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SNPs discovered by genome-wide association studies (GWASs) 
account for only a small fraction of the genetic variation of 
complex traits in human populations. Where is the remaining 
heritability? We estimated the proportion of variance for 
human height explained by 294,831 SNPs genotyped on 
3,925 unrelated individuals using a linear model analysis, and 
validated the estimation method with simulations based on 
the observed genotype data. We show that 45% of variance 
can be explained by considering all SNPs simultaneously. Thus, 
most of the heritability is not missing but has not previously 
been detected because the individual effects are too small 
to pass stringent significance tests. We provide evidence 
that the remaining heritability is due to incomplete linkage 
disequilibrium between causal variants and genotyped SNPs, 
exacerbated by causal variants having lower minor allele 
frequency than the SNPs explored to date.

GWASs in human populations have discovered hundreds of SNPs 
 significantly associated with complex traits1,2, yet for any one 
trait they typically account for only a small fraction of the genetic 
 variation. Where is the missing heritability, the so-called dark matter 
of the genome3,4? Suggested explanations include the existence of 
gene-by-gene or gene-by-environment interactions5, the common 
disease–rare variant hypothesis6 and the possibility that inherited 
epigenetic factors cause resemblance between relatives7,8. However, 
the variance explained by the validated SNPs is usually much less than 
the narrow-sense heritability, the proportion of phenotypic variance 
due to additive genetic variance. Non-additive genetic effects do not 
contribute to the narrow-sense heritability, so explanations based on 
non-additive effects are not relevant to the problem of missing herit-
ability (Supplementary Note). There are two logical explanations 
for the failure of validated SNP associations to explain the estimated  
heritability: either the causal variants each explain such a small amount 

of variation that their effects do not reach stringent significance 
thresholds and/or the causal variants are not in complete linkage 
disequilibrium (LD) with the SNPs that have been genotyped. Lack 
of complete LD might, for instance, occur if causal variants have lower 
minor allele frequency (MAF) than genotyped SNPs. Here we test 
these two hypotheses and estimate the contribution of each to the 
heritability of height in humans as a model complex trait.

Height in humans is a classical quantitative trait, easy to measure 
and studied for well over a century as a model for investigating the 
genetic basis of complex traits9,10. The heritability of height has been 
estimated to be ~0.8 (refs. 9,11–13). Rare mutations that cause extreme 
short or tall stature have been found14,15, but these do not explain 
much of the variation in the general population. Recent GWASs on 
tens of thousands of individuals have detected ~50 variants that are 
associated with height in the population, but these in total account 
for only ~5% of phenotypic variance16–19.

Data from a GWAS that are collected to detect statistical associations 
between SNPs and complex traits are usually analyzed by testing each 
SNP individually for an association with the trait. To account for the 
large number of significance tests carried out, a very stringent P value 
is used. This reduces the occurrence of false positives, but it may cause 
many real associations to be missed, especially if individual SNPs have a 
small effect on the trait. An alternative approach designed to overcome 
this problem is to fit all the SNPs simultaneously20. The effects of the 
SNPs are treated statistically as random, and the variance explained by 
all the SNPs together is estimated. This approach, which we use here, 
does not attempt to test the significance of individual SNPs but provides 
an unbiased estimate of the variance explained by the SNPs in total.

RESULTS
Estimating genetic variance explained by genome-wide SNPs
From a number of GWASs, we selected 4,259 individuals who were 
not knowingly related to one another and confirmed this with SNP 
data. We then estimated their pairwise genetic relationships using 
all autosomal markers (MAF ≥ 0.01) and retained 3,925 individuals 
(3,248 adults and 677 16-year-olds) whose pairwise relationship was 
estimated at less than 0.025 (maximum relatedness approximately 
corresponding to cousins two to three times removed; Supplementary 
Fig. 1). We fitted a linear model to the height data and used restricted 
maximum likelihood (REML)21 to estimate the variance explained 
by the SNPs. (In the Online Methods, we show how this can be 
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 conveniently implemented with a mathematically equivalent model 
that uses the SNPs to calculate the genomic relationship between 
pairs of subjects). Using this approach, we estimated the proportion 
of phenotypic variance explained by the SNPs as 0.45 (s.e. = 0.08, 
Table 1), a nearly tenfold increase relative to the 5% explained by 
published and validated individual SNPs.

Correcting for incomplete LD between SNPs and causal variants
Our estimate of 45% is still less than the 80% of phenotypic variance 
due to additive genetic effects (that is, the estimated heritability). One 
reason why the SNPs do not explain the full estimated heritability 
is that the SNPs on the arrays are not in complete LD with causal 
variants. The ability of the SNPs to explain the phenotypic variation 
caused by causal variants depends on the LD between all the causal 
variants and all the SNPs. Lack of complete LD is manifested as a 
 difference between the genomic relationship of each pair of subjects 
j and k at the causal variants (Gjk) and the relationship between the 
same individuals calculated from the SNPs (Ajk). As causal variants are 
unknown, we cannot estimate their LD with observed SNPs directly. 
However, we can mimic it by considering the LD of the genotyped 
SNPs with one another. It is likely that the causal variants and the 
SNPs have different properties, so LD among SNPs is only a guide to 
LD between causal variants and SNPs. One way in which the causal 
variants may differ from the SNPs is in MAF. To investigate how the 
difference between Gjk and Ajk depends on the number of SNPs used 
and the MAF of the causal variants, we randomly sampled five sets 
of SNPs (50K, 100K, … , 250K, where K = 1,000) in the adult data set 
and ten sets of SNPs in the adolescent data set (50K, 100K, … , 500K). 
For each SNP set, we randomly split the SNPs into two groups, the 
first representing SNPs and the second representing causal variants, 
and estimated genetic relationships using all of the SNPs in the first 
group (Ajk) and using SNPs with MAF ≤ θ in the second group (proxy 
for Gjk), where θ = 0.1, 0.2, 0.3, 0.4 or 0.5. We calibrated the predic-
tion error by calculating the regression of Gjk on Ajk. We established 

empirically that the regression coefficient b = −
+

1
1( / )

var( )
c N

Ajk
 (Fig. 1), 

where N is the number of SNPs used to calculate Ajk and the term 
in c depends on the MAF of the causal variants (Online Methods). 
If the causal loci have the same spectrum of allele frequency as the 
genotyped SNPs (θ = 0.5), then c = 0, and 1/N can be interpreted  
as the sampling error for estimating the relationship over the whole 
genome from N random SNPs. The parameter c is >0 if θ < 0.5 because 
the relationship at causal variants with low MAF is typically less than 
the average relationship over the whole genome.

Therefore, given the number of SNPs used, we can correct the 
 estimate of the variance explained by the SNPs for incomplete LD with 
causal variants, if causal variants have the same allelic frequency spec-
trum as genotyped SNPs. Using the same linear model as above, but 
corrected for this incomplete LD (c = 0), we estimated the proportion 

of variance explained by causal variants to be 0.54 (s.e. = 0.10; Table 1). 
This estimate assumes that the LD between SNPs and causal variants 
is as strong as that between the genotyped SNPs. However, if the 
causal polymorphisms tend to have lower MAF than the SNPs that 
have been assayed, as expected from neutral and selection theories of 
quantitative genetic variation6,22, we expect the LD between SNPs and 
causal variants to be reduced. When we used SNPs with a MAF < 0.1  
as proxies for causal variants, we found c = 6.2 × 10−6. Using this 
value of c to correct for incomplete LD, we estimated the proportion 
of variance in height explained by causal variants to be 0.84 (s.e. = 
0.16; Supplementary Table 1). Although the standard error is high, 
this result is consistent with causal variants being, on average, at lower 
frequency than the SNPs used on commercial arrays and therefore 
in less LD with these SNPs than the LD of the SNPs with other SNPs. 
This does not prove that the causal variants have MAF < 0.1, but it 
shows that if this were the case, they could explain the estimated 
heritability of height (~0.8).

Variance explained does not depend on number of SNPs
If our procedure for correcting for incomplete LD between SNPs and 
causal variants is correct, the variance explained by the causal variants 
should not depend on the number of SNPs used. To show that this is 
so, we randomly sampled 10%, 20%, … , and 100% of all the ~295K 
SNPs and estimated the variance explained by causal variants for each 

Table 1 Estimation of phenotypic variance explained from genetic relationships among unrelated individuals by restricted  
maximum likelihood

No. SNPs L(H0)a L(H1)b LRTc σg
2 (s.e.) σe

2 (s.e.) σP
2 (s.e.) h2 d (s.e.)

295K SNPs Raw 294,831 −1950.89 −1936.12 29.53 0.445 (0.084) 0.546 (0.082) 0.991 (0.023) 0.449 (0.083)

Adj.e 294,831 −1950.89 −1936.12 29.53 0.532 (0.101) 0.458 (0.098) 0.991 (0.023) 0.537 (0.100)

295K/516K SNPsf Raw 294,831/516,345 −1950.89 −1935.94 29.89 0.449 (0.085) 0.536 (0.083) 0.986 (0.022) 0.456 (0.085)

Adj. 294,831/516,345 −1950.89 −1935.87 30.04 0.536 (0.101) 0.449 (0.099) 0.985 (0.022) 0.544 (0.101)
alog-likelihood under the null hypothesis that σg

2=0. blog-likelihood under the alternative hypothesis that σg
2 ≠ 0; clog-likelihood ratio test statistic, LRT = 2[L(H1) − L(H0)]. dEstimate of variance 

explained by all SNPs, with its s.e. given in the parentheses. eRaw estimate of genetic relationship adjusted for prediction error with equation (9) (assuming c = 0). fThe genetic relationships are 
estimated from 1,318 individuals with 516,345 SNPs, and the other 2,607 individuals with 294,831 SNPs. See Online Methods for definitions of notations.
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Figure 1 Prediction error of genetic relationship. The genetic relationship 
at unobserved causal loci is predicted, with error, from the relationship 
estimated from genotyped SNPs. The prediction error was calibrated by 
comparing the relationship at causal loci (mimicked by a set of random 
SNPs with MAF ≤ θ) to that estimated from another set of random SNPs. 
Values plotted on the y axis are (1 − β)var(Ajk) (see Online Methods for the 
notations), calculated from different numbers of random SNPs (N) in both 
adult and adolescent data sets. The slope of each line is equal to 1.0, 
with R2 = 1.0. The intercept (c) is constant for a certain MAF threshold θ; 
c = 6.2 × 10−6 (P = 2 × 10−14), 3.4 × 10−6 (P = 9 × 10−12), 1.8 × 10−6 
(P = 4 × 10−10), 7.8 × 10−7 (P = 2 × 10−7) and 9.2 × 10−9 (P = 0.87,  
not significant) for θ = 0.1, 0.2, 0.3, 0.4 and 0.5, respectively.
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group of SNPs using both raw and adjusted estimates of relationships 
(assuming c = 0; Fig. 2). For the raw estimates of relationships, the 
proportion of variance explained increases with the number of SNPs 
because prediction error is reduced through inclusion of more SNPs. 
When the relationship estimates are adjusted for prediction error, the 
proportions of variance explained are independent of the number of 
SNPs and agree with an estimate of ~0.54 but have larger s.e. when 
fewer SNPs are used.

In addition, 1,318 of the 3,925 individuals were genotyped with 
~516K SNPs, so we estimated relationships among these individuals 
(641 adults and 677 16-year-olds) with 516,345 SNPs and estimated 
the remaining pairwise relationships with 294,831 SNPs. We adjusted 
the two parts of the relationship matrix according to the number of 
SNPs used (assuming c = 0). The resulting estimate of proportion of 
variance explained by causal variants is no different from that using 
all the individuals with ~295K SNPs (Table 1).

Simulation studies
We used simulation studies to validate the method of estimat-
ing the variance explained by causal variants using genome-wide 
SNPs. We simulated a quantitative trait on the basis of the observed 
genotype data of 3,925 individuals and 294,831 SNPs in two ways: 
(i) randomly sampling causal variants from all the SNPs, and (ii) 
randomly sampling causal variants from the SNPs with MAF ≤ 0.1 
(Supplementary Note). Table 2 shows that in case (i), if we included 
the causal variants in estimating the genetic relationships, we obtained 
an unbiased estimate of the proportion of phenotypic variance 
explained by the causal variants (in this case this is the heritability of 
the trait, because in a simulation we know that these causal variants 
explain all the genetic variance). When we excluded the causal vari-
ants, we underestimated heritability, as the relationship derived from 
SNPs overestimated the variation of the relationship at causal loci 

owing to imperfect LD. However, the heritability estimate recovered 
when we adjusted relationship estimates using equation (9) (Online 
Methods; c = 0). In case (ii), even if we included the causal variants 
in the analysis, we still underestimated heritability, because the causal 
variants have lower frequency than the SNPs, on average, and have 
less LD with the SNPs than the SNPs have with other SNPs. Similarly, 
when we adjusted the relationship estimates with equation (9) (c = 
6.2 × 10−6), we obtained unbiased estimates of h2. These results are 
consistent with the inference we draw from the empirical data. The 
results show that the estimate of variance caused by causal variants is 
unbiased regardless of the number of SNPs used, provided the method 
proposed here is employed.

DISCUSSION
Highly significant and well-replicated SNPs identified to date explain 
only ~5% of the phenotypic variance for height19. Our results show 
that common SNPs in total explain another ~40% of phenotypic vari-
ance. Hence, 88% (40/45) of the variation due to SNPs has been unde-
tected in published GWASs because the effects of the SNPs are too 
small to be statistically significant. Our results also suggest that the 
discrepancy between 80% heritability and 45% accounted for by all 
SNPs is due to incomplete LD between causal variants and the SNPs, 
possibly because the causal variants have a lower MAF on average 
than the SNPs typed on the array. We cannot tell from these results 
whether or not some of this discrepancy is due to causal variants with 
very low frequency—for example, MAF < 0.001 (ref. 4). However, 
the results show that the total genetic variance could be explained by 
causal variants similar to the SNPs, with MAF < 0.1. If causal variants 
affecting height had no effect on fitness, they would show a complete 
range of MAF, but with a higher proportion at low MAF than the SNPs 
on commercial arrays. If variants affecting height are subject to selec-
tion for either allele, there will still be a spectrum of MAF, but with an 
even greater proportion at low MAF. Thus, we do not conclude that 
all causal variants have MAF < 0.1, but that the spectrum of MAF at 
causal variants is more concentrated at low values than it is for the 
SNPs used as markers.

The power to detect individual SNPs as significantly associated 
with a trait such as height depends on the variance associated with 
the SNP. This, in turn, depends on the LD between the SNP and the 
causal variant, the effect of the causal variant and its frequency. Causal 
variants with small effects or rare alleles with large effects (includ-
ing rare Mendelian variants) will explain little variance and so will 
tend not to be significant even if they are in high LD with an assayed 
SNP. However, the cumulative effect of these SNPs will be included 
as part of the 45% of phenotypic variance explained by the SNPs in 
our analysis. Despite the use of ~295K SNPs, many causal variants, 

Table 2 Heritability estimates averaged over 30 simulations based 
on the observed genotype data

No. causal  
variants h2 a

Est. h2  
(s.e.m.)b

Est. h2  
(s.e.m.)c

Est. h2 
(s.e.m.)d

MAF ≤ 0.5e 2,000 0.8 0.817 (0.014) 0.678 (0.014) 0.812 (0.014)

2,000 0.5 0.513 (0.015) 0.428 (0.015) 0.512 (0.015)

3,000 0.8 0.831 (0.015) 0.693 (0.016) 0.831 (0.016)

3,000 0.5 0.510 (0.016) 0.424 (0.017) 0.507 (0.017)

MAF ≤ 0.1 2,000 0.8 0.591 (0.015) 0.433 (0.014) 0.804 (0.026)

2,000 0.5 0.367 (0.016) 0.271 (0.016) 0.504 (0.030)

3,000 0.8 0.620 (0.016) 0.462 (0.016) 0.856 (0.029)

3,000 0.5 0.384 (0.020) 0.287 (0.019) 0.533 (0.036)
aTrue heritability parameter. bEstimated h2 based on genetic relationship estimated from all 
of the SNPs (~295K), including the causal variants. cEstimated h2 based on relationship 
estimated from the SNPs, excluding the causal variants. dEstimated h2 based on relationship 
estimated from the SNPs, excluding the causal variants, and adjusted for prediction error  
with equation (9). eMinor allele frequencies of the causal variants. s.e.m. was estimated over 
30 simulations.
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Figure 2 Estimates of variance explained by genome-wide SNPs from 
adjusted estimates of genetic relationships are unbiased. Results are 
shown as estimates of variance explained by different proportions of 
SNPs randomly selected from all the SNPs in the combined set. For each 
group of SNPs, the variance explained by genome-wide SNPs is estimated 
using both raw estimates of genetic relationships and adjusted estimates 
of genetic relationships correcting for prediction error (assuming c = 0). 
Error bars denote s.e. of the estimate of variance explained by genome-
wide SNPs. The log-likelihood ratio test (LRT) statistic is calculated 
as twice the difference in log-likelihood between the full (h2 ≠ 0) and 
reduced (h2 = 0) models.

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



568  VOLUME 42 | NUMBER 7 | JULY 2010 Nature GeNetics

a n a ly s i s

especially if they have low MAF, will not be in perfect LD with the 
assayed SNPs. This reduces the power of a conventional GWAS to 
detect them and reduces the variance estimated for the SNPs col-
lectively in our study. The results imply that most causal variants 
explain such a small proportion of the variance that many causal 
variants affecting height must exist. The results of published GWASs 
are consistent with this finding, as high test statistics are distributed 
over much of the genome16.

Could our results be biased because of ascertainment in the data, 
data analysis or interpretation? We carefully adjusted phenotypes 
for systematic differences and applied thorough quality control to 
the SNP data (Online Methods). We show by principal component 
analysis (PCA) of African, Asian and European populations that all 
of our samples are of European ancestry (Supplementary Fig. 2a,b). 
We demonstrate further by PCA of European populations only that 
our samples show close relationship to the UK population and do not 
show an apparent cline across Europe (Supplementary Fig. 2c,d). 
We performed REML analysis by fitting the first two, four and ten 
eigenvectors from the European-only PCA as covariates. The results 
show little to no systematic difference in the estimates of the variance 
explained by fitting up to ten eigenvectors (Supplementary Table 1). 
Furthermore, we performed single-SNP association analysis between 
1,286 ancestry-informative markers (AIMs) and height, and did 
not detect a significant inflation of the test statistic for these AIMs 
(Supplementary Fig. 3; P = 0.219). All these results suggest that our 
estimate of variance explained by all SNPs is unlikely to be biased by 
population stratification. A subtle form of stratification in GWASs 
might occur if subjects are distantly related. We excluded any subject 
with a relationship to another subject >0.025. If distant pedigree rela-
tionships were an important cause of the estimated relationships, then 
all chromosomes of a pair of subjects should reflect this relationship. 
We found no correlation between relatedness estimated from different 
chromosomes (Supplementary Table 2). Thus, the relationships we 
estimate from SNPs are driven by LD among the SNPs. It is the same 
LD that causes a SNP that is not a causal variant to show an associa-
tion with a trait such as height. In other words, our estimate of the 
variance explained by the SNPs is based on the same phenomenon as 
the SNP associations reported from GWASs (LD between SNPs and 
causal variants). However, we accumulate the variance explained by 
all SNPs and so are not limited by the need for individual SNPs to pass 
stringent significance tests.

We also verified that the estimates of variance explained by the 
SNPs are not driven by a few outlier individuals who are similar in 
height and in SNP genotypes (Fig. 3). We regressed the squared dif-
ference in height between each pair of individuals on the estimate 
of their relatedness. The intercept and slope are estimates of twice 
the phenotypic variance and minus twice the additive genetic vari-
ance explained by the SNPs, respectively23, so the estimate of variance 
explained by the SNPs from this regression analysis is ~0.51. The 
signal on the slope of the regression line comes from many points 

and is not due to a few outliers. Note that our maximum likelihood 
estimate is more accurate than this regression analysis; we show the 
latter only to illustrate the robustness of the estimate. In addition, we 
performed REML analysis using subsets of individuals by randomly 
splitting the whole sample into two and four groups and by sampling 
1,000, 2,000 and 3,000 individuals with replacement for four replicates 
(Supplementary Fig. 4). The average estimates of variance explained 
by all SNPs are not affected by sample size, but, as expected, the sam-
pling error increases as sample size decreases.

Heritability is the proportion of phenotypic variation due to addi-
tive genetic factors24; we therefore fitted a model in which SNPs have 
additive effects. Non-additive genetic variation and variation due to 
gene-environment interactions may exist, but they are not part of the 
missing heritability because they do not contribute to the heritability. 
Epigenetic mutations may cause resemblance between relatives and 
contribute to heritability if stably inherited, but in that case they would 
be equivalent to DNA sequence variants, would show LD with the 
assayed SNPs and would not contribute to missing heritability25.

The method we have presented could be misinterpreted as a method 
for estimating the heritability of height. Actually, we estimate the 
variance in height explained by the SNPs. We show that these SNPs 
do explain over half the estimated heritability of height and that the 
missing proportion can be explained by incomplete LD between the 
SNPs and causal variants.

If other complex traits in humans, including common diseases, 
have genetic architecture similar to that of height, then our results 
imply that larger GWASs will be needed to find individual SNPs that 
are significantly associated with these traits, because the variance 
typically explained by each SNP is so small. Even then, some of the 
genetic variance of a trait will be undetected because the genotyped 
SNPs are not in perfect LD with the causal variants. Deep resequenc-
ing studies are likely to uncover more polymorphisms, including 
causal variants that will be represented on future genotyping arrays. 
Our data provide strong evidence that the variation contributed by 
many of these causal variants is likely to be small and that very large 
sample sizes will be required to show that their individual effects are 
statistically significant. A similar conclusion was drawn recently for 
schizophrenia26. In some cases the small variance will be due to a 
large effect for a rare allele, but this will still require a large sample 
size to reach significance. Genome-wide approaches like those used 
in our study can advance understanding of the nature of complex-trait 
variation and can be exploited for selection programs in agriculture27 
and individual risk prediction in humans28.

METhODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturegenetics/.
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Figure 3 All pairwise comparisons contribute to the estimate of genetic 
variance. Shown are the squared z-score differences between individuals  
(∆y jk

2 ) plotted against the adjusted estimates of genetic relationship (Ajk
* ).  

The blue line is the linear regression line of ∆y jk
2  on Ajk

* . The intercept 
and regression coefficient are estimates of twice the phenotypic variance 
and minus twice the genetic variances23, respectively. The intercept is 
1.98 (s.e. = 0.001), and the regression coefficient is −1.01 (s.e. = 0.27), 
consistent with estimates of the phenotypic and additive genetic variance 
of 0.990 and 0.505, respectively, and a proportion of variance explained 
by all SNPs of 0.51.
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Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METhODS
Statistical framework. In a GWAS of a quantitative trait, we test for associa-
tions between individual SNPs and the trait with the following simple regres-
sion model, 

y x a ej ij i j= + +m  

where yj is the phenotypic value of the jth individual; μ is the mean term; ai 
is the allele substitution effect of SNP i; xij is an indicator variable that takes a 
value of 0, 1 or 2 if the genotype of the jth individual at SNP i is bb, Bb or BB 
(alleles are arbitrarily called B or b), respectively; and ej is the residual effect, 
ej ~ N(0, σe

2), with σe
2 being the residual variance.

Supposing that we can genotype subjects at the causal variants, we can 
include them all in the model 

y g e g z uj j j j ij i
i

m
= + + =

=
∑m and

1  
where gi is the total genetic effect of an individual j; m is the number of 
causal loci; ui is the scaled additive effect of the ith causal variant; zij takes 
a value of − −2 2 1f f fi i i/ ( ), ( )/ ( )1 2 2 1− −f f fi i i  or 2 1 2 1( )/ ( )− −f f fi i i  if 
the genotype of the jth individual at locus i is qq, Qq or QQ, respectively,  
with fi the frequency of Q allele at locus i (alleles are arbitrarily called Q or 
q)20,29; E(zij) = 0 and var(zij) = 1. In matrix notation, y = μ1 + g + e and g = Zu.  
We treat u as random effects and assume u ~ N(0, Iσu

2), with σu
2 being the 

variance of causal effects; then gj ~ N(0, σg
2 = mσu

2), where σg
2 is the variance 

of total additive genetic effects, and the variance-covariance matrix of y (the 
vector of observations) can be expressed as 

var( )y ZZ I
ZZ

I G I= ′ + =
′

+ = +s s
s

s s su e
g

e g e
2 2

2
2 2 2

m  
where G is the genetic relationship matrix between pairs of individuals at 
causal loci. This equation shows the equivalence between the classical defini-
tion of heritability (h2 = σg

2 / σP
2) with σP

2 being the phenotypic variance, and the 
proportion of phenotypic variance explained by the causal variants altogether.

In practice, we know little about the number and positions of the causal 
variants, so we are unable to obtain the G matrix directly. However, we can 
calculate the relationship from a genome-wide sample of SNPs (A) using the 
same formula as for G. That is, 

A WW= ′ / N  

where N is the number of SNPs and w x p p pij ij i i i= − −( )/ ( )2 2 1 , with 
pi being the allele frequency at SNP i. This formula for A ignores the 
sampling error associated with each SNP. We can improve the estimate 
of A by calculating a weighted average across SNPs. For a SNP i, when  

j ≠ k (individuals j and k), var( )
var( ) var( )

( )
A

x p x p

p pijk
ij i ik i

i i
=

− −

−
=

2 2

4 1
12 2 ;  

in other words, it is the same for all SNPs regardless of allele frequency.  

When j = k, var( )
var[( ) ]

( )
( )

( )
A

x p

p p
p p

p pijj
ij i

i i

i i

i i
=

−

−
=

− −
−

2

4 1
1 2 1

2 1

2

2 2 ; in other words,  

it is dependent on the allele frequency of the SNP. We therefore use the  
following equation to calculate Aijj, 

A
x p x p

p pijj
ij i ij i

i i
= +

− + +
−

1
1 2 2
2 1

2 2( )
( )  

which provides an unbiased estimate of the inbreeding coefficient (F), with a 
mean of 1 + F, and has sampling variance of 1 when F = 0.

To obtain a genome-wide relationship, we combine Aijk for all of the SNPs 
using a common-sense weighting scheme, 

A
N

A
N

x p x p
p p

j k

N
xjk ijki

ij i ik i

i ii

ij
= =

− −
−

≠

+
−∑

∑
1

1 2 2
2 1

1 1
2

( )( )
( )

,

(11 2 2
2 1

2+ +
−

=











 ∑

p x p
p p

j ki ij i

i ii
)

( )
,  

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(5)(5)

(6)(6)

Estimates of relationships are always relative to an arbitrary base population 
in which the average relationship is zero. We use the individuals in the sample 
as the base so that the average relationship between all pairs of individuals is 0 
and the average relationship of an individual with him- or herself is 1.

Unbiased estimate of the relationship at the causal variants and the genetic 
variance. If we knew the genotypes at the causal variants, we could fit model 
(3) and estimate the genetic variance σg

2. Instead we use a modified version 
(A*) of the relationship matrix based on the SNPs A. Although we use REML 
to estimate σg

2, the requirements of A* to obtain an unbiased estimate of σg
2 are 

more easily understood for the method illustrated in Figure 3. In this method, 
Δy2

jk = (yj − yk)2 for each pair of subjects is regressed on Gjk. The slope of this 
regression is −2σg

2. If we replace Gjk by an estimate A*
jk such that E(Gjk | A*

jk) =  
A*

jk, then E y E a bG a bAjk jk jk( ) ( ) *∆ 2 = + = + , and the regression of Δy2
jk on A*

jk 
is still b = −2σg

2, so the estimate of σg
2 remains the same, −b/2. To obtain an 

unbiased estimate of Gjk with the required property, we use linear regression of 
Gjk on Ajk. We cannot calculate G, so instead we use one set of SNPs to mimic 
causal variants using the following steps:

1.  Randomly sample 2N SNPs from all the SNPs across the genome and 
randomly split them into two groups (N SNPs in each group).

2. Calculate Ajk using all the SNPs in the first group.
3.  Calculate Gjk using SNPs with MAF ≤ θ in the second group (mimicking 

the relationships at causal variants).
4.  Regress Gjk on Ajk for j ≤ k (use Gjk − 1 and Ajk − 1 when j = k).  

The regression coefficient is 

b =
cov( , )

var( )
G A

A
jk jk

jk

5. Repeat the procedure using different numbers of SNPs.

If the relationship at causal loci is predicted without error by the observed SNPs, 
β should equal 1. When we applied this approach in our data, we found that 
for any MAF threshold θ, var(Ajk) is proportional to N, whereas cov(Gjk, Ajk) 
is constant, irrespective of N (Supplementary Fig. 5). Consequently, we estab-
lished an empirical linear relationship between β and the number of SNPs, 

b = −
+

1
1( / )

var( )
c N

Ajk  

where c is constant for a certain MAF threshold θ—for example, c = 6.2 × 10−6 
when θ = 0.1 and c = 0 when θ = 0.5 (Fig. 1). The regression coefficient β is less 
than 1.0 because of two effects. First, the term in 1/N is due to the sampling 
error in estimating A from only N SNPs. This corresponds to the sampling 
error for Aijk at a single SNP calculated above as 1. If c = 0 and N is infinite, 
β = 1. In this case Ajk is the genomic relationship averaged over all positions 
in the genome. As the causal variants are a sample of such positions, Ajk is an 
unbiased estimated of Gjk. Second, the term in c occurs because the causal 
variants are not a random sample of all SNPs but a sample with low MAF. This 
causes the causal variants to have lower LD with the SNPs than random SNPs 
do with one another. Thus, even if Ajk was calculated from an infinite number 
of SNPs, it would still tend to overestimate the variance in relationships at 
the causal variants and consequently underestimate the genetic variance. We 
therefore adjust Ajk as 

 

with the property of unbiasedness in the sense that E(Gjk | A*
jk) = A*

jk.

Samples and genotyping. Height measurements, self-reported or clinically 
measured, from 35,189 Australian adults and 2,036 Australian adolescents 
(around 16-years-old) were collected by the Queensland Institute of Medical 
Research. Of these individuals, 8,884 adults and 1,668 adolescents have been 
genotyped using Illumina SNP chips in several GWASs. All the samples  
were collected with informed consent and appropriate ethical approval.  

(7)(7)
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The adult samples were genotyped with HumanCNV370-Quad v3.0 
BeadChips (~351K SNPs) or Human610-Quad v1.0 BeadChips (~582K 
SNPs), and the adolescent samples were all genotyped with Human610-Quad  
v1.0 BeadChips.

We included only the genotyped individuals of European descent, as veri-
fied by ancestry analysis using genome-wide SNP data30,31. We selected a set 
of 3,535 ‘unrelated’ adults (1,421 males and 2,114 females; from 18 to 91 years 
old, with mean of 45) and 724 ‘unrelated’ 16-year-old adolescents (354 males 
and 370 females), for a combined data set of 4,259 ‘unrelated’ individuals, 
according to the pedigree information.

Quality control. We excluded SNPs in each individual data set that had a 
mean GenCall score < 0.7, missingness >5%, MAF < 0.01 or a Hardy-Weinberg 
equilibrium test P < 10−6, using PLINK32. A total of 304,013 SNPs in the adult 
data set and 529,379 SNPs in the adolescent data set passed this process, but 
only those in the autosomes were included in the analysis (295,400 SNPs for 
the adult data set, 516,345 SNPs for the adolescent data set and an intersect of 
294,831 SNPs for the combined data set).

We estimated the genetic relationships among all of the 4,259 individuals 
in the combined data set with equation (6). The estimated relationships (off-
 diagonal elements of the relationship matrix) ranged from −0.024 to 0.585, 
suggesting that some close relatives still remained. The mean of genetic 
 relationships of ‘unrelated’ individuals should be close to 0, so the lower bound 
of the range can roughly be regarded as the maximum deviation of an esti-
mate from the mean. We estimated the two-tailed 95% confidence interval of 

 relationships (adjusted for multiple tests by Bonferroni correction) to be from 
about −0.027 to 0.027. Therefore, to avoid having any close relatives in the 
data, we chose a cutoff value of 0.025 and selectively excluded one of any pair 
of individuals with an estimated relationship >0.025 to maximize the remain-
ing sample size. We excluded 287 individuals from the adult data set and 47 
individuals from the adolescent data set. A total of 3,248 ‘unrelated’ adults 
and 677 ‘unrelated’ adolescents, with a combined data set of 3,925 ‘unrelated’ 
individuals, was retained for analysis.

The phenotypes were corrected for age and sex, and standardized to z-scores 
in each adult and adolescent data set separately. We used a two-tailed 90% 
Winsorisation33 to adjust the z-scores of four individuals in the adult data set 
with absolute values greater than 4.17, the (100 − 5/3248)th percentile of the 
standard normal distribution based on Bonferroni correction, and combined 
the z-scores in both adult and adolescent data sets for the combined data set 
of height (Supplementary Fig. 1e).

29. Meuwissen, T.H., Solberg, T.R., Shepherd, R. & Woolliams, J.A. A fast algorithm 
for BayesB type of prediction of genome-wide estimates of genetic value. Genet. 
Sel. Evol. 41, 2 (2009).

30. McEvoy, B.P. et al. Geographical structure and differential natural selection among 
North European populations. Genome Res. 19, 804–814 (2009).

31. Price, A.L. et al. Principal components analysis corrects for stratification in genome-
wide association studies. Nat. Genet. 38, 904–909 (2006).

32. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-
based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

33. Dixon, W.J. Simplified estimation from censored normal samples. Ann. Math. Stat. 
31, 385–391 (1960).
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