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Control of iron homeostasis is essential for healthy central nervous
system function: iron deficiency is associated with cognitive
impairment, yet iron overload is thought to promote neurodegen-
erative diseases. Specific genetic markers have been previously
identified that influence levels of transferrin, the protein that
transports iron throughout the body, in the blood and brain. Here,
we discovered that transferrin levels are related to detectable
differences in the macro- and microstructure of the living brain.
We collected brain MRI scans from 615 healthy young adult twins
and siblings, of whom 574 were also scanned with diffusion tensor
imaging at 4 Tesla. Fiber integrity was assessed by using the
diffusion tensor imaging-based measure of fractional anisotropy.
In bivariate genetic models based on monozygotic and dizygotic
twins, we discovered that partially overlapping additive genetic
factors influenced transferrin levels and brain microstructure. We
also examined common variants in genes associated with trans-
ferrin levels, TF and HFE, and found that a commonly carried poly-
morphism (H63D at rs1799945) in the hemochromatotic HFE gene
was associated with white matter fiber integrity. This gene has
a well documented association with iron overload. Our statistical
maps reveal previously unknown influences of the same gene on
brain microstructure and transferrin levels. This discovery may
shed light on the neural mechanisms by which iron affects cogni-
tion, neurodevelopment, and neurodegeneration.

neuroimaging genetics | twin modeling | pathway analysis | tensor-based
morphometry | voxel based analysis

Iron and the proteins that transport it are critically important
for brain function. Iron deficiency (ID) is the most common

nutritional deficiency worldwide (1). Iron-deficient diets lead to
poorer cognitive achievement in school-aged children (2). In
rural areas where ID anemia is prevalent, iron supplements can
increase motor and language capabilities in children (3). ID also
impairs dopamine metabolism in the brain, particularly in the
caudate and putamen regions (4).
ID clearly has adverse effects on cognitive development, but

iron overload in later life is also associated with damage to the
brain. Brain iron regulation is disrupted in several neurodegen-
erative diseases. Neuroimaging methods reveal abnormally high
brain iron concentrations in Alzheimer’s disease (5), Parkinson
disease (6), and Huntington disease (7). High iron concentrations
may even cause neuronal death (8, 9).
As deficiency and excess of iron can negatively impact brain

function, the regulation of iron transport to the brain is crucial
for cognition. Iron is transported throughout the body by the
iron-binding protein transferrin. The interaction between trans-
ferrin and the transferrin receptors appears to regulate iron
transport (10). When iron levels are low, the liver produces more
transferrin for increased iron transport. In humans, transferrin

can increase in iron-deficient states, which may help to distin-
guish ID anemia from anemia of chronic disease (11). Dietary ID
has also been shown in rats to elevate the concentration of
transferrin in the brain (12), specifically in the hippocampus and
striatum (13). Transferrin is also decreased in cases of iron
overload (14).
The gold standard for determining accurate iron measures

is obtained from invasive bone marrow or liver tests, which are
impractical for general applications. Serum levels of iron fluc-
tuate greatly (15) and depend on dietary factors such as vitamin
C intake (16) and the time of blood collection (17). Transferrin
is arguably a more reliable and reproducible index of the long-
term availability of iron to the brain (18, 19). In fact, in a 2-y
study of postmenopausal women (20), total iron-binding ca-
pacity (equivalent to transferrin concentration) was a more
reliable measure of iron status [(0.60; 95% confidence interval
(CI), 0.44–0.76)], whereas serum iron measures varied more
(0.50; 95% CI, 0.22–0.65). Transferrin is therefore used as a
more reproducible measure to infer iron availability to the neu-
ral pathways.
As iron is a key determinant of neural development and de-

generation, we set out to investigate whether brain structure in
healthy adults depends on serum transferrin levels. We scanned
615 young adult twins and siblings with standard MRI. A total of
574 of them were also scanned with diffusion tensor imaging
(DTI) to assess volumetric and microstructural white matter
differences potentially associated with variations in serum trans-
ferrin levels measured during adolescence.
The participants in our study were healthy young adults, in whom

iron overload is unlikely. We instead expected that iron levels to-
ward the lower end of the normal range might lead to a poorer
developmental phenotype in the brain of these young adults.
The brain synthesizes transferrin itself, so serum transferrin is

not necessarily indicative of the levels of brain transferrin.
However, in healthy populations without iron overload or he-
mochromatosis, all iron in the plasma is bound to transferrin
(10). Iron enters the brain primarily by transport through the
blood–brain barrier (21), yet transport through the blood–cere-
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brospinal fluid (CSF) and cellular–plasmalemma barriers have
also been described (10). Upon binding to its receptor, trans-
ferrin is thought to be mostly released back into the blood stream
(although some transcytosis of transferrin may occur). The iron
can then bind to transferrin synthesized in the oligodendrocytes
of white matter (22, 23).
Most of the brain’s iron is found in oligodendrocytes, where it

supports myelination (24). Oligodendrocytes also maintain iron
homeostasis in the brain. Our primary hypothesis was that we
might find poorer white matter integrity in adulthood in those
who had lower iron levels available during development, as high
transferrin levels are often a sign of the liver reacting to lower
iron availability. We therefore framed our hypothesis by testing if
serum transferrin levels in adolescence were related to fractional
anisotropy (FA; measured later in adulthood from DTI scans of
the brain). Lower FA can be a sign of less mature or poorer
myelination.
We further hypothesized that brain structure volumes in iron-

rich regions might be lower in people with high serum transferrin
levels. Iron levels are highest in the basal ganglia and substantia
nigra (25). By measuring brain volumes regionally with tensor-
based morphometry (TBM), we predicted that we might find
insufficiently developed (i.e., smaller) subcortical structures in
those with higher transferrin levels. ID additionally alters do-
pamine metabolism in the caudate and putamen (4), so we pre-
dicted that people with high transferrin (and, by implication,
lower brain iron) might have lower volumes for dopamine-con-
taining structures, such as the caudate. Finally, we expected lower
hippocampal volumes, as iron-deficient rats have lower iron
concentrations in the hippocampus (13), a region vulnerable to
neuronal loss in neurodegenerative disease (26).
Genetic factors explain 66% and 49% of the variance in serum

transferrin levels in men and women, respectively (17). As such,
if transferrin is found to be associated with neuroanatomical
differences, we might expect that common genes influence both
brain structure and transferrin levels. To understand such shared
genetic contributions to brain variations and transferrin, we used
a twin design. Many neuroimaging studies of identical and fra-
ternal twins reveal substantial genetic contributions to brain

structure (27–30) and function (31, 32). Cross-twin cross-trait
designs can also discover overlapping (i.e., pleiotropic) genetic
influences on very different biological traits, such as brain vol-
ume (33) or fiber integrity (34) with IQ.
After discovering a common genetic basis for transferrin levels

and brain fiber integrity, we hypothesized that genes modulating
transferrin also play a role in brain structure within the same
regions. We performed exploratory tests on all SNPs within the
two major transferrin related genes: the transferrin gene, TF, on
chromosome 3, and the HFE gene on chromosome 6, where
a handful of SNPs have been found to explain a remarkable 40%
of the genetic variance in serum transferrin levels (35). We
performed exploratory tests on all these SNPs and additional
imputed ones (to HapMap2) within the same genes.*
Genes influencing transferrin are not the only cause of varia-

tion in iron levels measured in the blood serum. However, they
do influence the limited amount of serum iron that becomes
transported into the brain. Therefore, we expected genes that
influence transferrin levels to show associations with brain
structure. Some variants increase the risk for iron overload late
in life, and these may also increase the availability of brain iron
for developmental processes such as myelination. If high iron
levels improve myelination, we might expect to see increased
fiber integrity as measured through DTI.
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Fig. 1. Voxel-wise associations, between FA, a measure of white matter
fiber integrity derived from the DW images, and serum transferrin levels in
574 subjects (five of whom had repeated scans). There are significant asso-
ciations in the external capsule, superior longitudinal fasciculus, and the
cingulum bilaterally. As transferrin levels increase, the diffusivity across the
axons also tends to decrease by approximately 0.025 units for every g/L unit
increase in the serum transferrin level. Significance was confirmed by
enforcing a regional control over the FDR as described by Langers et al. (70)
at the 5% level. Corrected P values of association are shown. Maps are ad-
justed for effects of age and sex; random-effects regression accounted for
familial relatedness and the use of repeated scans. β-values shown represent
the regression coefficient (or slope) of the transferrin level term, after ac-
counting for covariates.
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Fig. 2. Brain regions where there are detectable associations between
serum transferrin levels and patterns of brain morphometry. Higher blood
transferrin levels were associated with greater regional brain volumes in
the hippocampus and basal ganglia, including the globus pallidus bi-
laterally and midbrain regions appearing to contain the substantia nigra.
Shrinkage in structure volume is seen as transferrin levels increase bi-
laterally in the caudates, the third ventricle, as well as temporoparietal
regions of white matter. Lower regional volumes are also observed in
frontal gray matter in those with higher serum transferrin levels. The
greatest regional brain volume deficit, per unit difference in transferrin
levels, is seen in the caudate, whereas the greatest expansion is detected
in the hippocampus and basal ganglia. All highlighted regions were sig-
nificant after a multiple comparisons correction that enforces a regional
control over the FDR at the 5% level as described by Langers et al. (70).
Maps are adjusted for effects of age and sex; random-effects regression
accounted for familial relatedness and the use of repeated scans (N = 652
scans, N = 615 subjects). All images are in radiological convention: the left
side shown is the right hemisphere. The β-value corresponds to the unnor-
malized slope of the regression. Corrected P values range from 0.001 to
0.05; uncorrected values range from 2.6 × 10−6 to 0.04 for the thresholded
regions shown.

*Our dataset included a genotype list that had been imputed (to HapMap2) whereas the
Benyamin et al. (2008) paper (35) did not; the previous paper therefore did not analyze
the H63D polymorphism at all.
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Results
Serum transferrin levels for the 615 individuals in our study
ranged from 1.89 to 5.18 g/L of serum (mean, 2.99 ± 0.37 g/L;
median, 2.96 g/L). Regressions fitted to data at each voxel in the
brain DTI and MRI scans revealed significant associations with
microstructural variations in diffusion anisotropy (Fig. 1). There
were also strong associations between transferrin levels and gross
anatomical volume differences (Fig. 2), even after controlling for
age and sex. As ID is known to reduce myelination, we had
expected in advance, to find a negative association between
transferrin and FA (36); this was in fact observed.

Transferrin Levels Relate to Neuroanatomical Structure. As noted,
cross-twin cross-trait models can determine whether a partially
overlapping set of genes contributes to two traits of interest, such
as fiber integrity (assessed by using FA) and transferrin levels. If
this is the case, common genetic influences mediate the observed
correlation between the two measures. Before examining the full
cross-twin cross-trait model, we independently assessed these
correlations within each group of twins; if the variables correlate
more strongly for monozygotic (MZ) than for dizygotic (DZ)
twin pairs, then we can infer the greater difference is a result of
additive genetic factors. Fig. 3 shows the correlations between
FA and transferrin levels in MZ twins and DZ twins separately,
highlighting the higher magnitude of the correlations for MZ
than DZ pairs.

Cross-Twin Cross-Trait Analysis of Shared Genetic Determination.We
performed cross-twin cross-trait heritability analysis starting
from the full bivariate model as described in Methods, where the
ACE structural equation model was used to fit the additive ge-
netic (A), shared environmental (C), and unique environmental
(E) components of variance for the brain measures and trans-
ferrin levels. We removed individual components one by one to
determine the best fitting model. For both MRI- and DTI-based
bivariate ACE models, the AE model fitted the best for trans-
ferrin and the full ACE model fitted best for the imaging
measures. This means that genetic effects were detected in both
cases, and the effects of common rearing environment were also
detectable for the imaging measures. The path diagram for the
best fitting model is shown in Fig. 4.

The cross-twin cross-trait correlation was then computed from
the best fitting model. Significance of the correlation was de-
termined by removing the rA component of the path model as
described in Methods. The additive genetic determinants of voxel-
wise FA measures (Fig. 5) and transferrin showed significant
overlap after multiple comparisons correction using the false
discovery rate (FDR) procedure (37). Although suggestive, no
significant overlap was detected between the additive genetic
determinants of transferrin levels and macroscopic structural
morphometry as assessed through TBM.

Genetic Associations. After filtering the SNPs in TF and HFE
available in our imputed sample by minor allele frequency
(MAF) greater than 0.05, 42 SNPs remained. SNPs chosen for
analysis are listed in Table S1, along with their MAF according
to the CEU population: Utah residents with Northern and
Western European ancestry from the CEPH collection from
HapMap. As a result of linkage disequilibrium, the effective
number of SNPs tested (38, 39) was 20. When the significant
voxels of the cross-twin cross-trait associations were clustered
into regions of interest (ROIs), six survived a cluster threshold
size of 27 voxels, corresponding to the size of a voxel with all its
surrounding neighbors, or a 3 × 3 × 3 cube. These ROIs are
shown in Fig. S1. Genetic associations of the 42 (effectively 20)
SNPs assessed in these six regions revealed a significant associ-
ation of the HFE rs1799945 SNP (also known as the H63D
polymorphism) with the mean FA in the cluster along the left
external capsule (P = 0.00017). The results of all of the genetic
associations per ROI are also listed in Table S1.
Additionally, in the full sample of 565 genotyped subjects with

serum transferrin levels available, we found that the H63D minor
allele was associated with decreased transferrin levels as expec-
ted (t-statistic = 1.801, one-tailed P = 0.0361).

Post Hoc Voxel-Wise Analysis of HFE H63D Missense Polymorphism. In
our post hoc analysis, we performed a voxel-wise association of
FA with the H63D polymorphism across the entirety of the white
matter region. The SNP frequency information for this poly-
morphism in our sample is available in SI Methods. The map of
voxel-wise associations of H63D to FA values was found to be

Cor(FAMZ) 

Cor(FADZ) 

O
bserved C

ross-Tw
in C

ross-Trait C
orrelation (r) 

Fig. 3. The magnitude of the observed cross-twin cross-trait (FA and
transferrin) correlations are higher in identical than fraternal twin pairs,
supporting our hypothesis that partially overlapping sets of genes may ex-
plain some of the shared variance in brain structure and transferrin levels.
This motivates the use of bivariate ACE modeling to estimate the degree of
shared genetic influence.
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Fig. 4. Path diagram for the best-fitting model of the bivariate association.
The models that best fitted the data were the AE model for transferrin and
ACE model for the imaging measures. The measures we examined included
regional brain volumes and measures of microstructural white matter fiber
integrity.
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significant in regions including the external capsule, and portions
of the genu of the corpus callosum not initially found to have
significant transferrin related associations (Fig. 6).

Discussion
ID, iron overload, and abnormalities in iron concentrations lo-
calized to particular structures in the brain have been linked to
neurodevelopmental and neurodegenerative disorders.
Fig. 7 shows a schematic illustration relating several biological

processes that motivated this study. Both brain structure and the
iron transport protein, transferrin, are under strong genetic
control, so we used a twin design to find brain regions with ge-
netic determinants in common with transferrin. We were able to
establish some previously unknown links between transferrin
levels (and associated genes) and brain structure in 615 healthy
young adults.

Our analysis had three main findings. First, serum transferrin
levels, measured during adolescence, were associated with both
macro- and microneuroanatomical variations in a regionally se-
lective pattern later, in early adulthood (approximately 9 y after
blood was drawn). Second, these associations with white matter
integrity were mediated by overlapping sets of genes. This was
evident from the cross-twin cross-trait correlations between
transferrin levels and white matter anisotropy. Third, we found
that the HFE H63D polymorphism, well known for its associa-
tion to iron overload (40, 41), influences both serum transferrin
levels and white matter microstructure in the external capsule.
This points to a direct link between blood serum related genomic
variation and brain structure (Fig. 7, dashed lines).
Iron is important for neural development early in life. In rat

brains, iron and transferrin are at extremely high levels, despite
low brain transferrin mRNA levels before closure of the blood–
brain barrier (42). Even after the barrier develops, serum
transferrin levels, which are under high genetic control, influence
how much iron is transported to the brain for crucial processes of
development, such as myelination. Here we uncovered an asso-
ciation between brain structure in young adults and serum
transferrin levels measured during their adolescent years.
By measuring transferrin levels 8 to 12 y before the imaging

study, we were interested in knowing whether iron availability in
this developmentally crucial period might impact the organiza-
tion of the brain later in life. Adolescence is a period of high
vulnerability to brain insults, and the brain is still very actively
developing (43). Transferrin levels, measured before the brain is
fully mature, may be especially relevant for the adult brain.
Transferrin levels fall with age in children and adolescents, and
older adolescents show similar ranges to adults (15, 44). Children
have higher transferrin levels than adults, perhaps in response to
physiologically low iron stores. By averaging transferrin levels
assessed repeatedly at various ages (12, 14, and 16 y of age), we
estimated the iron availability to the brain during adolescence.
We relied on previous work showing that transferrin measures
are stable and can be reliably collected (19), with high sensitivity
and specificity, which makes associations easier to detect.
As key components of white matter, oligodendrocytes—the

glial cells that produce myelin to insulate axons—stain for iron
more than any other cell in the brain (24); these cells are the
primary location for iron in the central nervous system (45).
Fig. 1 shows the negative association between serum trans-

ferrin levels and the diffusion-based measure of integrity, FA, in
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Fig. 5. Significant cross-twin cross-trait correlations for transferrin levels
and brain FA. The P value controlling the FDR at the 5% level in regions of
significant FA-transferrin associations was 0.032. The significant cross-twin
cross-trait correlations presented here indicate that partially overlapping
sets of genes are associated with transferrin levels and brain FA values in
bilateral white matter regions, including the cingulum, external capsule, and
superior longitudinal fasciculus. Negative correlations indicate lower an-
isotropy, perhaps indicating lower levels of myelination with increases in
transferrin levels. Positive correlations were not significant.
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Fig. 6. Corrected p-map shows the HFE H63D associations with FA voxel-
wise throughout the white matter. When regressing on the minor allele,
there is a positive association between the number of minor alleles and the
FA values. Significance was confirmed by enforcing a regional control over
the FDR as described by Langers et al. (70) at the 5% level. We adjusted for
effects of age and sex to be consistent with the previous tests. Positive
correlations were not significant.
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Fig. 7. Several known relationships motivated our study (solid black lines);
dashed lines show relationships we wanted to test. Genetic and environ-
mental factors (e.g., diet) affect iron stores in the body; the liver synthesizes
more transferrin in response to low iron stores. Our first goal was to relate
transferrin levels to brain structure in healthy young adults. Our twin design
determined if overlapping sets of genes influence transferrin levels and
brain structure, as both are highly heritable. Transferrin levels are geneti-
cally modulated mainly through two genes (HFE and TF); to relate specific
variants in transferrin-related genes to brain structure, we determined the
additive effect of all variants within these two genes on brain structures that
had shown genetic influences in common with transferrin.
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various brain regions, including the external capsule, cingulum,
and superior longitudinal fasciculus. As FA can represent the
degree of fiber integrity, myelination, or coherence in white
matter fibers, the direction of this association is in line with
previous reports indicating hypomyelination in cases of ID (36).
Our findings of transferrin associations in human white matter
tracts are consistent with previous studies of brain iron levels in
rats. In a histochemical study of iron staining in the developing
rat brain, Connor et al. (46) found major foci of iron staining in
the cingulum, superior portions of the internal capsule, and the
base of the external capsule.
As shown in Fig. 2, regional brain volume deficits are seen

bilaterally in the caudates, the third ventricle, and in the tem-
poroparietal white matter as transferrin levels increase. The
caudate is particularly important in cognition, learning, and
memory (47); as increased transferrin levels have been impli-
cated in ID, the inverse relation between transferrin levels and
caudate volume may indicate underdevelopment of caudates in
ID, in line with evidence of poorer cognition in children with ID.
If severe enough, a caudate volume reduction related to elevated
transferrin levels may explain why certain developmental cogni-
tive deficits are associated with ID. This finding fits with our
previous hypothesis that insufficient iron transport to the brain
may hinder development of subcortical structures.
Although transferrin levels are low, transferrin in the CSF is

fully saturated with iron (48); the regional deficit in the volume of
the third ventricle is therefore intriguing, as it may indicate an
altered pattern and/or rate of transport for transferrin-bound iron.
Some brain regions were smaller and some larger in people

with lower transferrin levels; in fact, there was statistically sig-
nificant evidence in favor of both effects occurring in different
parts of the brain. This pattern of anomalies was somewhat
surprising: we expected smaller volumes, not larger ones, in
people with low iron (and elevated transferrin) levels. Opposing
this, some brain regions involved in neurodegeneration did show
lower volumes in those with high iron and low transferrin levels,
so iron overload may promote neuronal atrophy in iron-con-
taining structures. The direct association of the volume of these
regions to transferrin levels may therefore indicate a future
susceptibility to the effects of iron overload and altered transport
in these disorders.
Our DTI-based analyses supported a model wherein signs of

a less mature or well myelinated brain were found in those with
high transferrin levels during adolescence; this may reflect the
liver’s reaction to sustained periods of lower iron availability.
The analysis of brain volumes with TBM gives a more complex
picture: in segregated comparisons, there were some brain
regions that were larger, and some were smaller in those with
high transferrin. This imbalance of structure volumes is similar to
that seen in some neurogenetic disorders, in which patterns of
abnormally high and low volumes are seen (49, 50). As this was
not hypothesized, future independent studies are needed to
confirm the localization and direction of these effects.
As indicated by a dashed line in Fig. 7, a way to study the iron

pathway’s association to brain structure is to determine whether
genes influencing transferrin levels also modulate structural
variation. Our cross-twin cross-trait genetic analysis revealed that
common additive genetic factors influence transferrin concen-
trations and white matter fiber integrity. Finding neuroanatom-
ical regions whose underlying structure is partially under the
same genetic control as transferrin levels can help shed light on
the inherited properties of these regions as they develop. Dis-
covering specific iron-associated genetic variants that influence
the underlying microstructure in these brain regions could po-
tentially help uncover the neural mechanisms affected by iron
transport in the brain. These may lead to downstream genetically
mediated impairments.

Specific variants associated with iron mediating proteins in
healthy young adults have also been discovered; 40% of the
genetic variance in serum transferrin levels is explainable by just
a few genetic variants in the TF gene (rs3811647, rs1799852, and
rs2280673) and the C282Y mutation in the HFE gene (35).
Additionally, interaction between variants in these two genes has
been linked to an increased risk of Alzheimer’s disease (51), so
the TF and HFE genes are neurobiologically linked. To com-
prehensively explore these two genes further and determine any
coexisting associations to brain structure, we examined all
available variants within these genes in regions where the shared
additive genetic component between the two traits, transferrin
levels and brain microstructure, was statistically significant. We
found the H63D polymorphism within the HFE gene is signifi-
cantly associated with the mean FA of the left external capsule,
one of the regions shown to have significant cross-twin cross-trait
correlations. The FA of the external capsule has also been shown
to be highly heritable (∼60%), however, a sex-by-heritability
analysis also shows this region is much more heritable in male
subjects (28). Intriguingly, genetic factors also explain a higher
proportion of the variance for transferrin levels in men than in
women (17).
In a recent study of HFE and TF variants on iron levels and

risk for AD, Giambattistelli et al. (52) found that patients with
AD with the H63D polymorphism had increased plasma iron and
transferrin levels, but this pattern was not found in healthy
control subjects with the variant; in fact, a meta-analysis found
that the H63D polymorphism may be protective against AD (53).
As shown in Table S1, the minor allele at rs1799945 (H63D)
showed a positive effect on FA. This is the expected direction of
association; as mentioned previously, ID can cause deficits in
myelin formation, so it is reasonable that an iron overload allele
may play a protective role for myelination during neuronal de-
velopment of these healthy controls.
Our work here is one of the largest bimodal neuroimaging

genetics studies of healthy humans to date. It describes a three-
step top-down method to analyze gene effects on the brain. First,
we related a heritable serum measure—with known cognitive
associations—to specific locations in the brain; second, we used
a genetic correlation model to home in on brain regions with
evidence of joint genetic determination; and finally, we searched
these neuroanatomical locations for variants within genes known
to associate with the highly heritable phenotype, serum trans-
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Fig. 8. Path diagram for the full bivariate ACE model.
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ferrin. We found localized regions of transferrin association on
both the macro- and micro-anatomical scale within the brain.
These regions showed additional associations with HFE variants,
in a direction that is consistent with several previous studies of
brain iron and associated proteins. Future analyses may include
studying the mechanistic process of transferrin and HFE in
children with cognitive impairment and in elderly subjects with
neurodegenerative diseases.
Several conclusions can be drawn about genetic variations that

affect transferrin levels and their effect on brain microstructure.
Transferrin levels are influenced by at least two known factors:
a shortage of iron, which drives them up, and polymorphisms in
the two major transferrin-related genes, HFE and TF, as shown
in Fig. 7. According to a principle known as Mendelian ran-
domization (54), one can examine genes that are known to affect
a measure, such as transferrin, to get a sense of the downstream
biological effects of other factors that affect transferrin, such as
a shortage of dietary iron. We did find that the H63D mutation
within the HFE gene was related to brain FA, but we did not find
an effect on FA of the other common (i.e., MAF > 0.05) SNPs in
the HFE or TF genes, which are known to explain 40% of vari-
ation in transferrin levels. A larger sample may be needed to
uncover effects of these SNPs, but a more skeptical alternative
interpretation may be that some variants known to powerfully
affect transferrin may not affect DTI measures at all. At this
point, we cannot say conclusively whether polymorphisms in the
TF gene have any causal role on white matter, although the
H63D mutation within the other major transferrin-related gene—
HFE—was related to brain FA. A qualified interpretation of the
available data would suggest that transferrin levels do relate to
brain structure, but further work is needed to clarify which of the
several known transferrin-related SNPs, other than HFE H63D,
are contributing to the effect.

Methods
Subject Information. A total of 615 subjects (mean age ± SD, 23.5 ± 2.1 y; 375
women) were included in this study; all subjects had standard structural T1-
weighted brain MRI scans and serum iron and transferrin levels measured;
574 also underwent DTI. As part of a reliability analysis, 37 subjects had
a duplicate MRI scan taken 3 mo later, and five had a second DTI scan. All
subjects were of European ancestry from 350 families. Subjects were
recruited as part of a 5-y research project examining healthy young adult
Australian twins using structural and functional MRI and DTI with a pro-
jected sample size of approximately 1,150 at completion (55). Subjects were
screened to exclude cases of pathology known to affect brain structure. No
subjects reported a history of significant head injury, a neurological or
psychiatric illness, substance abuse or dependence, or had a first-degree
relative with a psychiatric disorder. All subjects were right-handed as de-
termined using 12 items from the Annett handedness questionnaire (56). We
selected only the paired MZ (T1, n = 107; DTI, n = 95 pairs) and same-sex DZ
(T1, n = 65; DTI, n = 59 pairs) twins for the cross-twin cross-trait genetic
analysis. The rest of the subjects included 52 (n = 43 DTI) pairs of mixed-sex
DZ twins, two sets of fraternal triplets (n = 6 individuals), and 112 (n = 95 DTI)
individuals unrelated to anyone else in the study; additional subjects in-
cluded non-twin siblings or unpaired twins with siblings also in the study in
which kinship existed between members. A total of 544 of the subjects with
standard MRI scans were genotyped, of whom 509 also had DTI scans
available. Study participants gave informed consent; the studies were ap-
proved by the institutional ethics committees at the University of Queens-
land and the University of California, Los Angeles. All images used in this
analysis went through, and passed, a rigorous quality control; subjects with
anatomical abnormalities, imaging artifacts, and misregistered images were
removed from analysis and not included in the subject counts.

Blood was collected from subjects at ages 12, 14, and 16 y. Serum was
separated from blood samples and stored at −70 °C until assayed; iron,
transferrin, and ferritin were measured by using standard clinical chemistry
methods (Roche Diagnostics) on a 917 or Modular P analyzer. Data on serum
iron and transferrin levels were extracted from these time points and av-
eraged for use in this analysis.

Establishing Zygosity, Genotyping, and Imputation. Zygosity was established
objectively by typing nine independent DNA microsatellite polymorphisms
(polymorphism information content > 0.7), by using standard PCR methods
and genotyping. Results were cross-checked with blood group (ABO, MNS,
and Rh) and phenotypic data (hair, skin, and eye color), giving an overall
probability of correct zygosity assignment greater than 99.99%. Genomic
DNA samples were analyzed on the Human610-Quad BeadChip (Illumina)
according to the manufacturer’s protocols (Infinium HD Assay; Super Pro-
tocol Guide; Revision A, May 2008). Imputation was performed by mapping
the genotyped information to HapMap (release 22, build 36) with Mach
software (http://www.sph.umich.edu/csg/abecasis/MACH/index.html).

Image Acquisition. Structural and diffusion-weighted (DW) whole-brain MRI
scans were acquired for each subject (4 Tesla Medspec; Bruker). T1-weighted
images were acquired with an inversion recovery rapid gradient-echo se-
quence (inversion/repetition/echo times, 700/1500/3.35 ms; flip angle, 8°; slice
thickness, 0.9 mm; 256 × 256 acquisition matrix). DW images were acquired
using single-shot echo-planar imaging with a twice-refocused spin echo
sequence to reduce eddy current-induced distortions. A 3-min, 30-gradient
acquisition was designed to optimize signal-to-noise ratio for diffusion tensor
estimation (57). Imaging parameters were repetition/echo times of 6,090/91.7
ms, field of view of 23 cm, and 128 × 128 acquisition matrix. Each 3D volume
consisted of 21 axial slices 5 mm thick with a 0.5-mm gap and 1.8 × 1.8 mm2

in-plane resolution. Thirty images were acquired per subject: three with
no diffusion sensitization (i.e., T2-weighted b0 images) and 27 DW images
(b = 1,146 s/mm2) with gradient directions uniformly distributed on the
hemisphere.

Image Preprocessing. Nonbrain regions were automatically removed from
each T1-weighted MR image and from a T2-weighted image from the DW
image set using FSL software brain extraction tool (58) to enhance coregis-
tration between subjects. All T1-weighted images were corrected for field
nonuniformities using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/), lin-
early aligned [with 9 degrees of freedom (df)] to a common space (59). The
raw DW images were corrected for eddy current distortions by using the FSL
tool “eddy_correct” (http://fsl.fmrib.ox.ac.uk/fsl/). For each subject, the three
eddy-corrected images with no diffusion sensitization were averaged, line-
arly aligned, and resampled to the subject’s corresponding down-sampled T1
image. The average b0 maps were then elastically registered to the subject’s
aligned T1-weighted structural scan by using an inverse consistent registra-
tion with a mutual information cost function (60) to adjust for any echo-
planar–induced susceptibility artifacts.

TBM. TBM is a technique that identifies regional structural differences from
the gradients of the deformation fields that align brain images to a common
anatomical template. After nonlinearly aligning the full brain of all subjects
to their corresponding minimum deformation template (MDT), a separate
Jacobian map (i.e., relative volume map) was created for each subject. These
Jacobian maps, which share the common space defined by the MDT, help to
characterize the local volume differences between one individual and the
normal anatomical template. These maps explain the relative expansion and
contraction of regions from each individual relative to the template.

Computing Anisotropy and Diffusivity. Under a single-tensor model (61),
diffusion of water molecules attenuates the MR signal in direction r,
according to the Stejskal–Tanner equation:

SkðrÞ ¼ S0ðrÞe−bkDk ðrÞ [1]

Here, S0(r) is the non-DW baseline intensity in direction r, Dk(r) is the ap-
parent diffusion coefficient, and bk is a constant depending on the gradient
k. Diffusion tensors were computed from the 27-gradient DW images using
FSL software (http://fsl.fmrib.ox.ac.uk/fsl/). The FA of diffusion was com-
puted from the tensor eigenvalues (λ1, λ2, λ3) at each voxel. FA is influenced
by both axial diffusivity (λ1; a measure of diffusion along the axonal fibers)
and radial diffusivity (the average of λ2 and λ3; a measure of diffusion or-
thogonal to the axonal fibers).

Template Creation and Registration. We created an MDT by using nonlinear
fluid registration (62), with the method proposed by Kochunov and col-
leagues (63, 64). The N 3D vector fields fluidly registering a specific in-
dividual to all other N participants were averaged and applied to that
subject. This geometrically adjusts the anatomy but preserves the intensities
and anatomical features of the template subject.
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To create a representativeMDT for the TBManalysis, we randomly selected
32 (16 female/16 male) nonrelated participants’ T1-weighted images, after
down-sampling to be in the same space as the DW imaging and aligning to
the Colin template (59), and created two MDTs with 16 subjects (eight fe-
male) in each group. For one group, the target was male and the other
female. The templates for each group were then averaged to create one
representative anatomically centered target. Skull-stripped T1-weighted
images for each subject were registered to the final population averaged
FA-based MDT by using an inverse consistent 3D elastic warping technique
using a mutual information cost function (60).

To create anMDT for DTI analysis, we selected the same 32 participants, yet
we used their FA images (calculated after b0 susceptibility correction) to
create the MDT in the exact same manner as the T1-weighted structural
scans. FA maps for each of the susceptibility corrected subjects were regis-
tered to the final population averaged FA-based MDT by using a 3D elastic
warping technique with a mutual information cost function (60). To further
align white matter regions of interest, the FA-based MDT and all whole-
brain registered FA maps were then thresholded at 0.25, as FA values lower
than 0.25 in healthy-appearing white matter may reflect contributions from
nonwhite matter. Individual thresholded FA maps were then reregistered to
the thresholded MDT in the same way as the whole brain registration. After
registration of the FA maps, the FA images were smoothed with a Gaussian
filter with an isotropic full-width half maximum of 5 mm).

Random-Effects Regression. The relationships of transferrin to measures of
anisotropy and brain morphometry were assessed at each voxel in the brain
by using a mixed-effects regression model to account for similarities within
families while controlling for the effects of sex and age. To boost power of
the association, and reduce random noise brought on by image acquisition,
we included duplicate scans for the subjects who had them available. The
variable of interest (transferrin), sex, and age were included as fixed effects.
Random intercepts were included for each family and subjects to account for
relatedness within families as well as the duplicate scans used. The analysis
was implemented in the R statistical package (version 2.9.2; http://www.r-
project.org/) using the ‘nlme’ library (65).

As noted earlier, extremely high and extremely low levels of iron can
adversely affect the brain, but these observations do not completely imply in
which direction the correlation would be in healthy people who maintain
their iron levels for the most part in the normal range. As iron overload was
not expected in this young, healthy population, mild insufficiencies in iron
were considered more likely. This led to a directional hypothesis that poorer
brain phenotypes might be found in those with lower chronic levels of iron
(as inferred from transferrin measures). However, we considered it also
possible, but less plausible, that there might be enough people with very
high iron levels to drive the effect in the opposite direction. To allow for this
alternative but less likely hypothesis, we ran our analyses with a more
conservative searchlight FDR threshold of 0.025, to allow us to reject the null
hypothesis in either direction, but distinguish between the alternative hy-
potheses in different directions. More information may be found in
SI Methods.

Cross-Twin Cross-Trait Analysis.Weused a cross-twin cross-trait analysis (66) to
detect common genetic or environmental factors influencing both brain
structure (or microstructure) and serum transferrin levels at every voxel
within the brain. Covariance matrices for the phenotypes, in this case the
voxel-wise structural measure of interest (structural deformation, micro-
structural anisotropy, or diffusivity) and serum transferrin levels were com-
puted between the MZ twins who share all the same genes, and the DZ
twins who share, on average, half of their genetic polymorphisms. These
covariance matrices were then entered into a multivariate structural equation
model [SEM (67)], using OpenMx software (http://openmx.psyc.virginia.edu/)
to fit the relative contributions of additive genetic (A), shared environ-
mental (C), and unshared or unique environmental (E) components to the
population variances and covariances of the observed variables. Experi-
mental measurement error is also included in the E component, and is as-
sumed to be independent between twins 1 and 2 (i.e., no correlation).

In multivariate SEM, it is assumed that there are common genetic and
environmental factors that affect various phenotypes, as also described in
(34). Here we consider bivariate models with two phenotypes, transferrin
levels and the brain MRI- or DTI-derived value at each voxel. The common
genetic and environmental components of the variance may be estimated
from the total population variance by examining the difference between
the covariances between the MZ and DZ twins within the same individual
(cross-trait within individual) and also between one phenotype in one twin
with the other phenotype in the second twin (cross-twin cross-trait). By using

this multivariate SEM, we can also obtain the additive genetic and shared
environmental influences on the correlations between the two phenotypes,
denoted as rA and rC, respectively. A path diagram describing the SEM and
the connections between the twins is shown in Fig. 8.

The cross-trait within-individual correlation [i.e., the correlation between
the voxel value (V) and transferrin (T) in twin 1 or in twin 2] is divided into
additive genetic and shared and unique environmental components (e.g., AV,i,
CV,i, and EV,i for voxel value and AT,i, CT,i, and ET,i for transferrin; i = 1 or 2 for
twin 1 or 2), and the correlation coefficients between AV,i and AT,i, CV,i and
CT,i, and EV,i and ET,i, are denoted by ra, rc, and re, respectively. The cross-twin
cross-trait correlation is shown as AV,i and AT,j, and CV,i and CT,j for the voxel
value in twin i and the transferrin level in twin j, where i, j = 1 or 2, and i ≠ j.
There is no re term for EV,i and ET,j because the unique environmental factors
between subjects are independent. The covariance across the two pheno-
types within the same subject, or separately in the two subjects, is then
derived by multiplication of the path coefficients for the closed paths in the
path diagram. For example, covariance between the voxel values in twin 1
and the transferrin level in twin 2 is equal to aV·ra·aT + cV·rc cT for MZ twins,
and aV·1/2ra aT + cV·rc cT for DZ twins. This implies that any excess in cross-
twin cross-trait correlation in MZ twins over that in DZ twins is attributed to
common genetic factors that affect both voxel values and transferrin levels.

Paths drawn between the same phenotype would be identical to con-
sidering a univariate voxel-wise SEM model (27). For A1 and A2, the corre-
lation coefficient is equal to 1 for MZ and 0.5 for DZ twin pairs. The
correlation coefficient between C1 and C2 is always 1 from the definition of
the shared environment, and E1 and E2 are assumed to be independent and
there is no correlation.

In twin studies, it is common to examine whether the observed measures
are best modeled by using a combination of additive genetic and shared and
unshared environmental factors, or whether only one or two of these factors
is sufficient to explain the observed pattern of inter-twin correlations.

If the correlation between the voxel value of the image in one twin and the
level of transferrin in the other twin is greater in MZ pairs than in DZ pairs,
then, under standard assumptions, the greater correlationmay be assumed to
be caused by common genetic factors controlling both factors. In the uni-
variate model with a single phenotype, which we denote x, the genetic and
environmental contributions in twin j (j = 1 or 2) is modeled by defining
the following:

xj ¼ axAxj þ cxCxj þ exExj [2]

A, C, and E, respectively, denote the additive genetic and shared and un-
shared environmental components. Cross-trait correlations between voxel
values (v) and serum transferrin (t) level are then derived from the co-
variance matrix of the following vector:

w ¼ ðv1; v2; t1; t2Þ [3]

given by the following 4 × 4 matrix:

covðwÞ¼
�
Φv;v Φt;v

Φv;t Φt;t

�
[4]

where Φvv and Φtt are the 2 × 2 covariance matrices for phenotype v or t
between twins 1 and 2, as performed in univariate SEM. Φvt is the cross-trait
covariance matrix, composed of the covariance between the two traits
within the different unrelated individuals [cov(v1, t1) and cov(v2, t2)] and the
cross-twin cross-trait covariance between the pairs [cov(v1, t2) and cov(v2,
t1)], as detailed below:

Φv;t¼
�
covðv1; t1Þ covðv1; t2Þ
covðv2; t1Þ covðv2; t2Þ

�

¼
�
raavat þ rccvct þ reevet α·raavat þ rccvct

α·raavat þ rccvct raavat þ rcCvct þ reevet

� [5]

where α is 1 for MZ twins, and 0.5 for DZ twins. ra, rc, and re are the cross-
trait correlation coefficients for Av and AT, CV and CT, and EV and ET, re-
spectively. A higher value of ra indicates that the two phenotypes are more
likely mediated by a common set of genes (34, 68). The path coefficients
were estimated by comparing the covariance matrix implied by the model
and the sample covariance matrix of the observed variables, using maxi-
mum-likelihood fitting to give a χ2 value. We started from the full set of
path coefficients (av, cv, ev, at, ct, et, ra, rc, and re) and removed one of av, cv,
at, and ct from the model step by step. Removing av or at/cv or ct also re-
moved ra/rc. e1, e2, and re were always kept in the model to include random
noise. A model was considered to better fit the data if the difference in χ2
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values between it and the more comprehensive model at the previous step
was not significant. If two models contained the same number of parame-
ters, the model with a smaller χ2 value was considered better. Model se-
lection ended when the best model was achieved, i.e., when either (i) all
possible more restricted models were not better than the current model or
(ii) the current model was the most restricted and contained ev, et, and re
only. If ra was included in the best model, the significance of ra was then
determined by comparing the χ2 values of the best model and its submodel
where ra is 0. To determine the significance of the submodels, or the re-
stricted models, with respect to the full model, we obtain the log-likelihood
for the full and the restricted models, denoted by log(Lf) and log(Lr), re-
spectively. Minus two times this difference, or −2[log(Lr) − log(Lf)], is as-
ymptotically distributed approximately as a χ2 distribution with the df equal
to the difference between the df of the two models, and therefore the
inverse χ2 distribution is estimated with these parameters.

SNP Selection. We examined all SNPs within two genes previously shown (35)
to affect serum transferrin levels in healthy adults: TF and HFE. By using
HapMap, we searched for SNPs that met our criterion of having an MAF
greater than 5%; when matching these SNPs to those with available geno-
type information in our imputed data, 42 valid SNPs from these genes were
available for analysis. We determined significance levels for association tests
by first examining the total number of independent tests performed. Link-
age disequilibrium among SNPs tested corresponds to correlation between
the SNPs, and therefore each test is not completely independent. By first
estimating the effective number of independent tests, we can avoid using
a significance level too conservative for the number of tests we performed.
As a result of linkage disequilibrium, the effective number of SNPs tested
(38, 39) was 20.

ROI SNP Association in Significantly Correlated Clusters. In each cluster (>27
voxels to represent a size equivalent to one voxel and all its surrounding
neighbors) that was found to have significant cross-twin cross-trait additive
genetic associations, we found the average value across all of the voxels in
that region and performed univariate associations with all 42 SNPs by using
a mixed-model approach controlling for age and sex (emmaX; http://ge-
netics.cs.ucla.edu/emmax/news.html) (69) to account for the familial re-
latedness between subjects through the use of a kinship matrix describing
the approximate proportion of genetic similarities between subjects. A 0 in
the kinship matrix represents the relation between unrelated individuals,
MZ twins are related by 1 (with identical genomes), and DZ twins and non-
twin siblings within the same family by 0.5 (as they share approximately
half). Duplicate scans were not used for genetic associations.

Multiple Comparisons Correction. Computing thousands of tests of associa-
tions on a voxel-wise level can introduce a high Type I (i.e., false-positive)

error rate in neuroimaging studies. To control these errors, we used a
searchlight method for FDR correction as described by Langers et al. (70),
which ensures a regional control over the FDR in any reported findings. To
ensure adequate regionally selective associations with the transferrin levels,
we use this searchlight method to correct the associations between the
image phenotypes (morphometry or anisotropy) or transferrin. All maps
shown are thresholded at the appropriate corrected P value after per-
forming searchlight FDR (q = 0.05) to show only regions of significance;
uncorrected P values are then shown only within these significant regions.
To determine the best overall model for the SEM cross-twin cross-trait
analysis, we use the standard FDR (37, 71) procedure as opposed to
searchlight FDR, as we would like to determine the best overall fit of the
SEM model, and not necessarily examine any localized or clustering effects.
When examining the significance of the effects of the SNPs regressed on the
mean FA value within ROIs with significant cross-twin cross-trait associations,
we corrected for multiple comparisons by using the strict Bonferroni cor-
rection controlled at the q level of 0.05, at which a threshold for significance
was determined by dividing 0.05 by the effective number of SNPs tested (20),
and the number of ROIs where these SNPs were each tested previously (5).
The Bonferroni threshold for significance was therefore set as follows:

q  ¼  0:05=
�
20 ✱ 6

�
 ¼  0:00042 [6]

Post Hoc Analysis: Voxel-Wise Effect of HFE H63D Polymorphism on Fiber
Integrity. The number of minor alleles for each subject at HFE H63D
(rs1799945) was regressed against the FA at each voxel within the white
matter, after adjusting for sex and age as before. Family structure was taken
into account with mixed-effects modeling (72). To correct for multiple
comparisons across voxels, we used a searchlight method to control the FDR
regionally (70).
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