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Introduction

If parental genotypes are available, it is fairly straightforward to infer the haplotypes transmitted
the offspring.

In most association studies, the individuals are all unrelated. Haplotypes must be either:

• Measured directly (usually expensive and time consuming)

• Inferred statistically



The problem

For the simplest case of two diallelic markers, there are 9 observable unphased genotypes, but 10
possible phased genotypes (4 haplotypes).

OBSERVED (Unphased) Phased

A/A, B/B AB/AB

A/A, B/b AB/Ab

A/A, b/b Ab/Ab

A/a, B/B AB/aB

A/a, B/b AB/ab or Ab/aB

A/a, b/b Ab/ab

a/a, B/B aB/aB

a/a, B/b aB/ab

a/a, b/b ab/ab



Complete disequilibrium

rs4820268

rs855791 A/A A/G G/G

A/A 0 0 25

A/G 0 75 7

G/G 40 12 1

There are no AA/AA, AA/AG, and AG/GA genotypes, but there areAG/AG, GA/GA and GA/GG.
Therefore, we can infer that there are probably only 3 haplotypes segregating:

AG, GA and GG.



Complete disequilibrium 2

The rs8557918*A allele probably arose as a mutation in a founder who was rs4820268*G on the
mutated chromosome. The two SNPs are close together, so no recombination event has yet broken
up the disequilibrium.

Haplotype Frequency

AA 0.0000

AG 0.4037

GA 0.5367

GG 0.0596

A set of adjacent SNPs that are in complete disequilibrium like this are anLD block . That is, LD
blocks are separated by sites ofancestral recombinants.



“Gene-counting” or Expectation-Maximization

If there is less than complete disequilibrium, we can iteratively estimate the proportions of the two
phased genotypes for the double heterozygotes.

S Blood Group

MN group S/S S/s s/s

M/M 91 147 85

M/N 32 78 75

N/N 5 17 7

We start with a trial value for the haplotype frequencies:

x1 = P(MS) = 1
4

; x2 = P(Ms) = 1
4

; x3 = P(mS) = 1
4

; x4 = P(ms) = 1
4



D x1 x2 x3 x4 M/M

S/S

M/M

S/s

M/m

S/S

M/m

S/s

M/m

s/s

m/m

S/S

m/m

S/s

m/m

s/s
0 0.25 0.25 0.25 0.25 33.56 67.12 67.12 134.25 67.12 33.56 67.12 33.56

From our trial haplotype frequencies, we obtained some expected counts (E step). Now we work
out the next set of trial haplotype frequencies, based on these numbers (M step). For example,

x11 = 2×67.125 + 134.25 + 134.25 + p ∗ 268.5

wherep = O
1 + O

; andO =
x10×x40
x20×x30

. In this case,p = 1
2
.

We then obtain:

D x1 x2 x3 x4 M/M

S/S

M/M

S/s

M/m

S/S

M/m

S/s

M/m

s/s

m/m

S/S

m/m

S/s

m/m

s/s
0.01 0.37 0.4 0.09 0.14 74.49 36.5 160.52 93.33 13.23 86.48 58.19 9.79

We keep repeating the same procedure. With each iteration, we get closer and closer to the
correct values for the haplotype frequencies. We stop when the change from iteration to iteration is
small enough.



Ten EM iterations

D x1 x2 x3 x4 M/M

S/S

M/M

S/s

M/m

S/S

M/m

S/s

M/m

s/s

m/m

S/S

m/m

S/s

m/m

s/s
0 0.25 0.25 0.25 0.25 33.56 67.12 67.12 134.25 67.12 33.56 67.12 33.56

0.01 0.37 0.4 0.09 0.14 74.49 36.5 160.52 93.33 13.23 86.48 58.19 9.79

0.02 0.38 0.4 0.09 0.14 76.79 34.74 160.66 93.49 12.93 84.04 59.79 10.63

0.02 0.38 0.39 0.08 0.14 77.76 33.99 160.7 93.6 12.78 83.03 60.43 11

0.02 0.38 0.39 0.08 0.14 78.16 33.67 160.71 93.65 12.72 82.62 60.69 11.15

0.02 0.38 0.39 0.08 0.14 78.32 33.54 160.72 93.68 12.69 82.45 60.8 11.21

0.02 0.38 0.39 0.08 0.14 78.39 33.49 160.72 93.68 12.68 82.38 60.84 11.23

0.02 0.38 0.39 0.08 0.14 78.42 33.47 160.72 93.69 12.67 82.35 60.86 11.24

0.02 0.38 0.39 0.08 0.14 78.43 33.46 160.72 93.69 12.67 82.34 60.87 11.25

0.02 0.38 0.39 0.08 0.14 78.43 33.46 160.72 93.69 12.67 82.34 60.87 11.25



Uncertainty of haplotype inference

In the two diallelic marker situation, in eight of the nine cells of the table of genotypes, we can
unequivocally work out the haplotypes underlying the genotype for each individual. For the double
heterozygotes, we can only give a probability.

Commonly in older papers, the most likely haplotype for each individual was just imputed, then the
data analysed as if this was the true haplotype. Obviously in cases where there are two haplotypes
for an observed genotype at say 40% and 60% probability, the 40% probability haplotype would
never appear in the analysis. This can lead to bias in some cases.

Multiple imputation is one simple way around this problem.



Extension to large numbers of SNPs

We can extend the method to quite large numbers of SNPs by applying the method in a
stepwise fashion. We first produce haplotype frequencies for a pair of SNPs. We then estimate
the disequilibrium between these haplotypes (which we are simply treating as alleles at a new
“supermarker”) and the next SNP. The resulting haplotypes are then combined with another SNP
and so on. This approach was first implemented, I believe, by David Clayton in hisSNPHAP
program.

A more elaborate variant on this stepwise approach is the Partition-Ligation EM algorithm
(PLEM ).

In related approaches, population genetic models are incorporated into the model, which hopefully
can better pick long haplotypes. A coalescent model is used to predict most likely haplotypes
for a particular unphased genotype based on related haplotypes in the sample.Phase(Stephens
2001) is the prototypical program of this type, and is used in the HapMap project. This is an
MCMC algorithm.



Software

There are a very large number of programs now available.

2SNP Beagle

FastPhase Gerbil

haplo.stats (in R) Haploview

Haplotyper HINT

HIT Phase

PLEM Shape-IT

SNPHAP



Association of haplotypes to traits

For a categorical trait, this is a straightforward extension. We just estimate haplotype frequencies
within each level of the trait, and test for equality of these frequencies across the levels, via a
chi-square. For sparse tables (low counts of genotypes), we can perform simulation-based (eg
permutation) tests.

For a quantitative trait, or a categorical trait with continuous covariates, we can carry out a
regression analysis where instead of exactly known genotypes, we have to average over the possible
phased genotypes for each individual. We use the probabilities of the different genotypes for each
person to weight the contribution of that genotype to the regression.

Individual Trait value Unphased genotype Phased genotype Case Weight

1 14 M/M S/S MS/MS 1

2 10 M/m S/s MS/ms 0.6

2 10 M/m S/s Ms/mS 0.4

3 22 M/m S/S MS/mS 1



SNP tagging and imputation

Once we have haplotype frequencies, we can:

• Choose a subset oftagging SNPson the haplotype

• Predict (impute) the genotype at a SNP based on other SNPs on the haplotype

Tagging SNPs allow one to estimate haplotype frequencies without genotyping all the SNPs making
up the haplotype. This means less genotyping cost for the same amount of association information.
Haploview offers a nice interface to a tagging algorithm.

SNP imputation is the use of tagging SNP genotype to predict the genotype at the other SNPs on the
haplotype. It is especially useful if you are trying to replicate an association reported for a SNP by
other authors, and only have data from neighbouring SNPs.

Many groups are using imputation to increase the number of SNP association tests in their GWAS
from 500K or 1M to the 4M HapMap SNPs.



SNP imputation

Both Gudbjartsson et al (2008) and Brown et al (2008) reported association between SNPs on
chromosome 20 and risk of cutaneous melanoma, but the SNPs involved were 100 kbp apart. The
deCODE assocation involved a haplotype rs4911414-rs1015362, while the strongest Australian
association was to rs4911442. We can use the deCODE haplotype to impute the rs4911442
genotype fairly precisely (data from the ALS 555K GWAS):

rs4911442

rs4911414 rs1015362 A/A A/G G/G Prediction Accuracy

G/G A/G 10 0 0 A/A 100%

G/G 104 11 0 A/A 90%

G/T A/A 4 0 0 A/A 100%

A/G 86 9 1 A/A 90%

G/G 3 19 2 A/G 79%

T/T A/A 14 2 0 A/A 88%

A/G 4 5 0 A/G 56%

G/G 0 0 1 G/G 100%




