
Genetic analysis of complex traits
in the age

of the genome-wide association study

David Duffy

Queensland Institute of Medical Research
Brisbane, Australia



Overview

• Complex genetic traits

• Complex diseases as quantitative traits

• The genetic architecture of quantitative traits

• Why are complex diseases heritable at all?

• Linkage disequilibrium and allelic association

• High-throughput genotyping

• Genome-wide association



What is a complex genetic trait?

This is a fuzzy concept, as everything in genetics is complex. For example, Retinitis Pigmentosa
is due to mutations at 52 mapped and unmapped loci, but is not usually thought of as a complex
disorder in that usually a single mutation is asufficient causein any one pedigree.

I would use it to refer to traits under the control of multiple genes and multiple environmental
influences, where no individual genetic locus has a very large effect in its own right:

• Most common chronic diseases eg hypertension, cancers, diabetes

• Quantitative trait such as height, biochemical analytes



Complex genetic traits as quantitative traits

Most quantitative traits are complex genetically, and are under the control of manyquantitative
trait loci , each locus acting on a different part of a series of biochemical or physiological pathways
or networks.

Many human diseases are characterized by importantendophenotypesthat are quantitative in
nature, such as blood pressure, plasma glucose, airway responsiveness.



The genetic architecture of quantitative traits

• Multiple QTLs affect each trait

• Distribution of QTL effect sizes seem L-shaped or exponential

• Distribution of effect sizes of new mutations is also exponential

• QTLs interact with the environment of the organism

• Interaction between QTLs is common (epistasis)



The genetic architecture of quantitative traits

Distribution of additive QTL effects on Drosophila sensory bristle number (Figure 6 from Dilda
and Mackay, 2002).



The genetic architecture of complex disease

Distribution of additive QTL effects on risk of Type 2 diabetes (from Doria et al, 2008).
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The genetic architecture of complex disease

Distribution of QTL effects on disease from 64 studies (from Bodmer and Bonilla, 2008).



The genetic architecture of quantitative traits

Gene by environment interaction for a bristle number QTL (Figure 9 from Dilda and Mackay,
2002).



The genetic architecture of complex disease

Gene by environment interaction for ERCC2 and lung cancer (from Zhou et al, 2002).
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Why are complex diseases heritable at all?

Most important human diseases aggregate within families. One might expect selection to purge risk
genotypes from the population, but:

• Recurrent mutation gives rise to new disease alleles

• Selection operates weakly on recessive disorders

• Many diseases have only a small effect on reproductive success

Effect: Many rare disease alleles
(“Traditional” genetic load, mutation-selection)

• Pleiotropy plus overdominance can maintain polymorphism

• Modifier loci may arise

Effect: Higher frequency disease alleles with lower penetrances
(“common disease, common variants”)



Multiple rare alleles and schizophrenia

One type of rare mutation that can be screened for with current array technology is a microdeletion
or duplication (CNV).

Walsh et al (2008): De novo deletions and duplications detected using Illumina 550K and
Nimblegen 2.1M Genome-Wide SNP arrays.

All Schizophrenia Early-onset Controls

N 150 76 268

New CN mutations 22 (14.8%) 15 (19.7%) 13 (4.9%)

Xu et al (2008): De novo microdeletions and duplications detected using the Affy Human
Genome-Wide SNP array 5.0.

“Sporadic” Scz Familial Scz Controls

N 152 48 159

New CN mutations 15 (9.9%) 0 (0%) 2 (1.2%)



Table 3 from Walsh et al (2008). Pathways and processes over-represented by genes disrupted in
schizophrenia cases by deletions or insertions.

Pathway or process P value

Signal transduction 0.012

Neuronal activities 0.049

Nitric oxide signaling 0.0002

Synaptic long term potentiation 0.0005

Glutamate receptor signaling 0.003

ERK/MAPK signaling 0.004

PTEN signaling 0.007

Neuregulin signaling 0.008

IGF-1 signaling 0.008

Axonal guidance signaling 0.015

Synaptic long term depression 0.017

G-protein coupled receptor signaling 0.034

Integrin signaling 0.036

Ephrin receptor signaling 0.042

Sonic hedgehog signaling 0.044



Recurrent mutation and schizophrenia

The multicentre study set up by deCODE Genetics, concentrated on just 66de novo CNVs found
by screening 7718 control families. Of these, 3 were increased in schizophrenics compared
to controls:

Stefansson et al (2008): Recurrent microdeletions detected using the Illumina HumanHap300
and HumanCNV370 arrays.

Region Coordinates (Mbp) Schizophrenics Controls

1q21.1 144.94-146.29 11/4718 (0.23%) 8/41199 (0.02%)

15q11.2 20.31-20.78 26/4718 (0.55%) 79/41194 (0.19%)

15q13.3 28.72-30.30 7/4213 (0.17%) 8/39800 (0.02%)



ApoE and Alzheimer’s Disease: “CDCV”

ApoE is one of the best examples of a common variant with a large effect on risk of a complex
disorder - Alzheimer’s Disease. There is strong evidence for interactions with either other loci
or environment.

Population ApoE*4 frequency Relative Risk for AD

Kenya 30% 1.0

Tanzania 25% 1.0

Yoruba 22% 1.0

African-Americans 20% 2.3

Europe 15% 2.5

Iran 6% 3.7



HDL and heart disease

Plasma HDL level is an important endophenotype/risk factor for atherosclerosis.



Rare alleles and Low HDL level

Cohen (2004) sequenced three genes (ABCA1, APOA1, LCAT) in 128 subjects with low HDL levels
(lowest 5%) and 128 subjects with high HDL levels (highest 5%) from a population sample.

Low HDL group (21)

ABCA1*S198X (1) ABCA1*P248A (1) ABCA1*K401Q (1)

ABCA1*W590S (1) ABCA1*R638Q (1) ABCA1*T774S (4)

ABCA1*E815G (1) ABCA1*S1181F (1) ABCA1*R1341T (1)

ABCA1*S1376G (1) ABCA1*R1615Q (1) ABCA1*A1670T (1)

ABCA1*N1800H (1) ABCA1*D2243E (4) APOA1*R51T (1)

High HDL group (3)

ABCA1*R496W (1) ABCA1*R1680Q (1) LCAT*V114M (1)

ABCA1 is the Tangier disease gene and is a well-known cause of familial hypoalphalipoproteinemia
(HDL < 10%’ile and positive family history).

All of these mutations are individually rare.



Rare ABCA1 alleles and heart disease

Two of theABCA1 mutations above have been characterized biochemically (Singaraja 2006) and
lead to Tangier Disease (homozygotes):

• W590S reduces Annexin V binding

• N1800H causes a failure ofABCA1 to localize appropriately to the plasma membrane

Frikke-Schmidt et al (2008) studied 4 ABCA1mutations in 42761 Danes, including N1800H:

Allele Carriers Relative risk of ischemic heart disease

P1065S 1 (0.0022%) -

G1216V 7 (0.016%) -

N1800H 95 (0.22%) 0.77 (0.41-1.45)

R2144X 6 (0.014%) -

Any 109 (0.25%) 0.93 (0.53-1.62)



Common ABCA1 alleles and heart disease

Most studies have tested more common ABCA1variants. In a subset of the same Danish sample
(the Copenhagen City Heart Study), significant association with heart disease was detected. The
alleles in question exhibited much smaller effects of HDL level than the rare alleles described
earlier.





Risk alleles for Type 1 Diabetes

• 50% of T1D cases from 2% of population carrying high risk HLA genotypes

• 21 non-HLA risk loci confirmed

• Highest penetrance is 5.1% (baseline risk 0.3%)

• Pleiotropy for other autoimmune diseases and allergy



T1D susceptibility
gene(s)

Chromosomal
location (Name
assigned via linkage
analysis)

Other autoimmune
diseases associated
with locus

Other inflammatory
diseases associated

DQA1, DQB1,
DRB1

6p21 (IDDM1) GE, RA, MS etc Manifold but allelic
heterogeneity

CTLA4 (CD28,
ICOS)

2q33.2 (IDDM12) AIH,GD Atopy

CASP7 10q25 (IDDM17) RA

IFIH1 2q24 (IDDM19) GD

IL12B (?) 5q33.3 (IDDM18) Atopy?, tuberculosis

IL2RA (CD25) 10p15 (IDDM10) MS, GD

PTPN22 1p13 (Idd10) RA, GD, HT, SLE,
AD, CD, MG, V

Endometriosis?

CCR5 3p21 Coeliac

SH2B3 12q24 Coeliac



Spectrum of risk alleles for Type 1 Diabetes

T1D Locus Variant Population frequency Relative risk

DQA1, DQB1, DRB1 DR4-DQB1*0302 1% 20

DR3-DQBG1*020 1% 20

TNF rs1799964 22% 1.3

CTLA4 (CD28, ICOS) A17T (rs231775) 71% 1.3

IFIH1 T946A (rs1990760) 30-60% 1.9

IL2 rs2069763 33% 1.1

IL2RA (CD25) rs706778 45% 1.5

BACH2 rs11755527 45% 1.1

PTPN22 R620W 6-12% 1.8

CLEC16A rs12708716 70% 1.2

SH2B3 rs3184504 40% 1.3



Spectrum of risk alleles for Type 1 Diabetes (Smyth et al 2008)



Linkage versus allelic association

Linkage analysis extracts information from co-transmission of traits and markersbetween family
members. Localization of complex trait loci is usually at 1-10 Mbp resolution. The locus effect
size needs to be more than 10% of the trait genetic variance to be detectable. Because of the natural
randomization induced by segregation, linkage is robust to confounding.

Allelic association analysis extracts information from co-occurrence of traits and markerswithin
individuals. Localization of complex trait loci is usually at 0.01-0.1 Mbp resolution (in outbred
populations). The locus effect size needs to be more than 1% of the trait genetic variance to be
detectable. Association analysis is less robust to confounding than linkage analysis.



Linkage versus allelic association

AssociationAffected Sib Pair Linkage

Mean IBD sharing = 100%
 Expected sharing = 50%

Case allele frequency = 100%
   Expected frequency = 17%



Linkage disequilibrium and allelic association

Allelic association between a trait and a gene variant occurs when:

• Direct relationship between variant and trait

• Linkage disequilibrium between variant and another directly associated allele

• Ethnic stratification

The most useful case is the second case, as it reduces the number of loci to be genotyped.



Breakdown of linkage disequilibrium

Generation 0

Case Controls



Breakdown of linkage disequilibrium

Generation 1

Cases Controls



Breakdown of linkage disequilibrium

Generation 5

Cases Controls



Breakdown of linkage disequilibrium

Generation 10

Cases Controls



Breakdown of linkage disequilibrium

Generation 100

Cases Controls

Expected length of disease haplotype ~ 1/G



Linkage disequilibrium: two diallelic loci

    B b Total

A x1 x2 PA

a x3 x4 Pa

Total PB Pb 1.0

The usual measure of linkage disequilibrium is:

D = x1 − PAPB.

With each generation,D diminishes [Jennings 1917],

(t)D = (1 − tc) (0)D

For loci separated by a recombination distance (c) of 1%, a 50% decrease inD will take
69 generations.



Linkage disequilibrium: two diallelic loci

Relationship between marker frequency in cases and generation. Model assumes marker allele
frequency 10%, and a rare dominant gene.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generations

C
as

e 
al

le
le

 fr
eq

ue
nc

y

c=0.1 (~10 Mbp)

c=0.01 (~1 Mbp)

c=0.001 (~100 kbp)



Linkage disequilibrium: marker locus and a trait

At a practical level, this is straightforward. We usually ignore the fact that the marker allele is not
the causative variant, and test the strength of the relationship between the phenotype value and
individual genotype.

Generally, the closer the marker is to the trait locus, the stronger the association to the phenotype.
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Association analysis

Phenotype Data Model Association

measure

Test Statistic

Dichotomous Cross-classified

counts of affecteds

versus genotype

Log-linear model Risk ratio Contingency

chi-square test

Logistic Regression Odds ratio Likelihood Ratio

Test
Categorical Cross-classified

counts of trait class

versus genotype

class

Log-linear model Risk ratio Contingency

chi-square test

Quantitative Trait mean and

standard error for

each genotype class

Linear model Genotype or allele

deviation

F-test

Time to event (eg

age at diagnosis)

Survival curve for

each genotype class

CPH survival

analysis

Hazard ratio LRT



Ethnic Stratification

Population orethnic stratification refers to the fact that frequencies of alleles at many loci differ
between (human) populations originating from different geographical regions.

In a mixture of populations, alleles at different loci that are increased together in particular
subpopulations will exhibit overallextragametic allelic association.

If a trait is associated with the culture or environment of a particular subpopulation, this too will
give rise to overall extragametic association.

Given that most of the QTL effect sizes detected to date are relatively small (eg relative risk of
1.1-1.3), this means thatconfoundingof this type can be a real problem.



Lactase persistence alleles and height

Campbell et al (2005) describe an example of stratification effects, the association between
LCT-13910C>T and stature in a US population sample

All Subdivided by Grandparental Ancestry

Four US-born Southeastern EuropeNorthwestern Europe

Tall 65.6% (N=1123) 69.2% (N=645) 35.8% (N=127) 66.5% (N=351)

Short 57.1% (N=1056) 66.2% (N=637) 24.7% (N=227) 65.4% (N=192)

P-value 3.6× −710 0.098 0.0016 0.71

The association failed to replicate in more ethnically homogenous European samples or using
family-based tests (which test for linkageand association).

This particular SNP (rs4988235) is known to vary markedly in frequency across ethnic groups.



LCT around the world

Population LCT -13910C>T

Scandinavia 81.5%

Orkney Islands 68.8%

Basque 66.7%

French 43.1%

Balochi (Pakistan) 36.0%

North Italian 35.7%

Russian 24.0%

Mozabite (Algeria) 21.7%

Hazara (Pakistan) 8.0%

Sardinian 7.1%

Tuscan (Italy) 6.3%

Yoruba (Nigeria) 0.0%



Dealing with stratification

• Adjustment on reported ancestry

• Adjustment on marker-derived ancestry scores

• Genomic control

• Family based association analysis

If population stratification is a problem, then one approach to correcting for its effects is to include
the individual’s ancestry as a covariate in the analysis.

One estimate of ancestry is based on asking the individual about the ancestry of each of their
grandparents.

Alternatively, either a population genetic analysis of the study data, or an external dataset, can be
used to identify genetic markers that are informative for ancestry (so-called “AIMs”).



Multidimensional scaling analysis of multilocus identity-by-state

The average sharing of alleles at a large number of markers between pairs of individuals is a
measure of relatedness. This empirical kinship matrix can be used to estimate genetic distances
between all genotyped individuals, and from these positions of each individual in a relationship
space. These can then be tested for the presence of clustering, where each cluster represents
a subpopulation.

If membership of particular populations is already known, the clusters can be checked to see
whether they successfully represent the genetic structure of the population.

Either a cluster membership probability score can be generated, or the coordinates of each
individual on the first few principal dimensions of the genetic relationship space can be used as
covariates in a association analysis.



MDS Plot for different dog breeds
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MDS Plot for different European populations



High-throughput genotyping

Moore’s Law states that the number of transistors that can be placed inexpensively on an integrated
circuit increases exponentially, doubling approximately every two years.

The same miniaturization trends are currently affecting genotyping technology.

Illumina BeadArray Technology is based on 3-micron silica beads that
self assemble in microwells on silica slides, with a uniform spacing
of 5.7 microns.

Each bead is covered with hundreds of thousands of copies of a specific
oligonucleotide that act as the capture sequences for a particular STS.



High-throughput genotyping



High-throughput genotyping



High-throughput genotyping

Affymetrix Genome-Wide Human SNP Array 6.0

• 906000 SNPs

• 946000 probes for CNVs

• 99.8% call rates

• Low DNA input (500 ng)



High-throughput genotyping



Illumina high-throughput genotyping



Affymetrix high-throughput genotyping



Genome-wide association

Over 240 GWAS publications to date (see http://www.genome.gov).

Appearing in January 2009 (according to Pubmed):

Phenotype Reference N Individuals N SNPs

Alzheimers Dement Geriatr Cogn Disord. 27: 59-68. 1088 2578

Alzheimers Nat Genet. 2009 Jan 11. 2099 313K

Alzheimers Am J Hum Genet.84:35-43. 1000 550K

Alzheimers Mol Psychiatry. 2009 Jan 6. 2099 313K

Kawasaki Disease PLoS Genet 5(1):e1000319 254 (+ 585) 250K

Lp(a) J Lipid Res. 2009 Jan 5. 386 250K

Ulcerative Colitis Nat Genet. 2009 Jan 4. 3600 250K

Prostate Cancer Cancer Res 69:10-5.

Juvenile idiopathic arthritis Arthritis Rheum. 60:258-63 400

Hypertension PNAS 106:226-31 542 100K

Mean Platelet Volume Am J Hum Genet. 84:66-71. 1644 500K

Transferrin level Am J Hum Genet. 84:60-65. 1200 300K



Characteristics of GWAS

Genome-wide

• Large amounts of data

• Large numbers of markers

• Large numbers of statistical tests

Association

• Confounding by ethnic stratification

• Localization of causative variants



Data cleaning and validation

Always important in genetics, but what to do with 500K markers?

Use strict criteria to discard all data for suspicious markers: often 10-20% of the entire dataset.
Since dense genotyping, usually have alternative marker from any given map interval.

• Assay failure rate (by marker, by individual)

• Hardy-Weinberg Disequilibrium, usually in controls (by marker)

• Mendelian inconsistencies (by marker, by individual)

• Agreement with appropriate population allele frequencies (by marker)

• Agreement with appropriate population haplotype frequencies (by marker)

• Rare minor allele (by marker) !?



Sources of error

• Poor quality of individual DNA samples: arrays require good quality DNA

• Laboratory or fieldwork sample mixups [there are always some]

• Pedigree errors: nonpaternities, informant confusion

• Poorly designed SNP assays

• SNP mapping errors: note realization about extent of duplications

• Misclassified phenotypes

• Data handling problems [where I usually err]

Assays problems often lead to miscalling of a heterozygote as one or other homozygote. This is
why testing for HWE is informative.



The multiple testing problem

We usually assess believability of results of a study by calculating P-values, where if

T is the measure of effect size of a particular SNP on a trait, say,

P = Probability of a result greater than or equal toT, if the given SNP does not really have
any effect.

That is, any difference betweenT and 0 is just due to “noise” in the experiment. Mendelism is one
source of such noise in observational studies.

So, the P-value is an estimate of a false positive result (“Type I error rate”) given that the SNP is
not truly associated.

By common consent, a 5% chance of following up on a false positive is regarded as an acceptable
risk. Equivalently, setting acritical P-value of 5% means that we expect 5 out of 100 tests to be a
false positive.



Experiment-wise error

If our experiment involves 500000 independent tests,

Critical threshold Expected False
Positives

0.05 25000

0.01 5000

0.001 500

1× −410 50

1× −510 5

1× −610 0.5

5× −710 0.25

1× −710 0.05

Currently, the consensus is that we want to keep the number of expected false positives per GWAS
well below even 1, so a critical P-value of5× −710 is commonly used.



The effective number of tests

Because of linkage disequilibrium, results of association tests of adjacent SNPs are correlated.

That is, if one SNP in a region gives a false positive result, then you will obtain false positives for
all other SNPs in the same LD block. Therefore, we are actually performing fewer tests than the
nominal 500000.

Moskvina and Schmidt (2008) for instance,estimated that a 500K Affy scan is equivalent to 277000
independent tests. Based on this analysis, a critical P-value of1.8× −710 gives a genome-wide Type
I error rate of 5%.



Power of a GWAS

Power refers to thetrue positive probability, for a effect of a specified size. As we choose stricter
thresholds to minimize the false positive rate, this also decreases the true positive rate.

The false positive rate is uncorrelated with the number of individuals in an association study.

The true positive rate increases with the number of individuals in the study, but so do the
study costs.

To control costs, we can use atwo-stage design:

• Screen all the SNPs in a subset of the sample

• Genotype the most significant SNPs in the rest of the sample.

• Combine the data and analyse together

This gives close to the same power as just genotyping all the SNPs in all the study participants.



Example power calculations

If there are 100 QTLs controlling a binary trait, each with a relative risk of 1.2, and we study 2000
cases and 2000 controls,

Critical
threshold

Expected False
Positives

Expected True Positives (out of 100)

Risk allele 20%
frequency

Risk allele 10%
frequency

Risk allele 5%
frequency

0.05 25000 99 82 50

0.01 5000 96 61 27

0.001 500 85 33 9

1× −410 50 67 15 3

1× −510 5 46 6 0.7

1× −610 0.5 28 2 0.2

5× −710 0.25 24 1.5 0.1

1× −710 0.05 16 0.7 0.03



Example power calculation in R

The results in the above table were generated using R:

rr <- 1.2

freq <- 0.05

alpha <- c(0.05, 0.01, 0.001, 1e-4, 1e-5, 1e-6, 5e-7, 1e-7)

power.prop.test(p1=freq, # control allele frequency
p2=rr*freq, # case allele frequency
n=4000, # chromosomes
sig.level=alpha)



The empirical distribution of test results

We can compare the observed distribution of our 500000 test statistics to that under thenull
hypothesisof no QTLs.

Under that null hypothesis, all the P-values come from the uniform distribution, or the test statistics
come from the appropriate equivalent distribution, such as the central chi-square.
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The Quantile-Quantile plot of test statistics

A nice graphical representation of all the test results is the Q-Q plot of the observed statistics
distribution versus the expected distribution under the null. To get this, we order the results or
P-values by size.

For example, the expected value for the 200th out of 500000 P-values would be 200/500000 and
this is compared to the observed 200th best P-value. For a chi-square, it will be the chi-square value
corresponding to a P-value of 200/500000.

The observed and expected results should fall along a straight line. We can put aconfidence
envelopearound this line to highlight any interesting results.

Ideally, we will see a few results that are higher than expected under the null hypothesis up at the top
of the distribution. If we saw a large number of outliers, we might suspect ethnic stratification.
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Linkage disequilibrium between SNPs

Given the density of SNPs in a modern GWAS, the intermarker distances are small, and so
significant linkage disequilibrium is common. In some regions, LD extends over long regions, so a
number of adjacent SNPs may be associated to a trait.

This can make it difficult to localize the causative locus or variant within a large gene.

1.8 Mbp

Melanoma

Red Hair



Long haplotypes and disease association

Brown et al (2008) carried out a DNA pooling GWAS for cutaneous malignant melanoma.

The best and second best P-values were obtained from SNPs on chromosome 20, and additional
SNPs in that region were subsequently genotyped.

Association to other SNPs in the same region were reported independently by Gudbjartsson et al
(2008). I was able to show that these are in strong LD with the SNPs reported by our group.
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