Genetic Epidemiology, Translational Neurogenomics, Psychiatric Genetics and Statistical Genetics Laboratories investigate the pattern of disease in families, particularly identical and non-identical twins, to assess the relative importance of genes and environment in a variety of important health problems.
QIMR Home Page
GenEpi Home Page
About GenEpi
Publications
Contacts
Research
Staff Index
Collaborators
Software Tools
Computing Resources
Studies
Search
GenEpi Intranet
PMID
18949033
TITLE
Predicting unobserved phenotypes for complex traits from whole-genome SNP data.
ABSTRACT
Genome-wide association studies (GWAS) for quantitative traits and disease in humans and other species have shown that there are many loci that contribute to the observed resemblance between relatives. GWAS to date have mostly focussed on discovery of genes or regulatory regions habouring causative polymorphisms, using single SNP analyses and setting stringent type-I error rates. Genome-wide marker data can also be used to predict genetic values and therefore predict phenotypes. Here, we propose a Bayesian method that utilises all marker data simultaneously to predict phenotypes. We apply the method to three traits: coat colour, %CD8 cells, and mean cell haemoglobin, measured in a heterogeneous stock mouse population. We find that a model that contains both additive and dominance effects, estimated from genome-wide marker data, is successful in predicting unobserved phenotypes and is significantly better than a prediction based upon the phenotypes of close relatives. Correlations between predicted and actual phenotypes were in the range of 0.4 to 0.9 when half of the number of families was used to estimate effects and the other half for prediction. Posterior probabilities of SNPs being associated with coat colour were high for regions that are known to contain loci for this trait. The prediction of phenotypes using large samples, high-density SNP data, and appropriate statistical methodology is feasible and can be applied in human medicine, forensics, or artificial selection programs.
DATE PUBLISHED
2008 Oct
HISTORY
PUBSTATUS PUBSTATUSDATE
received 2008/04/25
accepted 2008/09/18
epublish 2008/10/24
pubmed 2008/10/25 09:00
medline 2008/12/23 09:00
entrez 2008/10/25 09:00
AUTHORS
NAME COLLECTIVENAME LASTNAME FORENAME INITIALS AFFILIATION AFFILIATIONINFO
Lee SH Lee Sang Hong SH School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia.
van der Werf JH van der Werf Julius H J JH
Hayes BJ Hayes Ben J BJ
Goddard ME Goddard Michael E ME
Visscher PM Visscher Peter M PM
INVESTIGATORS
JOURNAL
VOLUME: 4
ISSUE: 10
TITLE: PLoS genetics
ISOABBREVIATION: PLoS Genet.
YEAR: 2008
MONTH: Oct
DAY:
MEDLINEDATE:
SEASON:
CITEDMEDIUM: Internet
ISSN: 1553-7404
ISSNTYPE: Electronic
MEDLINE JOURNAL
MEDLINETA: PLoS Genet
COUNTRY: United States
ISSNLINKING: 1553-7390
NLMUNIQUEID: 101239074
PUBLICATION TYPE
PUBLICATIONTYPE TEXT
Journal Article
Research Support, Non-U.S. Gov't
COMMENTS AND CORRECTIONS
REFTYPE REFSOURCE REFPMID NOTE
Cites Genetics. 2000 Sep;156(1):411-22 10978304
Cites Genetics. 2001 Apr;157(4):1819-29 11290733
Cites Genetics. 2003 Feb;163(2):789-801 12618414
Cites Pigment Cell Res. 2003 Aug;16(4):333-44 12859616
Cites Genetics. 2003 Oct;165(2):867-83 14573494
Cites Genetics. 2004 Jan;166(1):641-3 15020452
Cites Genetics. 2004 Jun;167(2):1037 15238553
Cites Genetics. 1993 Sep;135(1):205-11 8224820
Cites Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972-6 8248199
Cites Genetics. 1998 Mar;148(3):1373-88 9539450
Cites Genetics. 1999 Jul;152(3):1203-16 10388834
Cites Genetics. 2005 May;170(1):465-80 15781696
Cites Nat Genet. 2006 Aug;38(8):879-87 16832355
Cites Genetics. 2006 Aug;173(4):2329-37 16751664
Cites Genetics. 2006 Oct;174(2):959-84 16888333
Cites Nature. 2007 Feb 22;445(7130):881-5 17293876
Cites Nat Genet. 2007 May;39(5):645-9 17401363
Cites Nat Genet. 2007 May;39(5):596-604 17435756
Cites PLoS Genet. 2007 Apr 20;3(4):e58 17447842
Cites Science. 2007 Jun 1;316(5829):1331-6 17463246
Cites Science. 2007 Jun 1;316(5829):1341-5 17463248
Cites Nature. 2007 Jun 7;447(7145):661-78 17554300
Cites Nature. 2007 Jul 26;448(7152):470-3 17611496
Cites Nat Genet. 2007 Aug;39(8):989-94 17618283
Cites Nat Genet. 2007 Aug;39(8):1000-6 17637780
Cites Nat Genet. 2007 Oct;39(10):1245-50 17767157
Cites Genome Res. 2007 Oct;17(10):1520-8 17785532
Cites J Dairy Sci. 2008 Jan;91(1):360-6 18096959
Cites Nat Genet. 2008 Feb;40(2):161-9 18193043
Cites Nat Genet. 2008 Feb;40(2):198-203 18193045
Cites Nat Genet. 2008 Feb;40(2):204-10 18204446
Cites Nat Rev Genet. 2008 Apr;9(4):255-66 18319743
Cites Genet Sel Evol. 2008 May-Jun;40(3):265-78 18400149
Cites PLoS Genet. 2007 Jul;3(7):e115 17658951
Cites BMC Bioinformatics. 2008;9:189 18405361
Cites PLoS Genet. 2008 Feb;4(2):e1000008 18454194
Cites PLoS Genet. 2008;4(7):e1000130 18654633
GRANTS
GENERAL NOTE
KEYWORDS
MESH HEADINGS
DESCRIPTORNAME QUALIFIERNAME
Animals
Bayes Theorem
Genome
Mice
Models, Genetic
Models, Statistical
Phenotype
Polymorphism, Single Nucleotide
Quantitative Trait Loci
SUPPLEMENTARY MESH
GENE SYMBOLS
CHEMICALS
OTHER ID's
OTHERID SOURCE
PMC2565502 NLM