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Biometrical Genetics

Biometrical genetics refers to a set of mathematical models used to describe the inheritance
of quantitative traits.

A quantitative trait is a characteristic of an organism that can be measured, giving rise to a
numerical value. It can be:

Continuous: eg arterial blood pressure, stature
Meristic : a count eg moles (nevi), bristles, digits, worm burden
Ordinal : a ranking eg Fitzgerald tanning index, Norwood baldness score
Categorical: eg eye colour, type of cancer
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Genotype-phenotype relationship for quantitative traits

We will represent the relationship between genotype and phenotype as a linear model:

Y = G + E

Y is the trait value for an individual,

G is the effect of the individual’s genotype at thequantitative trait locus (QTL ), which can
be one ofg different values, where there areg possible genotypes,

E is the combined effect of all nongenetic factors acting on the phenotype in that
individual.
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Environmental Effect (E)

E is the usual “error” that appears in statistical models, and is arandom variable, which we
will treat as coming from a standard statistical distribution such as theGaussian(Normal)
distribution.

TheE for theith individual in a family is
modelled as being a random sample from such
a distribution.

Adjusted serum ACE level from Keavney et al [1998]
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Genotype Effect (G)

The genotypic effect isfixed, that is every person carrying the same genotype has the same
value ofG.

For a diallelic autosomal gene, for example, there will be 3genotypic means, which we will
usually denoteµ0, µ1 andµ2 for theA/A, A/B, B/B genotypes respectively.

If we know or have estimated the value ofG, then we can calculate the value ofE for theith
person, who carries genotypej as:

Ei = µj − Yi
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ACE Indel genotype v. sACE level [Keavney et al 1998]

serum ACE level
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Population genetics of a quantitative trait locus

The results to date apply to individuals. Unless the QTL is monomorphic, a natural
population will be a mixture of genotypes, usually in Hardy-Weinberg proportions.

A/A A/B B/B
2p 2pq 2q

µ0 µ1 µ2

The distribution of the trait values will be determined by genotype frequencies and means.
It is straightforward to calculate the mean and variance of the population distribution due to
the QTL.
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Mean and variances of a quantitative trait

The overallpopulation meanwill be a weighted average of the genotypic means:

µ = 2p µ0 + 2pqµ1 + 2q µ2

wherep is the frequency of theA allele (q=1-p).

The totalphenotypic variance(which I will write 2σ T or VT) is calculated as:

2σ T = Σ(Yi − 2µ)

Thegenetic variance(σ2
G or VG) is the amount of variation in the population around this

global mean that is due to differences between individuals in genotype:

σ2
G = 2p (µ0 − 2µ) + 2pq(µ1 − 2µ) + 2q (µ2 − 2µ)
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Variance Components

We started with a model for each individual:

Yi = Gi + Ei

And can now write an equivalent equation for the phenotype variance

VT = VG + VE

whereVE is theenvironmental variance(or environmental noise).

Thebroad sense heritabilityis a measure of the relative importance of the QTL:

h2
B =

VG

VT
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Allelic Effects

Because each parent only transmits one allele to offspring, it is useful to furtherdecompose
the genotypic means intoallelic anddominanceeffects:

p2 q22pq

A/A B/BA/B

µ0 µ2µ1

a a

d

If d=0, then there is a simple linear relationship between number of theB alleles in the
genotype (thegene content) and phenotype.
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Additive and Dominance Variances

The decomposition of the genetic variance intoadditive anddominancevariances is
slightly more complex, because theaverage effectof an allele selected at random from
the population is averaged over the other possible alleles of the genotype (weighted by the
allele frequencies).

VA = 2pq[(p − q)d + 2a]

= 2pq[p(µ0 − µ1) + q(µ1 − µ2
2)]

VD = 4 2p 2q 2d

= 2p 2q [µ2 − 2µ1 + µ0
2]
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Covariance between relatives

These results so far assume a sample of unrelated individuals.

Resemblances between particular classes of relatives on continuous traits are usually
expressed as covariances between the measured values of the trait, and by various extensions
of this such asinterclassandintraclasscorrelation coefficients.

Intraclass and interclass correlations arise naturally from analysis of variance, and are very
appropriate for genetic usage when there are no reasons to differentiatewithin a group of
relatives eg a sibship.
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Intraclass and interclass correlations

These correlations can be defined for a population containingp classes (eg sibships and sets
of parents), with containingkp members in each class on whichYij is the trait value for the
jth member of theith class.

E(Yij) = µ

Var(Yij) = VT

CovI(Yij, Yi′ j′) = rIVT i = i′, j ≠ j′

= 0 i ≠ i′
CovB(Yij, Yi′ j′) = rii′VT i = i′, j ≠ j′

= 0 i = i′

rI is the intraclass correlation and

rii′ denotes the interclass correlation between theith andi′th group.
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Genetic covariance between unilineal relatives

Parents and offspring,grandparentsand grandchildren etc share at most one allele in common
(in the absence of inbreeding), and so areunilineal relatives.

Therefore, the correlation between trait values in such pairs of relatives (or the corresponding
interclass correlation) represents the average effect of transmission or nontransmission of
one QTL allele across all the pairs.

We do not specify the particular QTL allele is being shared – to predict the correlation, we
merely need thetransmission probability. This probability is akinship coefficient.

For example, one of the two parental alleles has a 50% probability of being transmitted to
a child.
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Expected genetic covariance between unilineal relatives

Relationship Intervening meioses Covariance Correlation

Parent-offspring 1 1
2
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1
2

VA

VT

Half-siblings 1 1
2

VA
1
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Grandparent-grandchild 2 1
4
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1
4
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Avuncular 2 1
4

VA
1
4

VA

VT

Cousins 3 1
8
VA

1
8

VA

VT
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Genetic covariance between siblings

Since siblings share two parents, they arebilineally related, and can carry zero, one or two
QTL alleles in common. This this means that the dominance variance will contribute to
similarity of sibling trait values in a proportion of the population of families.

1 - 3 1 - 4 2 - 3 2 - 4

1 - 3 1
16

1
16

1
16

1
16

1 - 4 1
16

1
16

1
16

1
16

2 - 3 1
16

1
16

1
16

1
16

2 - 4 1
16

1
16

1
16

1
16

50% of sib pairs share 1 QTL allele in common and 25% share 2 QTL alleles.
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Expected genetic covariance for siblings

Relationship Covariance Correlation

Full sibs 1
2

VA + 1
4

VD
1
2

VA

VT
+ 1

4
VD

VT

MZ Twins VA + VD
VA

VT
+

VD

VT

Any RVA + KVD R
VA

VT
+ K

VD

VT

whereR andK arekinship coefficients:

R is thecoefficient of relationship(probability two individuals share an allele inherited from
the same ancestor.

K is thecoefficient of fraternity (probability two individuals share two alleles inherited from
the same ancestors.
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Multiple QTLs

So far, we have dealt with the familial correlations arising from a single QTL.

These models can be extended to include multiple QTLs acting on the same trait. Just as the
dominance variance arises from the interaction of the two alleles within a genotype at one
QTL, epistatic variancearises from the interaction of alleles at different QTLs.

VG = VA + VD + VAA + VAD + VDD…

=
n

∑
r =1

r +s>0
∑
s

Vr ∗ As ∗ D

and the covariance between pairs of relatives is,

Cov(Y1, Y2) = RVA + KVD + 2R VAA + RKVAD + 2K VDD…

=
n

∑
r =1

r +s>0
∑
s

rR sK Vr ∗ As ∗ D
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The polygenic model

If the individual contribution of any one QTL is small, and many QTLs are acting, then it is
plausible to assume that the epistatic variance is also small.

In the infinitesimalpolygenicmodel, the individual additive genetic effects of all the QTLs
sum together to give the total genetic variance of the trait. This gives a justification for
applying all the theoretical results we have reviewed regardless of the number of segregating
QTLs.

In the absence of genotype data, it is usually not possible to determine whether a trait is under
the control of one or many QTLs.
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Estimating variance components

We can use observed familial correlations, therefore, to estimate the values of the different
variance components whether due to a single QTL, or under certain assumptions, multiple
QTLs.

Optimally, this is done by maximum likelihood, combining data from all the available
different relationships, but simple algebraic estimates are useful and not too inaccurate.
For example:

^
VA

= 2rpoVT

^
VD

= 4(rsib − rpo)VT

with rpo the parent offspring correlation, and
with rsib the sibling correlation.
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Variance components linkage analysis

To model familial correlations in the absence of information about the actual QTL genotypes,
we combine data from (ideally) a large number of different types of relative pair. We use
averages (expectations), includingexpected kinship coefficients.

If we have marker information,we can estimateempirical kinship coefficientsfor particular
regions of the genome. This is often referred to asidentity by descentinformation (ibd),
since it allows us to infer if marker alleles in two related individuals are in fact identical
copies of an allele descended from a recent common ancestor.

If a QTL affecting our trait of interest is within a region we have marker-derivedibd
information, we can estimate the genetic variancespecificto that QTL.
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Utilizing ibd information for linkage analysis

Identity by descent Equivalent Relationship Covariance Correlation

Two alleles shared IBD MZ Twins VA + VD
VA

VT
+

VD

VT

One allele shared IBD Parent-offspring 1
2

VA
1
2

.
VA

VT

Zero alleles shared IBD Unrelated 0 0
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Maximum likelihood VC linkage analysis

To efficiently combine information from different types of relative pair, we fit an extended
version of the usual biometrical model:

Cov(Yi, Yj) = (ibd)
2

VQ + I(ibd = 2)VQD + RijVA + KijVD

where(ibd) = 0, 1, 2gives the empirical kinship coefficients, andRij andKij are the expected
kinship coefficients for theijth relative pair.

Usually we further simplify this model by assumingVQD = 0. The test for linkage (the
Likelihood Ratio Test Statistic) is constructed by comparing the model likelihood whenVQ
is estimated to that whenVQ is fixed to zero. This gives alod score just as other types of
maximum likelihood linkage analysis do.
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Types of relative pair useful for VC linkage analysis

There are two types of relative pair where the empirical kinship coefficient always equals the
theoretical expected kinship coefficient:

• Monozygotic twins

• Parent-offspring pairs

This type of pair therefore does not contribute any linkage information. If measuring a trait
is expensive, then it is reasonable to not phenotype parents.

QIMR


