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Introduction

. Mendelism

 Linkage

e  Statistical distributions

« Maximum likelihood linkage analysis

« The generalized single major locus model
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Mendel and Mendelism

« Mendel studiedinary traits
« Had parental lines that bred true for tratt®(mozygou$
* F, hybrid offspring were homogenous

* F,generation exhibited Mendelian ratios

. 3:1
. 1:2:1
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Backcross

* FwithPorP,
e Simpler ratios
« Simpler interpretation in case of linkage

Paternal Genotype Ef (F))
Slightly frizzled
F(50%) f (50%)
Maternal Genotype EF F (50%) FF (25%) Ff (25%)
Frizzled (P) Frizzled  Slightly Frizzled
F (50%) FF (25%) Ff (25%)
Frizzled  Slightly Frizzled
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The Other Backcross

Maternal Genotype # f (50%) Ff (25%) ff (25%)
Normal (P,) Slightly Frizzled Normal
f (50%) Ff (25%) ff (25%)

Slightly Frizzled Normal
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Dihybrid testcross

«  Backcross involving two traits
 If both are dominant, see a 1:1:1:1ratio in the (informattesjcross

Two traits in the potato plantall v. Dwarf, andCut leaf v. Potato cut leatf.

Counts in the backcross generation (MacArthur 1938, Cut (F)) x Dwarf, Potato

Tall Dwarf
Cut 77 72 149
Potato 62 73 135

139 145 284
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Linkage in a dihybrid testcross

« Deviation from a 1:1:1:1ratiois due to linkage between the trait loci

Two traits in the chickerFrizzled v. Normal, andWhite v. Coloured.

Counts in the testcross (Hutt 193Mhite, Frizzled (F,) X Coloured, Normal

White Coloured

Frizzled 18 63 81
Normal 63 13 76
81 76 157

Therecombination fraction ¢ = (18+13)/157 = 0.197.
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Phase: Coupling and repulsion

Counts from another mating (Hutt 1933)hite, Frizzled (F,) x Coloured, Normal

White Coloured

Frizzled 15 2 17
Normal 4 12 16
19 14 33

The recombination fractioa= (4+2)/33 = 0.182.

In this family, the dominant traitéhite andFrizzled are incoupling, but in the previous
family, they were irrepulsion.
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Crossing-over and Recombination
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Phase: Coupling and repulsion of frizzled and coloured

In the backcross, only one parent is doubly heterozygous and contributes to the linka
Information.

In double heterozygotes, there are two possible arrangements on the chromosomes (
of alleles on each chromosome &iaplotypes:
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Coloured
Frizzled

Coloured
Frizzled

Coloured
Frizzled
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Gametic frequencies

IF If IF If
IF/if (coupling) (1-c)/2 c/2 c/2 (1-c)/2
If /iF (repulsion) c/2 (1-c)/2 (1-c)/l2 c/2
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Mapping and Multipoint Analysis

« The experimental cross can be extended to involve moretlwee-point cross, etc

« Therecombination fractions between pairs of loci can be used to order loci in the
linkage group

The presence alouble recombinantsandinterference means that recombination fractio
are only roughly additive. Aapping function adjusts for one or both of these phenome
allowing us to estimate consisteggnetic map distances

So they address questions like, €jf;=0.4 andc; .=0.4, what shouldc, . be?”. One map uni
(1 Morgan) is the (shortest) map distance that is equivalext@db0.
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Mapping and Multipoint Analysis

TheMorgan mapping function is, x=c, where x is the distance in map units. This assur
complete interference, and is adequate over small distances.

TheHaldane mapping functionis:
X =0.5log(1-2c)

c=0.5(1-&
and adjusts for double recombination only. Trow’s formula assumes the Haldane mar

functlon:cAC = Cpg t Coe — ZCABCBC.

TheKosambi mapping function also allows for interference, but mot multipoint
consistent so it very occasionally causes problems in multipoint linkage analysis.

X =0.25log[(1+2c)/(1-2c)]
c=0.5(&1)/(e"+1)
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Mapping and Multipoint Analysis

Data from three-point cross of coreofourless, shrunken, waxy) due to Stadler.

Progeny Phenotypé Count
1| ABC 17959
2| abc 17699
3| Abc 509
4| aBC 524
5| ABc 4455
6|abC 4654
7| AbC 20
8| aBc 12
Total Tested 45832
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Statistical Underpinnings

In these experimental crosses, the numbers of offspring per mating is large, so we can
statistical uncertainty about:

« The accuracy of the genotypes
« The phase of the mating
. The counts of recombinants and nonrecombinants

Recombination is a binary¢s-no, R-NR) phenomenon. For a given parental genotype o
known phase, the probability of a recombination event in production of a gamete is a c«
(c). Each meiosis is an independ&srnoulli trial . The count ofrecombination events
arising from a number of meioses therefore comes fronbthemial distribution .
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The Binomial Distribution

If two loci are unlinkedc=0.50. For a testcross giving rise to 3 offspring, we expect eig
outcomes to be equally likely. While if the two loci are linked, watk0.10 say, the outcom:e
with fewer recombinants will be observed more often.

Outcome c=1/2 | c=1/10
R,R,R 1/8 1/1000
R, R, NR 1/8 9/1000
R,NR, R 1/8 9/1000
R,NR,NR | 1/8 81/1000
NR, R, R 1/8 9/1000
NR,R,NR | 1/8 81/1000
NR,NR,R | 1/8 81/1000
NR,NR,NR | 1/8 729/1000
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The Binomial Distribution

If the order of the events making up each outcome is irrelevant (as it is this case), we
events ar@xchangeableand we can summarize the outcomes as counts:

NR | c=1/2 | ¢c=1/10
1/8 1/1000
3/8 27/1000
3/8 243/1000
1/8 729/1000

ol | N w|
w| N RO

The expected number of recombination events0.5 is E(R)=N=1.5.

If c=0.1, then E(R)eN=0.3.
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The Likelihood Ratio

If we wish to make a decision about whether two loci are linked, we usually evaluate :
likelihood ratio comparing two hypotheses about our observed data

If in our testcross sibship we observed 0 out of 3 recombinants, then the likelihood ra
comparing the two hypotheses0.1 andc=0.5 isthe ratio of the probability of observing
the data under the two hypotheses

Since these probabilities are not “actual” probabilities, but contingent on the underlyir
hypothesis, Fisher suggested we call tHi@lihoods.

L(R=0,NR=3|c=05)=0125
L(R=0,NR=3|c=01)=0001
LR =125

We interpret this as saying that the hypothesis tx@t1 is 125 times more likely than the
hypothesis that the loci are unlinked.
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The Lod Score

Newton Morton suggested in 1955 that a likelihood ratio testing the hypothesis of link
should be “significant” if it was 1000:1 in favour of a hypothesis whexe).5. This was
based on a sequential testing argument and the length blithan genetic map. It is thus
agenome-wide critical significance levehldjusting for the number of possible tests tha
could be done.

If the likelihood ratio was 100:1 in favour of the = 0.5 null hypothesis, then he suggest
this be accepted as significant evidencestarlusion of linkagefor that value ofc (egc=0.1).
Intermediate ratios were regarded as inconclusive.

Following Barnard (1947), he presented the likelihood ratio asldoemal log oddsor lod
score The lod scores from different families testing the same linkage hypothesis can
added together to obtain a total lod score for that hypothesis. Similarly, for large data
the likelihoods for particular hypotheses are usually very smailhadel log likelihoodsare
a convenient summary for computations.
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Linkage in outbred human families

Human families are relatively small, so phase is harder to evaluate.

Matings are relatively random, so only a proportion of families in the population are
iInformative for linkage analysis at any given marker.
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Codominant marker loci and the direct method

One way to work out the phase of a mating is to genotype three generations of a fam

Where there enough doubly heterozygous parents, one can count up the recombinat
events, as in a planned cross.
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Genotypes at D12S5379 and D12S95 in an Amish family

D12S379 205 209 193 201 197 209 201 209
D12S95 146 152 146 158 146 158 156 158
1 2 3 4
| | | |
N S S N S S
| |
193 205 197 201
146 158 146 156
5 6
| |
i e +
N N N . N N +

| | | | | | | |
193 201 197 205 193 201 193 197 193 197 197 205 201 205 201 205

156 158 146 146 156 158 146 158 146 158 146 146 146 146 146 146
7 8 9 10 11 12 13 14
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Direct estimation of recombination fraction 2

D12S379 205 209 193 201 197 209 201 209
D12S95 146 152 158 146 146 158 156 158
1 2 3 4
| | | |
S S S & X S
| |
193 205 197 201
158 146 146 156
5 6

The grandparental data allows us to work out that the four gametes that gave rise to t

parentd and6 were: L
{205,146} from individuall,

{193,158} from 2,
{197,146} from 3,
{201,156} from 4.
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Direct estimation of recombination fraction 3

D12S379 205 209 193 201 197 209 201 209
D12S95 146 152 146 158 146 158 156 158
1 2 3 4
| | | |
N S N S
| |
193 205 197 201
158 146 146 156
5 6
| |
o e +
o o o e o o +

| | | | | | | |
193 201 197 205 193 201 193 197 193 197 197 205 201 205 201 205

158 156 146 146 158 156 158 146 158 146 146 146 156 146 146 146
7 8 9 10 11 12 13 14
NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR R
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Direct estimation of recombination fraction 4

This allows us to score the children as to whether these haplotypes have been broker
recombination event or not.

Our estimate of the recombination distance between these loci from this family is

c=1/16 = 0.0625.

Because there are so few observations, the 95% confidence interval is wide, from 0.0
0.302. Actually, D12S379 and D12S95 are approximately 6 cM apart.
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The Lod Score for this Example Pedigree

In our sibship of eight children, one recombinant and fifteen nonrecombinants were
observed, so the likelihood for the family is:

L(R=1, NR=15;¢) = c* (10)".

For our example pedigree, the likelihood ratio and the lod score are:

1

(L)t (22 (L)t (22
16 16 160 16

LR = = 1555712; lod = log, = 319
G dys P by
2" 2 2" 2
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An Alternative Interpretation of the Lod

An alternative interpretation of the likelinood ratio, is that (aymptotically),

2log(LR) Ox* the chi-square distribution.

So, we can calculate a P-value for a lod score:

lod P-value
0.5

0.016
0.0012
0.00010
0.000009

A W N P O
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Maximizing the lod score

Computer programs for linkage analysis calculate the lod score for a grid of different:
of c. The value ofc which maximizes the lod score as tmaximum likelihood estimate

1/16

3.0

lod
. 1.5 .
L L]

0.0

| ' | | | | |
0.0 0.1 0.2 0.3 04 0.5

Recombination fraction
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Evaluating the lod score for ambiguous families 1

In most situations, the grandparents are unavailable, or grandparents or parents may
homozygous at a marker.

We can still calculate a pedigree likelihood:

« Listall the possible haplotype arrangements
e Calculate a likelihood for each arrangement
« Calculating the average of these likelihoods
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Evaluating the lod score for ambiguous families 2

TC2 1 3 1 3
HLA- A ab c d
1 2
| |
e e -
|
S S S S +
| | |
11 11 1 3
a c a c a c
3 4 5

The likelihood for this family is:

L(c) = Zlc(l —O)[1 - 3c(1- ).
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Evaluating the lod score for ambiguous families 3

This formula arises from the fact that both parents are phase unknown, as is the indiv
Each of the eight possible arrangements is equally likely:

Personl Persor? Persorb Recombinants Likelihood
1a/3b 1c/3d la/3c NR,NR,NR,NR,NR,RC(1C)5

la/3b  1c/3d  1c/3a  NR,NR,RNR,NR,NRg1.c)P°
la/3b  1d/3c  la/3c NRNRNRRRNR (1.0
la/3b  1d/3¢  1c/3a  NRNRRRRR Y17
1b/3a  1c/3d  1a/3c  RRRNRNRR (10>
1b/3a  1c/3d  1c/3a  RRNRNRNRNR (10"
1b/3a  1d/3c  la/3c  R,R,R,R,RNR c(1-0)
1b/3a  1d/3c  1c/3a  RR,NR,RR,R c5(1-0)
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The lod for the family is the average of these eight possibilities. It reaches its maximurn
Z ..atc=0.21.

0.211

1.0

0.0

lod
-0.5
|

-1.0

0.0 0.1 0.2 0.3 0.4 0.5

Recombination fraction

@ QIMR



Parametric linkage analysis of a trait locus 1

For highly penetrant trait loci, we can infer the underlying genotype based on the obs
phenotype.

We need to know the likely mode of inheritance, and how common the risk allele is in
general population.

For example, for a rare familial disease that appears to be dominantly inherited, we ca
each affected person Bsl, each unaffected person@d, and take eacbh allele as coming
from a single pedigree founder.

For a condition that appears to be recessively inherited, we score affected perStnsad
their parents adD.
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Parametric linkage analysis of a trait locus 2

Morton (1956) analysetamilial elliptocytosis pedigrees collected by Lawler and Sandle
(1954) for linkage to Rhesus blood group (a codominant marker).

This paper is also one of the first examples of testing for homogeneity of linkage in
different pedigrees.

We will concentrate on one of the linked pedigrees.
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Pedigree 5 from Lawler and Sandler (1954 ) used by MMorton (1956).

101 102
| |
+---4---+
T T T T T +
| |
201 202 203 204
| | | |
+--4--+ +--4--+
| |
+--- - - - e ST TSy U U +----- - - RS + +----- +----- +
| | | I I | I
ATT LUnA ATT 7 UnA ATt Una 7 ATT UnA ATT UnA ATT
13 X X 13 Xxx 33 13 X X X X 1 3 X X 1 2 2 3 3 3
301 302 303 3 305 F06 307 I08 309 311 310 312 314
| | | | | | | | |
+--4--+ +---4--+ +--4--+ +--4--+ +--4--+
I I I I I
| H- - - -H-F--- -+ +---4---+ +- - - - - - - “+ |
| | I | I I I I | | |
UnA UnA AfT Aff ATT 7 ATt ATT UnA ATT 7 ATT UnA
33 23 11 12 11 =*x=x 111333 13 =x 13 2 2
405 407 402 409 410 412 411 413 414 415 417 418 419
| | | |
+--+-+ +--4-+
I I
| S SR S
I I | |
ATT ATt ATT ATT
1 3 111111
S0
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Parametric linkage analysis of a trait locus 3

One needs to know that familial elliptocytosis is extremely rare, so that the population
frequency of the disease allele is very low.

Examination of this pedigree and others shows the inheritance is consistent with fully
penetrant autosomal dominant inheritance.

Also, the allele frequencies for the marker locus (Rhesus blood group) are well known
Individuals who are untyped, we can weight the possibilities appropriately (0.4076, O.
0.3886, 0.0627).
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Parametric linkage analysis of a trait locus 4

Morton (1956) gives the lod score expression for this family as:

Z =log,, 239168 {81@(1<)""+ 324(1<c)°+ 18((l<) '+ TA(10) "+

oo’ (1)t + 7210+ 4’1o+ 24°10M+ oot io+ 20t (1o +
90’ (1o)+ 43x°(1oM+ 2010+  104°(1<)+  180a@°%(1<)**+ 558°%(1<¢)"
+ 44°10)+  176f1oMt+ 9’1o+ 324710+  12a'(10)f+
360510+ 378%10M+ 8010+ 7S+ 4fot+ 18a°1o)tt+
522510+ 8010+ 10a°(1<)’+ 1010+ 181+ 84&(1<)’+
40c10°+ 216910+ 18910+ 4c1of+ 11710+ 378N (10°+
26t (1) + 72 (10°+ 4t (1<)’+ 18@A10°+ 39&M(10)'+ 40t 1<)+
16 q10°+ 2710+ 23481<)°+ 4cB(1o’+ 5xM1o)+  18a(1-0)°+
108 1c’+ 8oct1o)’+ 161+ 9oct(10’+ 1621+  20ct(1<)’
+ 18@f1o)t+ 7x1<o’+ 9oct’(1<)}

The reported peak lod score in the paper was 3.31 at a recombination distance of
approximately 5% (this may be an error as the equation above has a maximum value
2.84; MLINK gives a lod score of 3.40 at0.05).
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Multipoint linkage analysis

Multipoint linkage analysis simultaneously estimates the recombination fractions bel
multiple loci. Almost all modern linkage studies will involve multiple markers that can
combined to increase the power to detect linkage.

The usual type of analysis involves testing the position of a single test locus (which m:
marker or a trait locus) with respect to multiple marker loci whose positions are known
resulting lod score is often called@cation score

Although a likelihood involving multiple’s is being evaluated, these are then a functior
of the test locus position via thmapping function. For multipoint analysis, the Haldane
function is often used, as strictly speaking, the Kosambi mapping function caaolbpoint
Inconsistent

It is known that multipoint linkage analyses are more sensitive to genotyping errors, s
one will usually also carry out mvopoint analysis testing every marker in turn versus th
test locus.
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A multipoint lod score plot

lod
2
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The Elston-Stewart algorithm for general pedigrees 1

The lod score formulae for larger pedigrees are difficult to generate and evaluate. Th
especially the case where some pedigree members are untyped, or the relationship k
phenotype and genotype is not the direct relationship of codominant loci.

Certain computer programs (actually computer algebra systems) can write out these
order polynomials, and then evaluate them.

The standard programs such as the LINKAGE programs (MLINK or ILINK), CRI-MAF
MENDEL, MERLIN, SUPERLINK and GENEHUNTER, do not produce a single close
form expression. They instead numerically evaluate the likelihood in a recursive fashi
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The Elston-Stewart algorithm for general pedigrees 2

For even large pedigrees that meet certain criteria (absence of loops, no more than o
founderx founder mating), it is possible to write the likelihood in a form,

L(c) =2 Pr(x;|g)Pr(g|parents,c)..
2 Pr(x,lg.)Pr(g |parents,c)

where,
X; Is the phenotype of thigh individual,
g is the (poly-)genotype of thih individual,
Pr(g|parents) is the probability of observing that genotype given the parental genotype
population genotype frequencies in the case of founders), and the recombination dis
between the loci contributing to the genotype.
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The Elston-Stewart algorithm for general pedigrees 3

L(c) = Z Pr(x;|g)Pr(g|parents,c)..
z Pr(x,lg,)Pr(g [parents,c)

The summation for each individual is over all possible genotypes consistent with thei
phenotype (eg two possibilities for the phase-unknown case, two codominant loci),

The individuals are ordered by their position in the pedigree, from founders downwart
(to descendants).

The nested sums are evaluated from right to left, so the likelihood of the descendants
a particular individual become summarised in the likelihood of that individual.
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General pedigree traversal analysis

For pedigrees where loops or multiple founder matings exist, the more complmzdegee
traversal algorithms used in the LINKAGE programs must be used. Given the compl
of evaluating the lod score for large pedigrees, values are usually produced for a grid c
values, such as=(0.0,0.01,0.05,0.1,0.2...).

ThelLander-Green algorithm is an alternative method of ordering the caclulations tha
faster in the case of multipoint (more than 2 loci) linkage analysis for smaller pedigres
which is not usable in large pedigrees.

The program SUPERLINK tests a variety of different calculation orderings, picking the
approach for a given pedigree using the HUGIN algorithm.
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Confidence intervals for the recombination fraction and multipoint location

The lod score or location score curve can also be used to give a confidence regiontios
trait location. The easiest method is the “1 unit” confidence interval or “support interv.

This is constructed by taking the closest values oh either side of Z . which have a lod
score of Z _-1.

The steepness of the lod curve around the MLE does reflect the precision of the estim
asymptotically, this steepness measured as the second derivative of the likelihood ful
gives the sampling variance of the estimate (as the inverse of the Fisher information)
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Introducing the Generalized Single Major Locus Model

So far, we have dealt witbodominantor fully penetrant loci, where there is a simple 1::
relationship between the underlying genotype and the scored phenotype.

Modern marker loci are invariablypdominant, but the trait loci that we wish to map are oft
more complex. For example, a genotype may give rise to a particular phenotype only
proportion of individuals, and so must be described in a statistical manner.

The probability that a particular phenotyBevill be observed in a individual of genotyi&
Pr(P | G), is thepenetrance
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The Generalized Single Major Locus Model

Consider a binary trait under the control of a two allele locus (alleles A and B). We cal
write a description of the trait in the population:

Genotype Frequency in Population Conditional probability, that an individual
(HWE) of that genotype is
Affected Unaffected
A/A pA2 f, 1-f,
A/B 2P, (1-P,) f, 1-f,
B/B (1-P,Y fq 1-f,

Knowing the allele frequencies and penetrances, we can calculate the overall proport
the population expressing the trait (affected),

Population Risk = Pf,, + 2P, (1-P,)f, + (1-P)7,
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SML model with covariates

In the presence of covariates such as age or sex, the model is usually extended in a s
fashion by definindiability classes and defining penetrances for each liability class:

Sex PenAA PenAB PenBB
Male me f1m f2m
Female gf flf f2f

For age, we stratify into bands and specify a step function to approximate the age-at-
curve for each genotype.
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Estimating genotype carrier probabilities to allow linkage analysis

To carry out gparametric linkage analysis we will use these SMimodel parametersto
estimate the probability that an individual carries each of the possible genotypes.

Genotype | A/A A/B B/B
Probability pAZf JR 2P, (1-P)f /R (1_pA)2f JR

 We must specify the SML model in order to carry out parametric linkage analysis

« The model does not have to be correct
 But power to detect linkage is best when the model is correct

« For complex diseases, fitting two models often covers most possibilities
« All“nonparametric” linkage models have a parametric equivalent
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Non-parametric linkage analysis

If one of the loci of interest is not a simple Mendelian trait, then it becomes difficult to
determine what the underlying genotypes are.

One approach is to take penetrance and allele frequency information from other sourc
use to those to estimate the probabilities of each genotype in each member of the pe

Another is to perform simple tests looking for effects of ascertainment on segregation
codominant marker locus in the selected families.
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The affected sib pair (ASP) method

This method is used where a trait locuss dichotomous (affected or unaffected), with
unknown penetrances and allele frequencies for the underlying trait locus. The other
B is a codominant marker (ideally). In this case, we ascertain families with two affecte
children. For backcross matings, we obtain

Sibship typeBb x BB mating | Frequency of each sibship type

Child 1 | Child 2 Observed| Expected under null hypothesis
BB BB O, N/4

BB bB O, N/4

bB BB O, N/4

bB bB O, N/4

Total Number of Sibships | N N

The null hypothesis is that there is no distortion of the segregation proportions due to |
between the trait locus and the marker locus.
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The affected sib pair (ASP) method 2

We can simplify this table to,

Sibship type Number of families
Children same type (both B, or both b)O,+O, | N/2
Children different types O,+0O; | N/2

Total N N

Deviations in the expected counts from the null expectations occur ed{eh.
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The affected sib pair (ASP) method 3

We can work out theoretical expectations for particular values pénetrances 4ff , f )
and allele frequencies (trait,”Aand mmarker p). Assuming both Hardy-Weinberg and
linkage equilibrium,

Pr(Children same type)=1/2 +c(—Z)2(4c(c-1)(VD-1)-1+2VA+3VD)/(16R+8VA+4VD)
Pr(Different)=1/2 - (2—1)2(-4c(c-1)(VD-1)+1+2VA+VD)/(16R+8VA+4VD)

where,

R=P,f_+2P, (1-P,)f +(1-P,)¥,,
V ,=2P, (1-P) (P, (f of )+(1-P)(F )
V=P, (1-P)(f 2f +)"
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The affected sib pair (ASP) method 3

Whencis 0.5, the second term disappears, giving the null expectatiords Hero, then

Pr(Children same type)= 1/2 + (2¥3V,-1)/(16R+8V,, +4V,))
Pr(Different)=1/2 - 2\, +V+1)/(16R+8V,+4V,).

In the case of a multiallelic marker, the test is exactly the same, the numbers for each

heterozygous parent genotype still contributing to the sib pair being concordant or disc
at the marker.
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|dentity by descent and identity by state

In the backcross example above, the heterozygous parent is informative for linkage a
In that we can determine whether each child received an allele frosatne parental
chromosome(or same grandparental gametg

This is termeddentity by descentinformation. If each child received an allele from the
same grandparental gamete, this alleld&ntical by descent

If a parent is homozygous at the marker, each child receives the same allele, but we ¢
know whether these came from the same grandparent.

The termidentical by statedescribes the situation where two relatives carry the same ¢
regardless of whether it was inherited from a common ancestor or not.
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Identity by descent and identity by state probabilities

In ambiguous cases, we will often calculate ithentity by descent probabilities

For example, if one parentBB and the othebb, then the probability that both children cal
theB allele is 100%. The probability that tligeallele in one child is identical by descent w
theB allele in the other child is 50%.

|dentity by descent probabilities, dod are useful because:
 Can be calculated for any pair of relatives
« Can be estimated where one or both relatives is untyped at a marker

 Haplotype transmission in a pedigree is encodetbdy

« Theibd probabilities are the empiric&lnship coefficientsfor  that locus, and any
tightly linked trait loci

Theibd probabilities are often summarised as the mean probability of sharing anibtle
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at that locus (the empirical coefficient of relationship or “pi-haﬁ)—. The set of thesid
coefficientsfor a pedigree is often represented askmhmatrix.
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Examples of IBD and IBS 1

D12S379 205 209 193 201

1 2

| |

N S S
|

193 205 197 201
5 6
| |
i e +
N N N N S S

193 201 197 205 193 201 193 197
7 8 9 10

Here are some examples. Returning to the Amish pedigree above, indivZdarads both
carry a 193 and a 201 (repeat) allele at the D12S379 locus.

@ QIMR



Therefore they share two alleles identical by stéte) (However, the 201 allele was not
transmitted from grandparefto grandchild/, so they share only the 193 allele identica

by descentipd). Grandchild7 shares no allela®s or ibd with his/her grandparentisand3
at D12S379.
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Examples of IBD and IBS 2

D12S379 205 209 193 201

1 2

| |

N S S
|

193 205 197 201
5 6
| |
i e +
N N N N S S

| | | |
193 201 197 205 193 201 193 197

7 8 9 10

For the first four siblings in the third generation, fitbe sharing is the same as the
Ibs sharing.
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Individual 7 | Individual8 | Individual9 | Individual 10
Individual 7 | - 0% 100% 50%
Individual8 | 0/2 - 0% 50%
Individual9 | 2/2 0/2 - 50%
Individual 10 | 1/2 1/2 1/2 -
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Estimating IBD for sib-pairs

Mating Type | Sib pair | Population | ibd=0% | ibd=50% | ibd=100% | Meanibd
frequency*
aa x aa aa,aa | g 1/4 1/2 1/4 50%
aa X bb ab,ab | 254p° 1/4 1/2 1/4 50%
aa x ab aa,aa | 3°p 0 1/2 1/2 75%
aa,ab | 25°p 1/2 1/2 0 25%
ab,ab | 3°p 0 1/2 1/2 75%
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Mating Sib pair Population | ibd=0% | ibd=50% | ibd=100% | Meanibd
Type frequency*
aa X bc ab, abor a’bc 0 1/2 1/2 75%
ac, ac
ab, ac 28 bc 1/2 1/2 0 25%
ab x ab aa, agor 22b°/4 0 0 1 100%
bb, bb
aa, bb 320°/2 1 0 0 0%
aa, abor 220’ 0 1 50% 0
bb, ab
ab, ab 22b° 1/2 0 1/2 50%
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Mating Sib pair Population | ibd=0% | ibd=50% | ibd=100% | Meanibd
Type frequency*
ab x ac aa, aa 2bc/?2 0 0 1 100%
aa, albor 2Zbc 0 1 0 50%
aa, ac
aa, bc 2Zbc 1 0 0 0%
ab, abetc | 52pc/2 0 0 1 100%
ab, ac 2£bc 1 0 0 0%
ab, bc 2£bc 0 1 0 50%
ac, bc 2£bc 0 1 0 50%
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Mating Sib pair Population | ibd=0% | ibd=50% | ibd=100% | Meanibd
Type frequency*

ab x cd ac, acetc abcd/2 0 0 1 100%
ac, adetc abcd 0 1 0 50%
ac, bdor abcd 1 0 0 0%
ad, bc

* Population frequency of that type of family in the population assuming random mati
and HWE. Each letter represents the population frequency of that allele in the gener
population.
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Affected sib pairs with untyped parents

If a disease occurs late in life, both parents of an ASP are likely to be dead.

We can still work out thebd probabilities for the sibs. If the marker is multiallelic, and
the pair area/b andc/d, for example, they must also lbied=0. If we know the marker allel
frequencies, and assume panmixia, HWE etc, we can obtain the expagdxy adding up
the probabilities under each possible mating type that could give rise to that pair,

Sib pair | Population frequency? ibd=0% | ibd=50% | ibd=100% | Meanibd
aa,aa | g(1+af/4 Zl(1+af | 2a/(1+a) | V(1+af | L/(1+a)
aa,bb | 22p°/2 1 0 0 0

aa,ab | g’p(1+a) a/l(l+a) | 1/(1+a) | O 1/(2+2a)
aa,ac | gjk 1 0 0 0
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Sib pair | Population | ibd=0% 1bd=50% 1bd=100% Meanibd
frequency*

ab,ab | ab(l+atbh+2ab)/2| 2ab/(1+atb+2ab)| (atb)/(l+atb+2ab)| 1/(1+a+b+2ab)| (2+ath)(2+2a+20+4ah)

ab,ac abc(1+2a) 2al(1+2a) 1/(1+2a) 0 1/(2+4a)

ab,cd 2abcd 1 0 0 0

* Population frequency of that type of family in the population assuming random mati
and HWE. Each letter represents the population frequency of that allele in the gener
population.

For example, if the allele has a population frequency of 0.5, an ASP with genotgfzes
anda/b will contribute one-third of an observation to th®l=0 cell, and two-thirds to the
1bd=50% cell. The expected counts and the chi-square will be worked out in the usue
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Faraway’s improved (UMP) affected sib pair linkage test

We can therefore calculatied sharing for a sib-pair, or indeed any other kind of relative |
If there is no inbreeding in the families sampled, the only kind of relative pair that can
more than one alleldd (50%ibd sharing) is the sib pair (and MZ twins, but these conte
no linkage information).

Usingibd sharing as the measure of similarity, there are actually three simple chisqua
suggested for affected sib pair data in the following table.

|dentity by descent allele sharing Total
Ibd=100% | ibd=50% | ibd=0%
Observed Count O, O, O, N
Expected Count| N/4 N/2 N/4 N

Note that there are “fractional” contributions from less informative families. For examp
ASP with genotypea/a anda/b arising from the backcrosga x a/b mating will contribute
one-half of an observation to thied=0 cell, and one-half to thid=50% cell.
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Faraway’s improved (UMP) affected sib pair linkage test

We have already seen the overall best simple test, which is usually called the “mean”
Mean test = 2/N (2G+ONY’

The other tests are superior only if the trait has particular mode of inheritance, such &
simple Mendelian recessive. The two-degree-of-freedom “genotypic” test is,

X > =[O, -N/4F /[N/4] + [0, -N/2F [[N/2] +[O, -N/AT /[N/4]
and the “two-allele” test is simply,

X » =[O, -N/4F /[N/4]
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The “Possible Triangle” for IBD sharing

Faraway (1992) showed that a combination of these different tests is the theoretically
test against a genetic alternative hypothesis.

Observed identity by descent*Value of composite statistic
2p,+p,>1,p >1/2 mean test

3p/2+p,<1,p,>1/4 two-allele test

2p,+p,<1,p,<1/4 Not consistent with genetic cause
Otherwise 2 d.f. chi-square

Here p,p,p, Is the observed proportion of pairs sharing two, one, zero alleles ibd.
Unfortunately, since one has to choose a different test for each situation, a correct P-ve
no longer be looked up in the conventional chi-square table. For example, if your sam
150 ASPs, the critical chi-square value for a one-tailed P=0.05is not 2.71, but 3.42.
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The “Possible Triangle” for IBD sharing

An equivalent test to this is the “MLS” ASP test, implemented in programs such as
Genehunter, ASPEX and GAS.

MERLIN offers the mean test, parameterised as the Kong and Cox score test.
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Other types of relative pair

We can easily construct similar tests for other types of relative pair. For example, if we
a set of families containing an affected individual and their affected grandparent, or tv
affected half-sibs, the expectdutl is 25% (or half an allele). The observed value will eitl
be one or zero alleles shardwl. For this case, we can use an approximate chi-square,
exact binomial test on the observed counts. Because there are more “intervening”re
between the members of the grandparent-grandchild pair, there is more room for amt
cases to arise (the connecting parent needs to be heterozggduise grandparental
contributions need to be identifiable ie different grandparental genotypes).

One type of affected relative pair linkage analysis is the Kong and Cox scoring appro:
This is a maximum likelihood based approach, and is available in programs such
as MERLIN.
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Multipoint estimation of identity-by-descent sharing

Programs such as Allegro, Genehunter, Loki, MENDEL, MERLIN and SIMWALK2 ust
maximum likelihood approaches to improve the estimatiorbdfprobabilities when
genotypes at multiple linked markers are available.

As in the case of multipoint linkage analysis, thd probabilities for all pairs of relatives |
a pedigree can be evaluated at any location between (or indeed outside) the set of ge
markers. One will usually evaluatied at the location of the markersthemselves (wheret
IS often maximal information), or on a fixed grid (every 1, 2, 5 or 10 cM along the map
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Risch’s parameterisation foribd based ASP analysis

One will often encounter the results and notation derived in Risch [1990], a paper tha
summarizes much earlier work on ASP analysis. The expected values under specific
hypotheses were quite complicated using V, andR. Risch introduced some simpler
formulae for the expected values.

The recurrence risk is the probability a family member will be affected (for a dichotornr
trait) given that a specified relative is affected. For example, for a rare fully penetrant
recessive gene (#1, f =0, f,=0), the recurrence risk to a sibling will be approximately 2
James (1971) had shown that the recurrence risk was,

RecR =R+ (KV, +k, V)R

where k and k, are kinship coefficients as before.
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Risch’s parameterisation foribd based ASP analysis

If we define thePopulation Relative Risk (PRR) adRecR/R, then the expecteidbd under a
specific genetic hypothesis for a specific type of relative pair is,

|dentity by descent allele sharing
ibd=100% Ibd=50% Ibd=0%
Expected Prop JPRR,,/PRR kPRR,J/PRR k/PRR

PRR,, is the PRR for a monozygotic or identical twin of an affected individual, and 2
Is the PRR for the child of an affected parent. Therefore, if descriptive data about a ti
IS available, we can work out firstly how many families we will need in our study to get
significant chi-square (the power of the study), as well as detecting if a trait locus link
our marker explains all the cases of disease in the population.
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ASP Exclusion mapping

A third, related use is to perforexclusion mapping. If we specifyR, PRR,, and PRR
we can test whether our observédd counts are significantly different from what they
would be if the trait locus was close to our marker locus. If the chi-square is large enc
we canexcludethe trait from being in that chromosomal region. This allows us to quar
how “non-significant” a small ASP chi-square value is, since a small chi-square can e

arise from having a small study (not very powerful) or from the trait and marker locus
being unlinked.
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