Genetic Epidemiology, Translational Neurogenomics, Psychiatric Genetics and Statistical Genetics Laboratories investigate the pattern of disease in families, particularly identical and non-identical twins, to assess the relative importance of genes and environment in a variety of important health problems.
QIMR Home Page
GenEpi Home Page
Publications
Contacts
Research
Staff Index
Collaborators
Software Tools
Computing Resources
Studies
Search
GenEpi Intranet
PMID
22982357
TITLE
Development of brain structural connectivity between ages 12 and 30: a 4-Tesla diffusion imaging study in 439 adolescents and adults.
ABSTRACT
Understanding how the brain matures in healthy individuals is critical for evaluating deviations from normal development in psychiatric and neurodevelopmental disorders. The brain's anatomical networks are profoundly re-modeled between childhood and adulthood, and diffusion tractography offers unprecedented power to reconstruct these networks and neural pathways in vivo. Here we tracked changes in structural connectivity and network efficiency in 439 right-handed individuals aged 12 to 30 (211 female/126 male adults, mean age=23.6, SD=2.19; 31 female/24 male 12 year olds, mean age=12.3, SD=0.18; and 25 female/22 male 16 year olds, mean age=16.2, SD=0.37). All participants were scanned with high angular resolution diffusion imaging (HARDI) at 4 T. After we performed whole brain tractography, 70 cortical gyral-based regions of interest were extracted from each participant's co-registered anatomical scans. The proportion of fiber connections between all pairs of cortical regions, or nodes, was found to create symmetric fiber density matrices, reflecting the structural brain network. From those 70 × 70 matrices we computed graph theory metrics characterizing structural connectivity. Several key global and nodal metrics changed across development, showing increased network integration, with some connections pruned and others strengthened. The increases and decreases in fiber density, however, were not distributed proportionally across the brain. The frontal cortex had a disproportionate number of decreases in fiber density while the temporal cortex had a disproportionate number of increases in fiber density. This large-scale analysis of the developing structural connectome offers a foundation to develop statistical criteria for aberrant brain connectivity as the human brain matures.
Copyright 2012 Elsevier Inc. All rights reserved.
DATE PUBLISHED
2013 Jan 1
HISTORY
PUBSTATUS PUBSTATUSDATE
received 2012/05/22
revised 2012/08/13
accepted 2012/09/03
aheadofprint 2012/09/14
entrez 2012/09/18 06:00
pubmed 2012/09/18 06:00
medline 2013/06/05 06:00
AUTHORS
NAME COLLECTIVENAME LASTNAME FORENAME INITIALS AFFILIATION AFFILIATIONINFO
Dennis EL Dennis Emily L EL Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA 90095-7334, USA.
Jahanshad N Jahanshad Neda N
McMahon KL McMahon Katie L KL
de Zubicaray GI de Zubicaray Greig I GI
Martin NG Martin Nicholas G NG
Hickie IB Hickie Ian B IB
Toga AW Toga Arthur W AW
Wright MJ Wright Margaret J MJ
Thompson PM Thompson Paul M PM
INVESTIGATORS
JOURNAL
VOLUME: 64
ISSUE:
TITLE: NeuroImage
ISOABBREVIATION: Neuroimage
YEAR: 2013
MONTH: Jan
DAY: 1
MEDLINEDATE:
SEASON:
CITEDMEDIUM: Internet
ISSN: 1095-9572
ISSNTYPE: Electronic
MEDLINE JOURNAL
MEDLINETA: Neuroimage
COUNTRY: United States
ISSNLINKING: 1053-8119
NLMUNIQUEID: 9215515
PUBLICATION TYPE
PUBLICATIONTYPE TEXT
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
COMMENTS AND CORRECTIONS
REFTYPE REFSOURCE REFPMID NOTE
Cites Hum Brain Mapp. 2012 Jun;33(6):1393-406 21557387
Cites J Neurosci. 2009 Dec 16;29(50):15684-93 20016083
Cites Cereb Cortex. 2013 Sep;23(9):2072-85 22784607
Cites Hum Brain Mapp. 2013 Oct;34(10):2688-706 22522814
Cites Brain Connect. 2011;1(6):447-59 22500773
Cites Nat Neurosci. 2003 Mar;6(3):309-15 12548289
Cites Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9 15148381
Cites Cereb Cortex. 2004 Sep;14(9):945-51 15115737
Cites Br J Psychol. 1970 Aug;61(3):303-21 5457503
Cites Brain Res. 1979 Mar 16;163(2):195-205 427544
Cites Exp Neurol. 1985 Jan;87(1):109-17 3967694
Cites Brain. 1989 Jun;112 ( Pt 3):799-835 2731030
Cites Neuropsychologia. 1990;28(6):517-27 2203993
Cites Am J Psychiatry. 1994 Oct;151(10):1437-47 8092337
Cites Cereb Cortex. 1996 Jul-Aug;6(4):551-60 8670681
Cites Arch Neurol. 1997 Feb;54(2):171-6 9041858
Cites J Comput Assist Tomogr. 1998 Mar-Apr;22(2):324-33 9530404
Cites Science. 1999 Mar 19;283(5409):1908-11 10082463
Cites Nat Neurosci. 1999 Oct;2(10):861-3 10491603
Cites Trends Cogn Sci. 2004 Sep;8(9):418-25 15350243
Cites Int Rev Neurobiol. 2005;67:285-323 16291026
Cites Neuroimage. 2006 Jul 1;31(3):968-80 16530430
Cites Neuroimage. 2006 Sep;32(3):989-94 16854598
Cites Inf Process Med Imaging. 2005;19:493-503 17354720
Cites Neuroimage. 2010 Aug 15;52(2):455-69 20430102
Cites Neuroimage. 2010 Sep;52(3):1059-69 19819337
Cites Neurobiol Aging. 2010 Sep;31(9):1554-62 18926601
Cites Magn Reson Med. 2010 Aug;64(2):554-66 20535807
Cites Science. 2010 Sep 10;329(5997):1358-61 20829489
Cites Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19067-72 20956328
Cites Cereb Cortex. 2011 Jan;21(1):56-67 20382642
Cites Cereb Cortex. 2011 Feb;21(2):449-58 20562318
Cites Med Image Anal. 2011 Aug;15(4):414-25 21376655
Cites Neuroscientist. 2011 Oct;17(5):575-91 21527724
Cites Neurobiol Aging. 2012 Jan;33(1):9-20 20122755
Cites Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20760-5 22106308
Cites Nature. 2000 Mar 9;404(6774):190-3 10724172
Cites Biol Psychol. 2000 Oct;54(1-3):241-57 11035225
Cites Nat Rev Neurosci. 2007 Jun;8(6):481-8 17514200
Cites PLoS Comput Biol. 2007 Feb 2;3(2):e17 17274684
Cites Cereb Cortex. 2007 Jul;17(7):1550-60 16945978
Cites Neuroimage. 2007 Jul 15;36(4):1065-73 17513132
Cites Neuroimage. 2001 Sep;14(3):595-606 11506533
Cites Neuroimage. 2001 Jul;14(1 Pt 1):21-36 11525331
Cites Phys Rev Lett. 2001 Nov 5;87(19):198701 11690461
Cites Cereb Cortex. 2002 Jan;12(1):17-26 11734529
Cites Dev Med Child Neurol. 2002 Jan;44(1):4-16 11811649
Cites Nat Rev Neurosci. 2003 Jan;4(1):37-48 12511860
Cites J Neurosci. 2008 Apr 2;28(14):3586-94 18385317
Cites J Neurosci. 2008 Apr 30;28(18):4756-66 18448652
Cites J Neurosci. 2008 Sep 10;28(37):9239-48 18784304
Cites PLoS Comput Biol. 2009 May;5(5):e1000395 19492086
Cites Neuroreport. 2009 Jul 1;20(10):930-5 19562831
Cites Arch Gen Psychiatry. 2009 Aug;66(8):888-96 19652128
Cites J Neurosci. 2009 Nov 11;29(45):14265-70 19906974
Cites Neuroimage. 2010 Jan 15;49(2):1357-71 19819339
Cites Med Image Comput Comput Assist Interv. 2012;15(Pt 3):305-12 23286144
GRANTS
GRANTID AGENCY COUNTRY
P41 EB015922 NIBIB NIH HHS United States
P41 RR013642 NCRR NIH HHS United States
R01 EB007813 NIBIB NIH HHS United States
R01 EB007813 NIBIB NIH HHS United States
R01 EB008281 NIBIB NIH HHS United States
R01 EB008281 NIBIB NIH HHS United States
R01 EB008432 NIBIB NIH HHS United States
R01 EB008432 NIBIB NIH HHS United States
R01 HD050735 NICHD NIH HHS United States
R01 HD050735 NICHD NIH HHS United States
T15 LM07356 NLM NIH HHS United States
T32 MH073526 NIMH NIH HHS United States
T32MH073526-06 NIMH NIH HHS United States
GENERAL NOTE
KEYWORDS
MESH HEADINGS
DESCRIPTORNAME QUALIFIERNAME
Adolescent
Adult
Aging pathology
Algorithms pathology
Cerebral Cortex cytology
Child cytology
Connectome methods
Diffusion Tensor Imaging methods
Female methods
Humans methods
Image Interpretation, Computer-Assisted methods
Male methods
Nerve Fibers, Myelinated ultrastructure
Reproducibility of Results ultrastructure
Sensitivity and Specificity ultrastructure
Young Adult ultrastructure
SUPPLEMENTARY MESH
GENE SYMBOLS
CHEMICALS
OTHER ID's
OTHERID SOURCE
NIHMS417467 NLM
PMC3603574 NLM