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Background In the context of genome-wide association studies we critique a
number of methods that have been suggested for flagging
associations for further investigation.

Methods The P-value is by far the most commonly used measure, but
requires careful calibration when the a priori probability of an
association is small, and discards information by not considering
the power associated with each test. The q-value is a frequentist
method by which the false discovery rate (FDR) may be controlled.

Results We advocate the use of the Bayes factor as a summary of the
information in the data with respect to the comparison of the
null and alternative hypotheses, and describe a recently-proposed
approach to the calculation of the Bayes factor that is easily imple-
mented. The combination of data across studies is straightforward
using the Bayes factor approach, as are power calculations.

Conclusions The Bayes factor and the q-value provide complementary informa-
tion and when used in addition to the P-value may be used to
reduce the number of reported findings that are subsequently not
reproduced.

Keywords Bayes theorem, epidemiologic methods, genetic polymorphism,
testing

Recent technological advances allow the simultaneous
interrogation of huge numbers of pieces of genetic
information. We concentrate on genome-wide asso-
ciation studies (GWAS)1,2 in which single nucleotide
polymorphisms (SNPs) are measured on sets of cases
and controls over several stages. There are a number
of standard platforms containing so-called tagSNPs
that have been selected to capture common polymor-
phisms by exploiting linkage disequilibrium between
SNPs.3 As a typical example, Sladek et al.4 recently
reported a two-stage GWAS. At the first stage geno-
types were obtained for 392 935 SNPs in 1363 type 2
diabetes cases and controls; these numbers represent
the samples sizes after quality control checks on the
genotyping, and removal of subjects who exhibited
admixture or other inconsistencies. In a second stage
the associations between disease and 57 SNPs were

investigated in 2617 cases and 2894 controls, and
eight were deemed significant after a Bonferroni
correction had been applied in response to the
multiple tests performed. A number of high profile
GWASs have now been reported,5–7 and many more
will follow in the near-future.

This exciting development produces new challenges
in terms of statistical analysis and interpretation.8–11

Two key differences with conventional hypothesis
testing situations, are the large number of tests
that are performed, and the low a priori probability
of a non-null association in each test. Historically,
the usual situation was of a single experiment in
which the prior probability of the alternative was
not small—if this were not the case then a costly
experiment would not be performed.

Given a set of tests from a GWAS we identify two
important endeavors:

(i) Ranking the associations in order to determine
a list of SNPs to carry forward to the next stage
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of study, when the size of the list has already
been decided upon.

(ii) Calibrating inference to allow estimation of:
the number of false discoveries and false non-
discoveries, or the size of the list, or the probability
of the null given the data for reported associations.

By far the most common measure used for flagging
SNPs as ‘noteworthy’9 is the P-value. As we describe
below, P-values are difficult to calibrate and there are
various frequentist approaches for providing more
interpretable measures, in particular via control of the
false discovery rate (FDR). Alternatively, a Bayesian
approach may be followed in which the probability of
the null, given the data may be computed for each
SNP; crucial to this approach is the calculation of the
Bayes factor, which is the ratio of the probability of
the data under the null to the probability of the data
under the alternative. The Bayes factor was recently
extensively used in the Wellcome Trust Case Control
Consortium study7 that investigated seven diseases
using a common set of controls. The calculation of the
Bayes factor requires specification of a prior distribu-
tion over all unknown parameters, and the evaluation
of multi-dimensional integrals, and requires special-
ized software. To overcome these difficulties we
concentrate on an asymptotic Bayes factor that has
been recently proposed.12

Methods
Consider a typical GWAS in which for each SNP
we wish to test H0:�¼ 0 vs H1:� 6¼ 0, in the context
of a specified genetic model in which � is the log
odds ratio associated with exposure (for example, 1 or
2 copies of the mutant allele for a dominant genetic
model). Further, assume we have a test statistic T
with E[T]¼ �. For example, we may fit a logistic
regression model (perhaps adjusting for matching or
other variables) so that T is the maximum likelihood
estimate of the log odds ratio. In large samples the
statistic T is normally distributed with mean � and
standard error

ffiffiffiffi
V

p
.

The interpretation of P-values
Before we see any data the � level of a two-sided test
corresponding to T is �¼Pr(|T|4t�|H0) and the power
1���¼Pr(|T|4t�|�) corresponding to this � may be
calculated for different values of �. Such pre-data
inference is used for power calculations; � and �� are
frequentist probabilities with a long-run interpretation
so that for a fixed critical region with threshold t�,
a proportion � of tests will be rejected using this rule
when H0 is true. Once the data are observed post-data
inference is more relevant.13 This has lead to the
standard practice of quoting an observed significance
level, or P-value, given by p¼Pr(|T|4tobs|H0) where
tobs is the observed value of the test statistic. A critical
issue is how to interpret this P-value; there are two

common mis-interpretations. The first is to observe
a P-value of 0.003 (say) and state: ‘Under repeated
sampling from the null we would have obtained this
value, or a more extreme one, in only 0.3% of data sets’;
this is incorrect since we have not observed 0.003 or a
more extreme value, but rather exactly 0.003. With an
a priori fixed critical region t� it is correct to make such
a statement, but once an observed significance level is
quoted we have revised the critical region on the basis
of the data and cannot appeal to long-run frequencies.

The second problem is the temptation to view the
significance level as the probability of the null hypo-
thesis given tobs. Using Bayes theorem we have

PrðH0jdataÞ ¼
pðdatajH0Þ�0

pðdatajH0Þ�0 þ pðdatajH1Þð1 � �0Þ
ð1Þ

which depends on two quantities that are not used
in the calculation of the P-value: the prior on H0, �0

and the power, p(data |H1), that is, the probability
of the data under the alternative. Dividing both sides
of (1) by Pr(H1| data) gives the posterior odds of no
association:

PrðH0jdataÞ

PrðH1jdataÞ
¼

pðdatajH0Þ

pðdatajH1Þ
�

�0

1 � �0
ð2Þ

or, in words,

Posterior Odds of H0 ¼ Bayes Factor�Prior Odds of H0

so that the Bayes factor is an odds ratio corresponding
to the posterior odds of the null divided by the prior
odds of the null. The Bayes factor has been previously
advocated as a measure of the evidence for an
association in a GWAS.7,12 When ranking associations
we see, from (2), that if the prior odds �0 /(1��0) are
constant across SNPs then the ranks will be the same
regardless of the specific value of �0 taken. However,
the rankings will change as a function of the power,
p(data |H1), which varies across SNPs as a function
of the minor allele frequency (MAF).

We now demonstrate the influence of the prior on
the calibration of P-values. A lower bound for the
probability of the null is given by:

Posterior Odds of H04 �e� p� log p
� �

� Prior Odds of H0 ð3Þ

where e ¼ 2.7183. The lower bound in (3) is valid for
p< 1/e¼0.368, Sellke et al.14 Figure 1 shows the lower
bound on Pr(H0| data) as a function of the P-value
for the four prior choices: �0¼ 0.95, 0.99, 0.999,
0.9999. For a P-value of 10�5 and �0¼ 0.9999 we have
Pr(H0|data)50.76, so that there is at least a 76%
chance that the null is true, even with such a small
P-value. This bound is at first sight startling but some
comfort is gathered by consideration of the situation
in which the prior odds are one (so that we have
equal prior weight on the null and on the alternative);
P-values of 0.05 and 0.01 then give lower bounds on
the null of 0.29 and 0.11, respectively. In addition
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to the low prior probabilities of an association in
GWAS the other crucial aspect is that many hundreds
of thousands of tests are being performed at once,
and so by chance alone very small P-values will be
observed. For example, if 500 000 SNPs are examined
then even if the null is true for all tests we would still
expect to see four P-values <10�5.

To evaluate the probability of H0 one must consider
competing explanations for the data, i.e. the power
under alternative hypotheses. It is important to consider
power because although a small P-value suggests
that the data are unlikely given H0, they may also be
unlikely under reasonable alternatives. From (2), we see
that even if p(data|H0) is small, the Bayes factor may
not be small if p(data|H1) is small also.

Control of FDR via q-values
The possible outcomes when m multiple-hypothesis
tests are performed are given in Table 1; m0 is the true
number of nulls and is of course unknown; �0¼m0/m
is the proportion of nulls amongst all tests. The key
issue is how to decide upon a criterion for calling an
association noteworthy; with such a criterion, k is the
number of tests called noteworthy. The number of
false discoveries is B, and the number of false non-
discoveries is C. In a GWAS we wish to make B and
C as small as possible with D close to m1.

Historically, the type I error (false discovery) was
deemed the more important of the two types of error
(false discovery and false non-discovery), which lead
to the use of the Bonferroni correction, which controls

the familywise error rate, that is the probability of
making at least one type I error, Pr(B51)—there is
an implicit prior assumption that the probability that
all tests are null is not small.15 If we believe that all
tests could be null then aiming to make the number
of false positives zero is justifiable. In the context of
a GWAS the use of Bonferroni will often be an overly
conservative procedure since, at least in early stages
of genome-wide investigations, one is more concerned
with avoiding missed associations, and making
some false discoveries is not too high a cost to pay
in order to achieve more true hits. By overly
protecting against false discoveries one loses power
in detecting real associations. A second issue is that
the usual Bonferroni correction was derived for
independent tests, and in a GWAS there is depen-
dence amongst the tests due to linkage disequili-
brium, and correlated tests lead to an overly
conservative procedure.16

More recently, Benjamini and Hochberg17 suggested
a powerful and simple method for controlling the
frequentist expected FDR, that is the proportion of
rejected tests that are truly null: E B=k½ �. Subsequently,
Storey and colleagues18,19 have advocated the use of
q-values. Suppose we reject all tests for which |T|4tfix
for a fixed threshold tfix. Then the probability of the
null for tests that fall within this critical region is

qðtfixÞ ¼ PrðH0jjTj4tfixÞ ¼
�ðtfixÞ�0

PrðjTj4tfixÞ
ð4Þ

where Pr(|T|4tfix)¼ �(tfix)�0þ [1��(tfix)](1��0) is
the probability of a rejection and �(tfix) is the �
level corresponding to tfix. Hence for a rule defined by
tfix, q(tfix) is the probability of a false discovery, and
Storey19 shows that such a rule applied to multiple
tests controls the (frequentist) FDR at level q(tfix).

For a particular SNP one can take tfix¼ tobs, where
tobs is the observed statistic. Then we obtain the
q-value q(tobs) where �(tobs)¼ p. Hence if we have
a rule that just calls this SNP, and all SNPs with a
more extreme statistic, noteworthy, then the FDR
is controlled at level q(tobs); because this threshold
includes more noteworthy SNPs (for which the
probability of H0 is lower) the probability that this
SNP is a false positive may be much higher than the
FDR, however.

To evaluate q-values for each SNP in practice it
would appear from (4) that we need an a priori
estimate of �0. However, we may write

PrðH0jjTj4tobsÞ ¼ p�
�0

PrðjTj4tobsÞ

and Storey19 shows that the second term can
be estimated from the totality of P-values, which
removes the need to specify �0. Intuitively, under
the null, the distribution of P-values is uniform and
so when we are in a multiple-hypothesis testing
situation we can use the departure of the distribution
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Figure 1 Lower bound on the posterior probability of
the null, as a function of the P-value, and the prior
on the null, �0

Table 1 Possibilities when m tests are performed and k are
called noteworthy

Non-noteworthy Noteworthy

H0 A B m0

H1 C D m1

m�k k m
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of all P-values from uniformity to estimate �0, an
empirical approach that has much appeal.

The false non-discovery rate (FNR) is defined as
E C=ðm� kÞ½ � and is the expected proportion of non-
noteworthy tests that are truly non-null. However, in
a GWAS, the number of non-noteworthy tests, m�k,
will be very large (and close to m); hence, even if the
majority of true associations are missed, C will still be
relatively small and so E C=ðm� kÞ½ � will also be close
to zero and difficult to accurately estimate. The ratio
of the non-null associations missed C=m1 (i.e.
1–sensitivity) is clearly of interest, but difficult to
estimate since both C and m1 are unobserved.

The false positive report probability
In response to the large proportion of false positives
generated by the reporting of P-values in genetic
association studies, Wacholder and colleagues,9 in
a wide-ranging and seminal article, introduced the
false probability report probability (FPRP):

PrðH0jdataÞ ¼ FPRP ¼
p� �0

p� �0 þ power � ð1 � �0Þ
ð5Þ

where the ‘data’ are given by |T| 4 tobs and the
power¼Pr(data |�1) is evaluated at a pre-specified �1,
and for |T|4tobs. If we rewrite (5) as

Posterior Odds of H0 given fp; powerg

¼
p

power
� Prior Odds of H0

it is clear that the evidence in the data to support H0

are summarized in terms of the ratio p=power, which
again illustrates that when a set of tests differ in their
power the rankings of P-values and FPRP will differ
also; for fixed P-value FPRP gives more weight to H1

when the power is high. The functional form of (5) is
familiar to epidemiologists; the baseline (prior) odds
of the event H0 is revised in light of the odds ratio
p=power, to give the posterior odds. FPRP lies some-
where between a Bayesian and a frequentist approach
since a Bayesian calculation is carried out using fre-
quentist reporting statistics; the ‘data’ correspond
to p and the power, the latter is calculated at the
simple alternative H1:�¼ �1, with a prior point mass of
1��0 at this value.

FPRP has a number of drawbacks12 which we now
briefly describe, in order to motivate an alternative
that we describe in the next section. Information is
being lost by considering |T|4tobs only, rather than
conditioning on the exact value observed, tobs; it can
be shown that Pr(H0kT|4tobs)4Pr(H0|T¼ tobs) so
that FPRP is a lower bound on the probability of
H0. It is inconsistent to consider a two-sided P-value
and the power corresponding to a one-sided alter-
native. When one knows the side of the null to which
the estimate falls then a single tail area is appropriate.
With respect to frequentist properties FPRP does not
provide control of FDR because a variable threshold

for T is used which does not permit long-run frequen-
cies to be calculated—in particular the FDR is not
controlled by FPRP. Finally, it would be desirable to
consider a range of values for the alternative �, rather
than a single value �1.

The Bayesian false discovery probability
For the ranking of associations we have seen that for
a Bayesian approach with a constant prior odds across
SNPs we need only consider the Bayes factor, and not
the absolute value of Pr(H0|data). For the second
endeavor of calibration the posterior probability of the
null is required, and we describe a Bayesian decision
theory approach to the choice of which of H0 or H1 to
report. This requires the costs of false non-discovery
and false discovery to be specified, Table 2 gives the
costs of making the two types of error.

The decision theory solution is to report H1 if the

Posterior Odds of H05
CFND

CFD
ð6Þ

so that we only need to consider the ratio of costs
CFND/CFD. If the costs are equal then we should report
an association as noteworthy if the posterior odds on
H0 is <1; if CFND/CFD¼ 4, so that missing a discovery
is four times as costly as reporting a null association,
then an association should be called noteworthy if the
posterior odds on H0 is <4, i.e. if the posterior proba-
bility of H1, Pr(H1|data), is 40.2. We now discuss
Bayesian error measures that are closely related to
FDR and FNR. For a single test:

� If we call a hypothesis noteworthy then Pr(H0|data)
is the probability of a false discovery.

� If we call a hypothesis not noteworthy then
Pr(H1|data) is the probability of a false non-discovery.

In a multiple-hypothesis testing situation, we can
sum Pr(H0|data) over all associations that are called
noteworthy to give the expected number of false
discoveries; summing Pr(H1|data) over all associa-
tions called non-noteworthy gives the expected
number of false non-discoveries.

The data appear in the posterior odds through
the Bayes factor, which is given by p(data|H0)/
p(data|H1), and is the ratio of the probabilities of
the data under H0 and H1. For FPRP the denominator
(power) was evaluated at a single alternative, �1.
An alternative approach is to place a prior on

Table 2 Costs of making the two types of error,
CFD is the cost of a false discovery, and CFND the
cost of a false non-discovery

Decision

Not Noteworthy Noteworthy

Truth H0 0 CFD

H1 CFND 0
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plausible values of �. The denominator of the Bayes
factor is then given by

pðdatajH1Þ ¼

Z
pðdataj�Þ � gð�Þd�

which is the power as a function of �, averaged over
the prior, g(�).

To evaluate the Bayes factor in general requires
the specification of the prior over all unknown param-
eters, and the calculation of multi-dimensional inte-
grals. An approximate Bayes factor that removes these
difficulties, and avoids the drawbacks of FPRP has
been recently developed,12 and takes as data the esti-
mate of the log odds ratio, b�, with associated standard
error

ffiffiffiffi
V

p
. The asymptotic distribution of the estimator

is N(�,V), where � is the true value, and this distri-
bution provides the likelihood in the evaluation of the
Bayes factor. As prior a normal distribution centered
on zero and with variance W is taken—this reflects
the expected distribution of the sizes of effects over all
non-null SNPs. This combination gives the approximate
Bayes factor (ABF):

ABF ¼
1ffiffiffiffiffiffiffiffiffiffiffi

1 � r
p exp �

Z2

2
r

� �
where Z ¼ b�= ffiffiffiffi

V
p

is the usual Z statistic, and r¼W/
(Vþ W). Hence we see that the Bayes factor depends
on both the Z statistic and the power through V
(which depends on the MAF and the sample size). All
that is required data-wise to calculate ABF is a con-
fidence interval on the parameter of interest, and we
provide a number of illustrations in the Examples from
the Literature section. The posterior odds is given by

Posterior Odds of H0 given b� ¼ ABF� Prior Odds of H0

To choose W we may specify a range of relative risks
that we believe is a priori plausible. For example, if we
believe that there is a 95% chance that the relative
risks lie between 2/3 and 1.5 then the standard
deviation of the prior is

ffiffiffiffiffi
W

p
¼ logð1:5Þ=1:96 (equation

(3), is a lower bound on the posterior odds of H0 over
all W, Sellke et al.14).

If we pick the prior variance W ¼ K � V (where V is
the asymptotic variance of b� and K4 0 is a constant)
then ABF is given by

ABF ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ K

p
exp �

Z2

2

K

1 þ K

� �
which depends on the data only through Z. Hence, for
this prior, rankings based on ABF and the P-value will
be identical.20 Under this prior, larger effect sizes are
anticipated (in a very specific way) when the MAF is
low and/or the sample size is small (since in this case
the variance V is large). While I would not suggest
that this prior should be used, since it is not likely to
reflect carefully considered prior opinion, it does
reveal a prior that is implicitly consistent with the

p-value approach and so can explain observed
differences between rankings based on p-values and
Bayes factors. Further discussion is given elsewhere.20

The posterior probability of the null is given by

PrðH0jb�Þ ¼ ABF � Prior Odds

1 þ ABF � Prior Odds

which was called the Bayesian false discovery
probability (BFDP) by Wakefield.12 In general the
Bayes factor is a measure of the evidence in the
data for one scientific hypothesis (H0) compared with
another (H1), and a number of authors have sug-
gested that ‘a rough descriptive statement about
standards of evidence in scientific investigation’21

may be presented in terms of �log10BF. It turns out
that, although the rankings of the approximate Bayes
factors and P-values will in general differ (apart from
under the prior W=V�K), if we treat ABF as a
statistic and evaluate the frequentist P-value asso-
ciated with this statistic then they are identical to
P-values obtained using the Wald statistic Z ¼ b�= ffiffiffiffi

V
p

.
This is because for fixed V the approximate Bayes
factor is simply a transformation of Z2 and so the
lower tail of the distribution of the Bayes factor (lower
ABF, more evidence for the alternative) corresponds
exactly to the upper tail of a chi-squared (from which
the P-value is calculated), Appendix 1 contains details.

The fact that ABF simply depends on Z2 and
V allows the expected number of tests falling
beyond �log10BF thresholds under the null to be
easily calculated, given a set of MAFs and sample
sizes (which jointly determine the distribution of V).
Hence evidential guidelines may be based on the
frequentist properties of the Bayes factor by compar-
ing the observed number falling beyond thresholds
of �log10BF with those expected under the null,
a point that we illustrate in the Operating Character-
istics via Simulation section. Similar ideas have
appeared recently in the genetics literature.22 We
emphasize that although the P-values corresponding
to Z and ABF are identical, the frequency distribution
of ABF across SNPs will differ according to the MAFs
of the SNPs under consideration.

The simple form of ABF also means that power
calculations are straightforward.20 If we decide to call
a SNP noteworthy if the posterior odds of H0 drop
below the ratio of costs of false non-discovery to false
discovery, call this C, then the power to detect a
relative risk of RR1 is given by

PrfABFðW; Z;VÞ � �0=ð1 � �0Þ5CjRR1g

¼ Pr Z2 � �
2

r
log C

1 � �0

�0

ffiffiffiffiffiffiffiffiffiffiffi
1 � r

p
� �

jRR1

� 	
and under H1 Z2 is a non-central �2 random variable
with a single degree of freedom and non-centrality
parameter (log RR1)2/V. For example, Figures 2a
and b illustrate the powers to detect a relative risk
of 1.5 for sample sizes of 1000 and 2000 and various
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choices of �1 (the prior probability of an association),
under a dominant genetic model and with a ratio
of costs C= 10 (so that false non-discovery is 10 times
worse than false discovery). The 97.5% point of the
lognormal prior on the effect size is 2 (which
determines the prior variance W). The effect of both
sample size and MAF on the variance of the estimator
(and hence the power) is apparent.

Given the massive multiple hypothesis testing carried
out in genome-wide scans, replication is essential.23

Combination of data across studies (assuming that
the effect is constant across studies) to produce a
Bayes factor summarizing both sets of data is straight-
forward since

ABFðb�1;b�2Þ ¼ ABFðb�1Þ � ABFðb�2jb�1Þ ð7Þ

where ABFðb�2jb�1Þ ¼ pðb�2jH0Þ=pðb�2jb�1;H1Þ and

pðb�2jb�1;H1Þ ¼ E�jb�1
½pðb�2j�Þ� which is available in

a simple form, Appendix 2 gives details. The last

expression simply shows that when we evaluate the

probability of the data b�2 under the alternative we

average over the posterior for � given b�1; this contrasts

with the evaluation of the probability for b�1 under the

alternative for which we average over the prior for �,

i.e. pðb�1jH1Þ ¼ E�½pðb�1j�Þ�.
We now turn to the thorny issue of choice of �0.

As more genome-wide association studies are carried
out lower bounds on �1¼ 1��0 will be obtained from
the confirmed ‘hits’—it is a lower bound since clearly
many non-null SNPs for which we have a low power
of detection will be missed. In a GWAS the proportion
of true non-null signals is likely to be small, and so
estimation of �0 using the empirical distribution of
the totality of P-values is likely to be difficult.
However, if an estimate of �0 <1 is obtained using
the q-values methodology then this may be used as a
non-subjective ‘empirical’ prior. We emphasize that �1

is the proportion of non-null associations in the data,
and not the proportion we think we have the power
to detect.

We now illustrate how power is not considered
when a P-value is calculated. In Figure 3 each curve
corresponds to a fixed P-value and the vertical axis
measures the evidence in favour of the alternative,
�log10BF, so that a value of 2 means that the data
are 100 times more likely under the alternative
than under the null. On the horizontal axis we have
the minor allele frequency (MAF), which drives the
power. We assume a dominant genetic model and
take a prior that assumes that the odds ratio is <1.5
with probability 0.975 and, crucially, takes the effect
size to be independent of the MAF. We concentrate
on the curve labelled P¼ 0.00005. For a MAF close to
0.05 (low power) the Bayesian evidence in favour of
the alternative is small because to obtain such a small
P-value requires a large b� which is unlikely under the
prior. The P-value provides more evidence because
the implicit prior on the effect size (W¼K�V) places
more probability on larger effect sizes at lower MAFs.
As the MAF increases the power also increases and
under the Bayes factor approach the evidence in
favour of the alternative consequently increases also.
For a MAF close to 0.5 we have strong power and the
evidence starts to decrease, in contrast to P-values for
which it is well known that the null will be rejected
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for large sample sizes, even if e
b� only differs from

unity by a small amount. The reason for the
discrepancy is that although the data may be highly
unlikely the null, the data may also be unlikely under
the alternative also and so the relative evidence is
reduced (under the P-value approach there is no
alternative hypothesis). This behaviour is also dis-
cussed by Spiegelhalter et al.24 We stress, however,
that for MAFs between 0.15 and 0.50 there is little
practical difference between rankings based on P-
values and Bayes factors here.

Operating characteristics via simulation
We carry out a simulation study in which there are
3000 cases and 3000 controls and assume that 317 000
SNPs are to be examined, of which 100 are truly
associated with disease. We take a linear additive
model on the logistic scale25 with � the log relative
risk associated with two copies of the mutant allele.
We generate the log relative risks for the 100 SNPs
from a beta distribution with parameters 1 and 3
scaled to lie between log(1.1) and log(1.5), and then
with probability 0.5 change the sign (so that in
expectation there is a 50% chance of a detrimental
or protective effect). The relative risks are assumed
independent of the MAFs, and for the latter we
assume for all SNPs a uniform distribution between
0.05 and 0.50. The blue and red filled circles in each
panel of Figure 4 show the distribution of the non-
null log relative risks plotted against the MAF.

We calculate the ABF based on b�;V obtained from
317 000 logistic regression models fitted to each SNP,
and a prior that assumes, independently of the MAF,
that the odds ratios lie between 2/3 and 1.5 with
probability 0.95. The four panels of Figure 4 show the
number of SNPs called as noteworthy (blue circles)
using BFDP with different thresholds, the number
missed (red circles), and the number of false
discoveries (green circles, with points jittered in the
vertical direction for clarity). The four thresholds
correspond to illustrative ratios of costs, CFND/CFD of
4:1, 20:1, 50:1, 100:1. We see the diminishing returns
in setting higher and higher thresholds with the FDR
increasing dramatically as the threshold increases.
To emphasize the difficulty in detecting non-null
SNPs when the power is low we have used the true �0

in the calculation of BFDP, which corresponds to the
best possible scenario. In general choosing the ratio of
costs is not straightforward though replication studies
will clearly have ratios that are lower since we would
like to see the posterior probability of the null being
small, more discussion is available elsewhere.9–12

Figure 5 shows the number of SNPs that we need
to call noteworthy to obtain a specified number of
true ‘hits’. The dashed line is the line of y¼ x and
a perfect procedure would follow this line. We see
that the signal is only strong for the first few SNPs
(the two most noteworthy SNPs under ABF and the
P-value are true associations, the third is not) and
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Figure 4 Discoveries (blue circles), non-discoveries
(red circles) and false discoveries (green circles) using BFDP
for four different thresholds corresponding to ratio of costs
of false non-discovery to false discovery of 4:1, 20:1, 50:1,
100:1 in panels (a), (b), (c), (d). CFND/CFD is the ratio of
costs, D the number of true discoveries, and k the total
number of SNPs called noteworthy
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early in the list we need to call an increasing number
of SNPs noteworthy in order to flag the true non-null
associations. To discover the final few signals the list
must include virtually all of the SNPs. Figure 6 shows
the SNPs with lower rankings on the Bayes factor list
(marked ‘B’, 63 points) or on the P-value list (marked
‘P’, 35 points), with the first two SNPs (marked ‘S’)
being equally ranked. We see that the majority of
SNPs for which P-values performed better had true
log relative risks close to 1 and so would need very
large sample sizes to be reproducible. The explanation
for P-values ranking low power alternatives earlier is
the implicit P-value prior; for two SNPs with the same
Z-score, the one with the greater power will provide
more evidence against the null under the Bayes factor
approach. This implicit prior also explains why here
the Bayes factors are superior overall in terms of
flagging associations earlier—the data were generated
with effect size independent of MAF.

Figure 7a gives the QQ plot of �log10 P-values; as
already noted P-values based on the statistic ABF are
identical to the P-values based on the Wald statistic Z.
The shaded areas are pointwise 95% confidence
intervals.26 Such plots are difficult to interpret due
to sampling variability in the upper tail and the
dependency in the plotted points. For clarity we have
only plotted points that are greater than 3 (the region
on interest). We see that only two of the points are
distinct from the remainder. To aid in interpretation,
Figure 7b gives five realizations under the null, and
the dependency and sampling variability is apparent.

Table 3 gives the expected number of tests falling
within different bands under the null, along with the
observed number. Informally, we would conclude that
the top two SNPs appear to be real hits while approx-
imately four of the next nine hits are real. This table
differs from that based on P-values since the MAFs of
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the 317K SNPs in this dataset are explicitly consid-
ered (in other words, Table 3 accounts for power).
Figure 8 gives a number of summaries of the q-value
method when applied to the simulated data. The
proportion of non-null tests was empirically estimated
as 0.003 (the true proportion is 100/317 000¼ 0.0003)
by the q-value method.

Figure 8a plots q-values against P-values and illus-
trates that most of the q-values are close to 1. In
Figure 8b we plot the expected number of false
discoveries, as calculated via the q-value and BFDP
methods (both based on b�0 estimate from the q-value
method) versus the number of true discoveries between
1 and 50. The expected number of false discoveries for
BFDP is the sum of the posterior probabilities of the
null over all SNPs called noteworthy, and for the
q-value approach it is q times the number of SNPs called
noteworthy at that threshold. Two features are appar-
ent: first the expected number of false discoveries
increases rapidly with the number of true discoveries
and second, the two methods give very similar esti-
mates. In Figure 8c we plot q-values vs BFDP (with the
latter calculated using the q-value estimate of �0) and
see a reasonable amount of agreement though the
q-values tend to be smaller since, as noted, they are a
lower bound on the posterior probability of the null.

Examples from the Literature
Table 4 gives point estimates of odds ratios and
confidence intervals (CIs) for SNP rs9939609 from a
GWAS for Type II diabetes.6 Bayes factors and BFDP
are calculated under three prior distributions with
proportions of non-null SNPs of 1/5000, 1/10000
and 1/50 000. The estimate (CI) in the first row of
the table corresponds to an association found in 1924
type 2 diabetes patients6 when compared to 2938
controls (490 032 SNPs were examined in total). There
is strong evidence of a non-null association for this
FTO gene variant, which manifests itself in very small
probabilities of the null under all three priors. In a
second stage this association was examined in 3757
type 2 diabetes cases and 5346 controls and in the
second line of the table we see a greatly reduced
relative risk estimate, and the three posterior prob-
abilities of the null for these data alone are all 40.9.
However, combining the Bayes factors using equation

(8) in Appendix 2 we obtain a combined �log10BF of
13.8, greater than the sum of the two individual
contributions (which is 10) because the estimates and
confidence intervals are in broad agreement. Hence
the data are overwhelmingly in favour of the alter-
native so that even with a prior of 1/50 000
the posterior probability of the null is 7.6� 10�10.
For summarizing inference under the alternative
the (2.5%, 50%, 97.5%) points of the prior are
(0.67, 1, 1.5), being refined to (1.17,1.26,1.36) after
the first stage data and finally to (1.15,1.21,1.27)
using both stages of data. The posterior interval after
stage 1 is virtually identical to the asymptotic CI
in Table 4 because the variance of b�1 is so small
compared to the prior variance, W (the shrinkage
factor r¼ 0.97 showing that the prior is dominated
by the data). The summary of the association is of
a relative risk increase of 21%.

Table S5 of the supplementary table of Sladek et al.4

gives the genotype counts for cases and controls for
43 SNPs that passed the first stage selection cut-off.
For illustration for SNP rs7913837 we fitted a logistic
regression model using a risk model that is linear (on
the logistic scale) in the number of mutant alleles. We
then calculated the Bayes factor, and BFDP using the
resultant relative risk estimate and asymptotic var-
iance. The latter was multiplied by the estimated
genomic control inflation factor27 of 1.1233. This
illustrates that the asymptotic distribution that is
used in the ABF calculation can incorporate addi-
tional information. Under a prior that assumes a
narrower range of risks, (2/3,1.5) with probability
0.95, the evidence for a non-null association is not
strong, Table 4, last line. Figure 9 illustrates the
sensitivity of BFDP to the prior on effect size, for
three different values of �1, the probability of a non-
null association. Under prior effect sizes that give
more weight to larger values of the odds ratio we see
greater evidence of an association. The lower bounds
on the posterior probability of the null, given by
equation (3) are also indicated as dashed lines. We
see that beyond an upper value of around 3 there is
little sensitivity in the Bayes factor. This figure
indicates that care must be taken in the choice of
prior distribution. We note that in the second stage of
the study the relative risk estimate was much smaller
(1.45 for two mutant alleles).

Conclusions
We have discussed the interpretation of P-values in
GWAS and shown that small P-values have to be
taken in the context of low prior probabilities of
an association and the multiple-hypothesis tests that
have been carried out, as previously argued by
Wacholder et al.9 In terms of reporting, P-values are
useful in that their null distribution is known to be
uniform, but they do not consider power. We have
shown that they implicitly correspond to a particular

Table 3 Strengths of evidence and observed and expected
numbers of Bayes factor statistics falling within evidential
bands

Bayes Factor �log10BF Expected Observed
Observed
Expected

<0.0001 44 0.3 2 6.30

0.0001–0.001 3–4 5.2 9 1.74

0.001–0.01 2–3 89.0 108 1.21

0.01–0.1 1–2 1703.2 1736 1.02

0.1–0.32 0.5–1 8070.4 8164 1.01
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prior relationship between the MAF and the strength
of association. The q-value explicitly estimates the
proportion of non-null tests using the totality of
P-values, and provides an estimate of the FDR for any
fixed threshold, but in GWASs the proportion of non-
null associations is small and more experience of its
use in this context is required.

A refinement of FPRP, BFDP has been described
here and elsewhere,12 and has the advantage of only
requiring a confidence interval for its calculation.
Treating the distribution of the statistic as the data
also provides flexibility and allows, for example, over-
dispersion (genomic control) to be simply incorporated
by multiplying the variance of the odds ratio by the
overdispersion factor. Treating the asymptotic Bayes
factor as a statistic one may evaluate its frequentist
properties and it turns out that the P-values associated
with the ABF are identical to those for the conventional
Wald statistic. We stress, however, that the rankings
of ABF and P-values will differ in general, since the
former takes into account the power.

We have presented BFDP in its simplest form, and a
number of extensions are currently being explored.
We may allow the variance on the size of the effect, W,
to depend on the MAF to exploit the common percep-
tion that larger detrimental effects may occur with
rarer minor allele frequencies. We have assumed a
fixed threshold across all SNPs (corresponding to fixed
costs) but we may wish for the costs (and therefore the
threshold) to depend on the MAF, with greater costs
associated with more common alleles, since these will
have a greater attributable risk. The ratio of costs will
clearly depend on the phase of the study and on the
sample size. Since all that is required for the
calculation of ABF is a point estimate/standard error
the approach may used with designs other than the
case-control, for example survival endpoints in a case-
cohort study. The design must also be acknowledged in
the analysis phase for other outcome-dependent
sampling schemes such as two-phase sampling. The
use of Bayes factors based on test statistics has been
previously advocated as a robust and theoretically
sound strategy.28,29 The asymptotic Bayes factor
described here may also be used for model averaging
over different genetic models, which has been advo-
cated elsewhere.30

Replacing confidence intervals with P-values does
not overcome the problems of reporting when the
prior probability of an association is low. The posterior
distribution for the relative risk of an association given
an association (i.e. H1) is lognormal with parameters
rb� and rb�. Without assuming an association the
posterior consists of a point mass of BFDP at RR¼ 1
and the remaining 1–BFDP is the area under the
lognormal distribution.

Throughout we have used the term noteworthy,
following Wacholder et al.9 but these tests may be
alternatively labelled as ‘anomalous’ recognizing that
the flagged associations may be due to errors in the
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data such as differential genotyping errors. Software
to evaluate approximate Bayes factors and posterior
moments is available from the website: http//
faculty.washington.edu/jonno/cv.html.

Returning to the endeavors highlighted in the
introduction:

(i) To rank associations the Bayes factor provides an
alternative to the P-value which accounts for

power. Bayes factor and P-values will often
provide very similar rankings, with differences
only for SNPs with low MAFs, and the extent
of the differences depending on the association
in the prior between size of effect and MAF.
We would recommend close examination of any
discrepancies between SNPs that appear in one
but not both highly-rank lists.

(ii) To calibrate inference/decide upon the list length
for further investigation, the q-value and BFDP
may be used to estimate FDR or the probability
of the null given the data. BFDP may also be
used to interpret reported associations, though
the absolute values are highly dependent upon
an appropriate choice of �0, the prior on the null.
Careful consideration of the prior should also
be taken, both in terms of the sizes of effect
anticipated, and whether effect size is likely to
depend on MAF.
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Appendix 1
Let S¼�log10 BF denote the log to the base 10 of the
approximate Bayes factor. The latter is a function
of Z2, which is �2

1 under the null, and the standard
error

ffiffiffiffi
V

p
which differs between SNPs. To evaluate the

expected numbers of S that exceed a threshold s0 we
note that for fixed V:

PrðS � s0jVÞ ¼ Pr Z2 �
�2 log10

ffiffiffiffiffiffiffiffiffiffiffi
1 � r

p
=10s0

� �
r

Vj

 !
where r¼W/(VþW). Across all SNPs we take the
expectation over the distribution of V:

PrðS � s0Þ ¼ EV PrðS � s0jVÞ½ �

so that we simply have the average of �2
1 tail errors.

For evaluating the P-values we examine the tail
areas for each SNP conditional on the variance V and
so the P-values are identical to those obtained for the
P-values based on the Wald statistic Z.

Appendix 2
Suppose we have results from two independent studies
and that for a particular SNP, b�1 has distribution
N(�,V1), and b�2 has distribution N(�,V2), where we
have assumed a common log odds ratio � is being
estimated. After seeing the first stage data only, the
posterior distribution �jb�1 has mean and variance

�1 ¼ E½�jb�1� ¼ rb�1

�2
1 ¼ varð�jb�1Þ ¼ rV1

where r¼W/(V1þW). After seeing both sets
of data the posterior distribution �jb�1;b�2 has mean
and variance

�2 ¼ E½�jb�1;b�2� ¼ Rb�1V2 þ Rb�2V1

�2
2 ¼ varð�jb�1;b�2Þ ¼ RV1V2
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where R ¼ W/(V1W þ V2W þ V1V2). For both stages
a 95% posterior credible interval for the relative risk
e� is given by

expð�� 1:96 � �Þ

with substitution of the appropriate m, �.
The Bayes factor summarizing the information with

respect to H0 and H1 in the two studies is given by:

ABFðb�1;b�2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
W

RV1V2

r
� exp �

1

2
Z2

1RV2 þ 2Z1Z2R
ffiffiffiffiffiffiffiffiffiffi
V1V2

p
þ Z2

2RV1


 �� 	

where Z1 ¼ b�1=
ffiffiffiffiffi
V1

p
and Z2 ¼ b�2=

ffiffiffiffiffi
V2

p
are the usual Z

statistics. Note that if the first and third terms in the
exponent are large then the Bayes factor will be small
and will favour the alternative; if Z1 and Z2 are of the
same sign then the second term will also suggest
the alternative, but if they are of opposite sign then
the evidence in favour of H0 will increase as we would
expect. Care should be taken in examining summary
measures only since two small Bayes factors (or
P-values) may be associated with effects in opposite
directions, which obviously does not correspond
to strong evidence of the alternative; the above
combined Bayes factor automatically penalizes such
a situation.
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