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SUMMARY

Six statistics are compared in a simulation study for their ability to identify geographical areas with a known
excess incidence of a rare disease. The statistics are the standardized incidence ratio, the empirical Bayes
method of Clayton and Kaldor, Poisson probability, a statistic based on the ‘Breslow T test (BT) and two
statistics based on the ‘Potthoff—~Whittinghill’ test (PW) for extra-Poisson variance. Two alternative
processes of clustering are simulated in which high-risk locations could be caused by environmental sources
or could be sites of microepidemics of an infectious agent contributing to a rare disease such as childhood
leukaemia. The simulation processes use two parameters (proportion of cases found in clusters and mean
cluster size) which are varied to embrace a variety of situations. Real and artificial data sets of small area
populations are considered. The most extreme of the artificial sets has all areas of equal population size. The
other data sets use the small census areas (municipalities) in Finland since these have extremely heterogen-
eous population size distribution. Subset selection allows examination of this variability. Receiver operator
curve methodology is used to compare the efficacy of the statistics in identifying the cluster areas; statistics
are compared for the proportion of true high-risk areas identified in the top 1 per cent and 10 per cent of
ranked areas. One of the PW statistics performed consistently well under all circumstances, although the
results for the BT statistic were marginally better when only the top 1 per cent of ranked areas was
considered. The standardized incidence ratio performed consistently worst. Copyright © 1999 National
Radiological Protection Board.
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INTRODUCTION

‘Post hoc’ cluster reports of rare diseases, such as childhood leukaemia, generate considerable
public concern but are not readily amenable to formal statistical analysis. Nevertheless, public
health professionals are often required to assess the evidence for excess risk, if any, to the local
populations by comparing the reported cluster area to other geographically similar areas.
Case-control studies have been undertaken to investigate putative cluster areas (see references
1-5). However, the number of cases which constitute individual clusters is small and these
case-control studies have not led to conclusive results.

In contrast, regular examination of disease incidence databases for potential high-risk areas
allows formal statistical analysis of these areas and more informative results may emerge from the
comparison of high-risk to control areas. Such an approach must be taken cautiously to avoid
arousing inappropriate public health concern. It can, however, make public health professionals
and epidemiologists pro-active in assessing causes of clusters and could prepare the former for
situations of intense public concern and media interest as has so often arisen for reported clusters
of childhood leukaemia. For example, in the EUROCLUS project,®"® a study investigating
clustering of childhood leukaemia in Europe, 20-25 area were identified from each participating
region as having an excess of disease incidence. Information from lifestyle and environmental
questionnaires was collected for these areas and compared to that from matched control areas
(Alexander et al. ‘Demographic factors in small areas containing clusters of childhood leukaemia:
results of the EUROCLUS study’, submitted for publication).

In both the reactive and pro-active situations described above, methods are required for
accurate identification of high-risk areas. Interest will always focus on the highest ranking (say
top 10 per cent) areas rather than accurate ranking of all areas. In the past, areas have been
ranked simply by the ratio of observed (0;) to expected number (E;) of cases, O;/E; for each area i,
or by the Poisson probability of the observed number of cases (for example, reference 9). It has
been widely accepted for some time!© that neither O,/ E; nor Poisson probabilities are suitable for
ranking areas for underlying risk of disease when geographical areas have low expected numbers
of cases. No formal comparison of these methods or alternatives has been conducted.

Clayton and Kaldor!! considered as an alternative to O;/E; for representation on disease
incidence maps, a posterior estimate of the underlying relative risk; this is essentially a smoothing
determined by the size and precision of O;/E;. It is based on an empirical Bayes approach which
provides a clear ranking statistic. We note that fully Bayesian methods are also used extensively
for mapping'? with a variety of summary statistics plotted; we have not considered these methods
here.

The ‘Potthoff-Whittinghill'** and ‘Breslow’ T-statistics'**> have been used in recent stud-
ies”"1° to test for extra-Poisson variance. They are simple tests to apply and differ in the form of
the extra-Poisson variance expected in the alternative hypotheses for which they are optimal. The
Potthoff-Whittinghill test has been shown in a study of artificial data'” to perform well when
compared to more complex and computer intensive methods in its ability to identify the presence
of disease clustering. The theoretical properties and power of the Breslow T-statistic have also
been investigated in detail.'>*® Unlike some of the more complex methods (for example, reference
19), the Breslow T and Potthoff-Whittinghill tests do not identify individual cluster areas
as a by-product of the detection of the presence of clustering. However, suitable functions of
the posterior estimates of the underlying multinomial probabilities may be useful for ranking
areas.

Copyright © 1999 National Radiological Protection Board Statist. Med. 18, 1501-1516 (1999)



IDENTIFYING GEOGRAPHICAL AREAS WITH EXCESS INCIDENCE OF RARE DISEASE 1503

In this paper, a simulation of study compares six simple methods for ranking areas by their
ability to identify known cluster areas. Real and artificial geographical census areas are used and
cases are generated by simulation with clusters allocated by two different models.

METHODS
Small areas

The four data sets differ in the variability of population-at-risk (size) of small areas. The first three
are taken from real small census areas (municipalities) in Finland; annual population counts were
available in age group (0-4, 5-9, 10-14 years) and sex classes for the period 1980-1989. The E;
were derived by applying age and sex specific rates to the population at risk while maintaining the
equality of ZE; with O, the total observed number of cases diagnosed 1980-1989. Finland is one
of the countries participating in EUROCLUS which has small areas (municipalities) that are very
variable in population count (see Figure 1). Data set TOT contains all municipalities. MEDYV is
restricted to those with between 0-1 and 5-0 expected cases of childhood leukaemia in the 10-year
period, and so there is only medium variability in size of small areas. Alexander et al.® argued that
this range of expected cases was appropriate for the clustering tests used in the EUROCLUS
project. LOWYV is restricted to municipalities with between 0-5 and 2-0 expected cases of
childhood leukaemia in the 10-year period, and has mean childhood population close to that of
data set TOT (Table I). The ratio of the mean to median E; is 2-1, 1-5 and 1-2 for data sets TOT,
MEDV and LOWYV, respectively. Figure 1 shows the percentage of areas and population
excluded from data set TOT to make data sets MEDV and LOWYV. In each data set, T is the total
number of areas (T = 455,413,167 for TOT, MEDYV and LOWYV, respectively). For each of TOT,
MEDY and LOWYV, the total O is that actually observed 1980-1989. The fourth data set, EQU is
completely artificial; it has the same number of areas and cases as data set TOT, but the areas
have equal E; of O/T.

Simulation processes (see below) are used to allocate the O cells to the small areas with the
‘observed’ number in the ith being O;.

Statistics ranking areas by evidence of excess risk

Six statistics are considered for ranking areas.

1. SIR, standardized incidence ratio, SIR = O;/E;, the maximum likelihood estimator of
relative risk for each individual area under the basic Poisson model, in which O; has
Poisson distribution with mean 4;E;, where /; is the relative risk in the ith area.

2. EB, empirical Bayes; as in SIR, O; has Poisson distribution with mean 4;E; but the 4; are
assumed to be sampled from an underlying gamma distribution with mean of 1.

0\ E; v o
EB = (0; + E.+o)=|—= LI (s
( ' V)/( ' {x) <El> Ei + a (O() Ei + o

where v and « are defined in Clayton and Kaldor!! and are estimated iteratively using
their equations 5 and 7. Specifically, in the j 4+ 1th iteration

Uj+1 = gjz/ﬁj and derl = g]/ﬁj
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Figure 1. Distribution of size of small areas for data sets TOT, MEDV and LOWYV

Table I. Summary statistics describing the small areas in the four data sets

Data set
TOT MEDV LOWV EQU
No areas (T') 455 413 167 455
No cases (0) 451 318 161 451
Childhood-population (annual) per area:
Mean 2103 1607 2044 2103
Median 993 1041 1744 2103
Minimum 17 206 1006 2103
Maximum 73138 10453 4369 2103
Total population 956815 663814 341336 956815
where
| 1 o ~
91-:?291',', ﬁj=ﬁ2<1 +ﬁ>(0ij_0j)2
and
Oi + Uj .
i = with vy = ap = 0.
j Ei + % 0 0

Copyright © 1999 National Radiological Protection Board
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Convergence is reached when 0;;,; — 0;; < 0-001 for all i. In practice, v =~ o and as
E; - 0, EB —» v/u (if O; is 0), but as E; > oo, EB — SIR. When all E; are equal v =0 =0
and EB = SIR, but when the E; are very variable the values of v and « increase.
3. Pois, Poisson probability of observing O; or more cases in an area with expected number of
cases E;
0;—1 o~ EX

Pois=1— )

x=0 XE

under the null hypothesis that O; had distribution with mean E;.
For the remaining three statistics we need to consider the form of the unconditional variance of
0;, V(0,). We shall take V(0;) = E(0;) + X = E; + X.
4. BT, based on the Breslow T-statisticl*

BT = (0, - Ei)z - Oi for Oi 2 Ei
and
BT = an arbitrary working minimum for O; < E;.

The score statistic for detecting extra-Poisson variation under a model such that X is
proportional to ZE7 is related to Y.[(O; — E;)* — 0;].7-'® This is based on the uncondi-
tional distribution but with the true means replaced by { E;}. The contribution of the ith
area to this statistic can be large if O; < E; (for example, if O; = 0) and this is not
informative. However, values based on O; > E; can be considered for ranking purposes.
5. PW1, PW1 = 0,(0; — 1)/E}?. The Potthoff-Whittinghill test for extra-Poisson variance is
locally most powerful when X is proportional to E;. For this test, each area
contributes 0;(0; — 1)/E; to the overall test statistic. This contribution is not a useful
ranking statistic because areas with high values of O; can be ranked highly even if
0; < E;. A theoretical underpinning of the test takes {O;} multinomially distributed
with parameters®® {/,E;, O} and {4;} a random sample from a gamma distribution
with mean 1. Under this the posterior estimate of 4; is {0,(0; — 1)}°*/E;. Thus
ranking by PW1 is equivalent to ranking by the posterior estimates of the probabilit-
ies that an arbitrary case lies in the ith area. PW1 is the relative contribution of the ith
area to the Potthoff-Whittinghill statistic. It is also suitable when the extra-Poisson
variance is proportional to E7 (see BT and process 2 below) since
00 D)~ 1V0) + (B ~ O =1+ 55
6. PW2, PW2 = 0,(0; — 1)/E; — E; is another scale-free statistic based on the Potthoff-Whit-
tinghill test focusing more on the absolute differences of O; and E;. PW2 is the
contribution to the score statistic associated with testing for a multinomial distribu-
tion (conditional on the number of cases) against a Dirichlet-multinomial distribu-
tion, that is, unconditionally, the extra-Poisson variance, X is proportional to E; as
in process 1 below.!® In this situation the expected value E(PW2) = 1 + X/E; is
constant.

E(PW1) = E<

For all these statistics except Pois, the area most likely to contain a cluster will have the highest
value. Figure 2 shows a simple comparison of the six ranking statistics; each figure shows the
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Figure 2. Relation between value of ranking statistic and observed number of cases for E; = 0-5, 10, 20, 3-0, “ x > mark the
points where O;/E; = 4: y-axis, value of each statistic; x-axis, O;

relation between the value of the ranking statistic and O; when E; is 0-5, 1:0, 2:0, 3-0. Interest lies in
the shape of the curves and the relative positioning of each E; contour. The graph for EB uses
v = o = 1; the relative distance between the contours can be changed by altering the values of
v and «. The crosses mark the point on each contour line where O;/E; = 4-0. For constant O;/E;,
the value of BT increases with E; while the values of SIR are independent of E;; the other statistics
are intermediate between these two extremes.

Methods to simulate clustering

The six ranking statistics are compared for situations of known clustering in which a simulation
process allocates an ‘observed’ number of cases O; to each area i. The models used to simulate

Copyright © 1999 National Radiological Protection Board Statist. Med. 18, 1501-1516 (1999)
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Table II. The alternative processes for simulation of clustering

Process Choice of high-risk Poisson mean for (Unconditional) Extra-Poisson
number locations number of cases/high- mean’ of O component of
risk location in ith E(0) variance
area™® 0;
1 Randomly from u E; (uq)E;
population-at-risk*
2 Randomly from list of UE/E E; (uq/E)E?

small areas®

*E =3E/T, T is the total number of small areas;

T A proportion (1 — g) of the total cases are allocated at random to the population at risk and the remainder by the
clustering process listed. O;, E(O,) refer to all cases in the ith area: O; is the observed number of cases and E; is the number
expected under the Poisson variability (X0, = ZE));

*EBach person at risk has an equal probability of selection; ‘Each small area has an equal probability of selection

clustering of a rare disease are Neyman centre-satellite processes;*! they are the same as processes
1 and 2 presented by Alexander et al.® for the investigation of the power of cluster detection and
use two parameters p (mean cluster size) and g (proportion of cases allocated to clusters) in
a two-stage process:

1. A number, h, of ‘high-risk’ locations are identified at random, where h = qO/u; h is an integer
within a simulation replicate but the expected value is maintained over simulation repli-
cates. A small area may be selected more than once to contain a high-risk location (and
could therefore contain several high-risk locations). Areas not selected to contain high risk
locations are considered to be ‘standard’ risk areas.

2. Each high-risk location generates a number of clustered cases in its own area with number of
cases being sampled from a Poisson distribution; an area is still considered to be high risk
even if the number of clustered cases generated is zero. In this event, data analyses will be
incapable of detecting the area.

The remaining (1 — ¢)O cases are allocated randomly to the population at risk. Two alternative
processes for generation of clustering are considered (see Table II). Both processes maintain
independence of population size and incidence rates (E(O;) = E;). Process 1 has variance
V(0;,) = E; + cE; (for which the test for extra-Poisson variance proposed by Potthoff and
Whittinghill**® is locally most powerful), whilst the variance generated by process 2 is
V(0;) = E; + cE? (for which the Breslow T-test is locally most powerful). In process 2 the disease
clusters in the geographical areas with highest E; are expected to be bigger than in process 1.

A range of values for ¢(0-05, 0-15) and p(0-5, 1-0, 1-5) are considered which are believed to be
realistic for clustering of childhood leukaemia and specific combinations appropriate to the
observed range of extra-Poisson variance at 2 per cent (g = 0-02, u = 1-0 or ¢ = 0-04, u = 0-5) to
10 per cent (g =010, u =10 or g = 0-20, u = 0-5) observed in the EUROCLUS project.”
Reported results are the average of 10,000 independent simulation replicates.

Method to compare ranking statistics

The method for comparing the efficiency of the six statistics in identifying cluster areas is based on
the methodology of receiver operating characteristic (ROC) curves (see reference 22 for a review).

Copyright © 1999 National Radiological Protection Board Statist. Med. 18, 1501-1516 (1999)
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In its standard medical usage, the x-axis of the ROC curve is the ‘false positive ratio’ (or
1-specificity) and the y-axis is the ‘true positive ratio’ (or sensitivity). Here, the ‘false positive ratio’
is the proportion of standard-risk areas that are selected by the ranking process, and the ‘true
positive ratio’ is the proportion of high-risk areas selected by the ranking process. An areca may be
high risk but have no cases generated in the clusters; such areas will be counted as false negatives
unless sufficient random cases have been allocated to them.

For each statistic n ranking categories were created. Preliminary runs found working minimum
and maximum values for each statistic. Three-quarters of the ranking categories were allocated
equally to the first quartile of the range and one-quarter allocated equally to the remaining three
quartiles. The number of small areas with statistic value falling in each ranking category was
counted separately for areas with and without high-risk locations. (Ranking category rather than
rank was used to ensure compatibility when averaging over simulation replicates.) The ROC
curve has n points generated. For the jth point, the x co-ordinate is the number of standard-risk
areas that have statistic values falling in the first j ranking categories expressed as a proportion of
the total number of standard-risk areas. Similarly, the y co-ordinate is the number of high-risk
areas that have statistic values falling in the first j ranking categories expressed as a proportion of
the total number of high-risk areas.

A statistic which perfectly separates high- and standard-risk areas in ranking order has a unit
square ROC curve (Figure 3(a)) and a statistic which ranks areas randomly is expected to have
a unit diagonal ROC curve (Figure 3(b)). A statistic which ranks some high-risk areas highly and
then ranks the remainder randomly with standard-risk areas (Figure 3(c)) is considered specific
but not very sensitive, whereas a statistic which ranks some of the standard risk areas last but for
which the remainder are ranked randomly interdispersed with the high-risk areas (Figure 3(d)) is
considered sensitive but not very specific. In practice, the best that can be achieved will depend on
the proportion of high-risk areas that have at least one case allocated and the main interest is to
ensure that the areas ranked highly are truly high-risk areas (that is, specificity is important).
Therefore, good ranking statistics will result in ROC curves of the type Figure 3(c) tending as
much as possible to the shape of Figure 3(a).

Values of the (x, y) co-ordinates for each category were averaged over replicates and are used
for graphical presentation of the curves. If the top ranking vT areas (v = 0-01, 0-10) are chosen, the
proportion of these areas which are truly high-risk locations is y,h/vT (the positive predictive
value) where y, is found by interpolation to satisfy x}(T — h) + y¥h = vT. The number of
ranking categories is n = 500 and preliminary runs demonstrated that increasing n did not
change the results to the accuracy to which they are reported.

As a partial verification of the simulation program, an extreme example was considered in
which all small areas have equal E; and all cases are allocated to clusters ¢ = 1:0. In this simple
situation (process 1 = process 2, and the ranking of areas is identical for some statistics
SIR = EB = Pois (and this corresponds to BT for areas with O; > 1-5E;), PW1 = PW2) simula-
tion results could be predicted from binomial and Poisson probabilities.

RESULTS

Figure 4 shows the ROC curves for the six ranking statistics and for the two clustering processes
with ¢ = 0-15 and p = 1-0 for data set TOT. For process 1 there are clear differences between the
ranking statistics and their relative superiority depends on the proportion of all areas (that is, the
distance from the origin) to be considered. For process 2, the methods perform more similarly and

Copyright © 1999 National Radiological Protection Board Statist. Med. 18, 1501-1516 (1999)
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Figure 3. Possible shape of ROC curves: x-axis, proportion of all standard-risk areas included in the ranking = false
positive ratio = 1-specificity; y-axis, proportion of all high-risk areas included in the ranking = true positive
ratio = sensitivity

reflect the fact that the proportion of high-risk areas with zero cases is about 0-45 compared to
only about 0-10 in process 1.

Three of the methods rank a group of areas equal last (any areas with zero cases in SIR, any
areas with O; < E; in BT and any areas with less than two cases in PW1); consequently, their
curves have a ‘turning point’ with a straight line drawn from this point to (1, 1). For the other
methods, areas are distinguished by their E; and areas with low E; and zero cases may be ranked
higher than, for example, an area with high E; and only a single case. SIR may rank highly areas
with a very small E; which, by chance, contain a single case; this explains the gentle rise of its ROC
curve from the origin. In contrast, the ROC curve of EB discourages high ranking of areas with
low E; and single cases and so the ROC curve rises more steeply from the origin. Pois is better

Copyright © 1999 National Radiological Protection Board Statist. Med. 18, 1501-1516 (1999)
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Figure 4. ROC curves for the six ranking statistics for processes 1 and 2, ¢ = 0-15 p = 10 for data set TOT: x-axis,
proportion of all standard-risk areas included in the ranking; y-axis, proportion of all high-risk areas included in the
ranking

than SIR and EB in identifying high-risk areas if only the very first ranked areas ( < 1 per cent)
are considered, but for clustering process 1 it performs much worse than other methods if there is
interest in ranking more areas. For both processes, PW2 and BT (and to a lesser extent PW1) rise
steeply from the origin and so these methods are more likely to rank high risk areas in the first
10-15 per cent of areas. Interest of correct identification of high-risk areas is likely to be limited to
only a proportion of areas, therefore subsequent tabulated results consider only the top 10 per
cent and top 1 per cent of ranked areas.

The effect of variability in the (population-at-risk) size of small areas on the ROC curve is
shown for process 1 in Figure 5. As the small areas become more uniform in size the difference in
statistics in ranking areas is reduced, so that in data set EQU SIR = EB = Pois ( = BT when
O; > 1'5E;) and PW1 = PW2 (equalities based on rankings of areas not values). However, there is
still an important difference in efficacy of identifying high-risk areas between statistics for process
1 and between processes in the data set which has low variability in size of areas (LOWYV). Results
for ranking of 1 per cent and 10 per cent of areas are listed in Table I11.

The effect of changing ¢ and p within a range appropriate to clustering of a rare disease is
shown in Table IV for selection of 10 per cent and 1 per cent of areas. As g (the proportion of
cases found in clusters) increases and as u (the mean size of cluster) decreases, the proportion of
areas selected which are high-risk areas increases, partly because total number of areas with
clusters has increased. The relative performance of the ranking statistics is robust to the values of
w1 and ¢ for the range of combinations considered.

For each country in the EUROCLUS project, 20-25 areas were selected using the PW2
criterion. Table V shows for Finland, the percentage of these areas expected to be true high-risk
areas based on these combinations of ¢ and p which could result in the 2-10 per cent extra-
Poisson variance observed in the EUROCLUS analysis.

Copyright © 1999 National Radiological Protection Board Statist. Med. 18, 1501-1516 (1999)
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Figure 5. ROC curves for the six ranking statistics for data sets MEDV, LOWYV and EQU for process 1, ¢ = 0-5 u = 1-0:
x-axis, proportion of all standard-risk areas included in the ranking; y-axis, proportion of all high-risk areas included in
the ranking

DISCUSSION

Six ranking statistics have been compared in analyses of real and artificial geographical areas for
two alternative processes of rare disease clustering. Process 1 is motivated by the population
mixing (‘virus’) hypothesis of clustering of a rare disease such as childhood leukaemia in which the
probability of a small area containing a high-risk location depends on the population at risk.
Areas with high E; may contain several high-risk locations, but the size of cluster generated from
each high-risk location is independent of population at risk. In contrast, process 2 may represent

Copyright © 1999 National Radiological Protection Board Statist. Med. 18, 1501-1516 (1999)
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Table III. Percentage of areas ranked in the top 10 per cent and top 1 per cent that are truly high risk areas, ¢ = 0-15, u = 1-0

Data set T* ht Process 10% of areas selected 1% of areas selected
SIR EB  Pois BT PWI PW2 SIR EB Pois BT PW1 PW2
TOT 455 67-6 1 29 49 35 45 50 55 39 83 70 87 64 84
2 34 40 38 39 41 40 36 79 68 81 54 79
MEDV 413 477 1 26 42 33 38 43 45 42 78 70 79 59 77
2 35 40 39 39 40 40 42 83 76 83 58 82
LOWV 167 24-4 1 42 45 44 45 44 47 68 74 75 76 70 76
2 77 79 79 79 79 79 91 96 95 96 93 96
EQU 455 67-6 1,2 47 47 47 46 47 47 78 78 78 78 78 78

* Total number of geographical areas;
T Expected number of high-risk locations (some areas may have more than one high-risk location)
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Table IV. Effect of g and p on the percentage of areas ranked in the top 10 per cent and top 1 per cent that are truly high risk areas for data set

TOT
Process q u 10% of areas selected 1% of areas selected
SIR EB Pois BT PW1 PW2 SIR EB Pois BT PWI1 PW2

1 0-05 05 12 24 14 21 25 30 12 46 27 52 24 47
1-0 9 17 11 15 18 21 13 43 30 48 26 46
1-5 8 15 10 13 16 18 14 44 34 50 28 48
0-15 05 39 61 44 58 63 69 40 83 66 89 63 83
10 29 49 35 45 50 55 39 83 70 87 64 84
1-5 26 42 31 40 44 49 41 86 75 89 67 87
2 0-05 05 16 17 18 19 19 19 17 33 28 38 23 37
10 12 13 14 14 14 14 13 35 31 38 22 39
1-5 11 11 12 12 12 12 12 36 35 39 24 40
0-15 05 45 50 48 51 53 53 46 76 66 81 58 79
1-0 34 40 38 39 41 40 36 79 68 81 54 79
1-5 31 35 34 34 35 35 34 81 72 81 55 81

HSVASIA VY A0 dONHAIDNI SSHOXH HLIM SVAYV TVOIHdVIODOHID ONIAAIINAAI

€ISt



1514 N. R. WRAY ET AL.

Table V. The percentage of areas ranked in the top 5 per cent (226 areas)

that are truly high-risk areas for data set TOT, for statistic PW2 and for

values of g and p relevant to the amoung of extra-Poisson variance found in
the EUROCLUS project

2% extra-Poisson variance 10% extra-Poisson variance

u=1 u=05 u=10 u=05

q =002 q =004 q =010 q =020
Process 1 12 8 50 85
Process 2 29 19 37 74

the fixed environmental hazard (‘chimney’) hypothesis of clustering of a rare disease: each
geographical area, regardless of population at risk, has equal chance of having a high-risk
location, but the size of cluster is generated from a distribution dependent on population-at-risk.
For both processes the unconditional expectation of O; is equal to E;. Processes 1 and 2 generate
the same number of high-risk locations, but process 2 will have more high-risk locations without
cases present as well as some very large clusters in areas of high E;. When all areas have equal E;
the processes are the same; in this situation the six ranking statistics are identical in their ranking
of areas with two or more cases (and if O; > 1-5E;). However, as the variability in E; increases to
levels found commonly in real census data, differences between the six ranking statistics become
apparent. In particular, if process 1 is most likely to represent the true model of exposure, then the
choice of ranking statistic is critical. In practice, it is important that the chosen statistic ranks
highest areas that are truly high risk (that is, it must be specific) rather than trying to rank all
high-risk areas before standard-risk areas (that is, sensitivity is less important). Accurate ranking
of up to 10 per cent of areas is likely to be of interest (Table III). Over the range of situations
considered in this study, PW2 has performed best for all data sets and both processes when
interest is in accurate ranking of 10 per cent of all areas. EB and BT also perform well, but are able
to achieve this by identifying cluster areas with only a single case. In contrast, PW2 must be
identifying more high-risk areas with larger clusters, which are likely to be of more interest in
practice. When interest is in accurate ranking of only the top 1 per cent of areas, PW2 again
performs well, but BT performs marginally better and with so few areas selected, those chosen are
likely to have high E;. Pois matches the performance of PW2 when only 1 per cent of areas are
selected in data set LOWYV, but performs less well when area sizes are more variable and a higher
proportion of areas selected. PW1 performs well when 10 per cent of areas are selected but is not
as specific as PW2, EB and BT when only 1 per cent of areas are selected. SIR performs worst and
should be avoided in all situations.

The results are appropriate to situations where processes 1 and 2 are likely to approximate the
distributions of interest, especially as they relate to the high-risk areas. We note, in particular, that
the EB method was derived for the situation in which the {/;} were sampled from a gamma
distribution with mean 1 (I'(1)). We have examined the empirical distributions for {4;} in process
1 (data not shown) and found the variability to be greater than predicted by I'(1). This is largely
attributable to larger percentages of areas having 4; < 1 in process 1; the conditional distributions
of 4; for J; > 1 for process 1 and I'(1) agree quite closely. Thus, it is likely that our results would
apply if we had used I'(1) to generate {4;} and hence {O;}. However, we cannot exclude the
possibility that EB would have performed optimally in this situation. The processes used to
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generate the present clustering have been chosen as having biological and empirical rationale;
they are probably more appropriate than I'(1) for the situations where the selection of a relatively
small number of genuinely high-risk areas is important.

The ranking statistics and simulation processes used in this study reflect our interest in
localized clustering within small areas; data and confidentiality rules common to all countries
participating in the EUROCLUS project means that only within small area analysis was possible.
Of course, biological or environmental causes of clustering of a rare disease are unlikely to respect
artificial census boundaries, but this only serves to dilute the clustering that can be detected. In
the EUROCLUS project we selected 20-25 areas from each participating region using PW2,
which for Finland represents about 5 per cent of areas. Between 2-10 per cent of extra-Poisson
variance was detected in the overall EUROCLUS analysis’ which may mean that anything from
8-85 per cent of the areas chosen for further study may be truly high-risk areas if the spread of
disease followed one of the processes considered here. Significant results from the comparison of
the suspected cluster areas to matched control areas (Alexander et al., ‘Demographic factors in
small areas containing clusters of childhood leukaemia: results of the Euroclus study’ and
‘Population density and childhood leukaemia: results of the EUROCLUS study’, in press (Eur. J.
Canc.) and examination of temporal patterns in the cluster areas provides verification that the
method is useful.
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