% ibd=50% ibd=100% Meanibd

ab x ac aa, aa 2a bc/2 0 0 1 100%

aa, abor
aa, ac

2a bc 0 1 0 50%

aa, bc 2a bc 1 0 0 0%

ab, abetc 2a bc/2 0 0 1 100%

ab, ac 2a bc 1 0 0 0%

ab, bc 2a bc 0 1 0 50%

ac, bc 2a bc 0 1 0 50%
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Mating
Type

Sib pair Population
frequency*

ibd=0% ibd=50% ibd=100% Meanibd

ab x cd ac, acetc abcd/2 0 0 1 100%

ac, adetc abcd 0 1 0 50%

ac, bdor
ad, bc

abcd 1 0 0 0%

* Population frequency of that type of family in the population assuming random mating
and HWE. Each letter represents the population frequency of that allele in the general
population.
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Affected sib pairs with untyped parents

If a disease occurs late in life, both parents of an ASP are likely to be dead.

We can still work out theibd probabilities for the sibs. If the marker is multiallelic, and
the pair area/b andc/d, for example, they must also beibd=0. If we know the marker allele
frequencies, and assume panmixia, HWE etc, we can obtain the expectedibds by adding up
the probabilities under each possible mating type that could give rise to that pair,

Sib pair Population frequency* ibd=0% ibd=50% ibd=100% Meanibd

aa, aa 2a 2(1+a) /4 2a 2/(1+a) 22a/(1+a) 21/(1+a) 1/(1+a)

aa, bb 2a 2b /2 1 0 0 0

aa, ab 2a b(1+a) a/(1+a) 1/(1+a) 0 1/(2+2a)

aa, ac 2a jk 1 0 0 0
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Sib pair Population
frequency*

ibd=0% ibd=50% ibd=100% Meanibd

ab, ab ab(1+a+b+2ab)/2 2ab/(1+a+b+2ab) (a+b)/(1+a+b+2ab) 1/(1+a+b+2ab) (2+a+b)/(2+2a+2b+4ab)

ab,ac abc(1+2a) 2a/(1+2a) 1/(1+2a) 0 1/(2+4a)

ab,cd 2abcd 1 0 0 0

* Population frequency of that type of family in the population assuming random mating
and HWE. Each letter represents the population frequency of that allele in the general
population.

For example, if thea allele has a population frequency of 0.5, an ASP with genotypesa/a
anda/b will contribute one-third of an observation to theibd=0 cell, and two-thirds to the
ibd=50% cell. The expected counts and the chi-square will be worked out in the usual way.
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Faraway’s improved (UMP) affected sib pair linkage test

We can therefore calculateibd sharing for a sib-pair, or indeed any other kind of relative pair.
If there is no inbreeding in the families sampled, the only kind of relative pair that can share
more than one alleleibd (50%ibd sharing) is the sib pair (and MZ twins, but these contain
no linkage information).

Usingibd sharing as the measure of similarity, there are actually three simple chisquare tests
suggested for affected sib pair data in the following table.

Identity by descent allele sharingTotal

ibd=100% ibd=50% ibd=0%

Observed Count O2 O1 O0 N

Expected Count N/4 N/2 N/4 N

Note that there are “fractional” contributions from less informative families. For example, an
ASP with genotypesa/a anda/b arising from the backcrossa/a x a/b mating will contribute
one-half of an observation to theibd=0 cell, and one-half to theibd=50% cell.
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Faraway’s improved (UMP) affected sib pair linkage test

We have already seen the overall best simple test, which is usually called the “mean” test,

Mean test = 2/N (2O2+O1
2-N)

The other tests are superior only if the trait has particular mode of inheritance, such as a
simple Mendelian recessive. The two-degree-of-freedom “genotypic” test is,

X 22
=[O2

2-N/4] /[N/4] + [O1
2-N/2] /[N/2] +[O0

2-N/4] /[N/4]

and the “two-allele” test is simply,

X 21
=[O2

2-N/4] /[N/4]
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The “Possible Triangle” for IBD sharing

Faraway (1992) showed that a combination of these different tests is the theoretically best
test against a genetic alternative hypothesis.

Observed identity by descent*Value of composite statistic

2p2+p1 > 1, p1 > 1/2 mean test

3p1/2 + p2 < 1, p2 > 1/4 two-allele test

2p2+p1 < 1, p2 < 1/4 Not consistent with genetic cause

Otherwise 2 d.f. chi-square

Here p2,p1,p0 is the observed proportion of pairs sharing two, one, zero alleles ibd.
Unfortunately, since one has to choose a different test for each situation, a correct P-value can
no longer be looked up in the conventional chi-square table. For example, if your sample has
150 ASPs, the critical chi-square value for a one-tailed P=0.05 is not 2.71, but 3.42.
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The “Possible Triangle” for IBD sharing

An equivalent test to this is the “MLS” ASP test, implemented in programs such as
Genehunter, ASPEX and GAS.

MERLIN offers the mean test, parameterised as the Kong and Cox score test.
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Other types of relative pair

We can easily construct similar tests for other types of relative pair. For example, if we have
a set of families containing an affected individual and their affected grandparent, or two
affected half-sibs, the expectedibd is 25% (or half an allele). The observed value will either
be one or zero alleles sharedibd. For this case, we can use an approximate chi-square, or
exact binomial test on the observed counts. Because there are more “intervening” relatives
between the members of the grandparent-grandchild pair, there is more room for ambiguous
cases to arise (the connecting parent needs to be heterozygous,and the grandparental
contributions need to be identifiable ie different grandparental genotypes).

One type of affected relative pair linkage analysis is the Kong and Cox scoring approach.
This is a maximum likelihood based approach, and is available in programs such
as MERLIN.
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Multipoint estimation of identity-by-descent sharing

Programs such as Allegro, Genehunter, Loki, MENDEL, MERLIN and SIMWALK2 use
maximum likelihood approaches to improve the estimation ofibd probabilities when
genotypes at multiple linked markers are available.

As in the case of multipoint linkage analysis, theibd probabilities for all pairs of relatives in
a pedigree can be evaluated at any location between (or indeed outside) the set of genotyped
markers. One will usually evaluateibd at the location of the markers themselves (where there
is often maximal information), or on a fixed grid (every 1, 2, 5 or 10 cM along the map).
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Risch’s parameterisation for ibd based ASP analysis

One will often encounter the results and notation derived in Risch [1990], a paper that
summarizes much earlier work on ASP analysis. The expected values under specific genetic
hypotheses were quite complicated using VA, VD andR. Risch introduced some simpler
formulae for the expected values.

The recurrence risk is the probability a family member will be affected (for a dichotomous
trait) given that a specified relative is affected. For example, for a rare fully penetrant
recessive gene (f2=1, f1=0, f0=0), the recurrence risk to a sibling will be approximately 25%.
James (1971) had shown that the recurrence risk was,

RecR = R + (k1 VA + k2 VD)/R

where k1 and k2 are kinship coefficients as before.
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Risch’s parameterisation for ibd based ASP analysis

If we define thePopulation Relative Risk (PRR) asRecR/R, then the expectedibd under a
specific genetic hypothesis for a specific type of relative pair is,

Identity by descent allele sharing

ibd=100% ibd=50% ibd=0%

Expected Prop k2PRRMZ/PRR k1PRRPO/PRR k0/PRR

PRRMZ is the PRR for a monozygotic or identical twin of an affected individual, and PRRPO
is the PRR for the child of an affected parent. Therefore, if descriptive data about a trait
is available, we can work out firstly how many families we will need in our study to get a
significant chi-square (the power of the study), as well as detecting if a trait locus linked to
our marker explains all the cases of disease in the population.
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ASP Exclusion mapping

A third, related use is to performexclusion mapping. If we specifyR, PRRMZ and PRRPO
we can test whether our observedibd counts are significantly different from what they
would be if the trait locus was close to our marker locus. If the chi-square is large enough,
we canexclude the trait from being in that chromosomal region. This allows us to quantify
how “non-significant” a small ASP chi-square value is, since a small chi-square can either
arise from having a small study (not very powerful) or from the trait and marker locus
being unlinked.
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