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Abstract

Genome-wide association studies in human populations have facilitated the creation of genomic profiles which combine the
effects of many associated genetic variants to predict risk of disease. The area under the receiver operator characteristic
(ROC) curve is a well established measure for determining the efficacy of tests in correctly classifying diseased and non-
diseased individuals. We use quantitative genetics theory to provide insight into the genetic interpretation of the area under
the ROC curve (AUC) when the test classifier is a predictor of genetic risk. Even when the proportion of genetic variance
explained by the test is 100%, there is a maximum value for AUC that depends on the genetic epidemiology of the disease,
i.e. either the sibling recurrence risk or heritability and disease prevalence. We derive an equation relating maximum AUC to
heritability and disease prevalence. The expression can be reversed to calculate the proportion of genetic variance explained
given AUC, disease prevalence, and heritability. We use published estimates of disease prevalence and sibling recurrence risk
for 17 complex genetic diseases to calculate the proportion of genetic variance that a test must explain to achieve
AUC = 0.75; this varied from 0.10 to 0.74. We provide a genetic interpretation of AUC for use with predictors of genetic risk
based on genomic profiles. We provide a strategy to estimate proportion of genetic variance explained on the liability scale
from estimates of AUC, disease prevalence, and heritability (or sibling recurrence risk) available as an online calculator.
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Introduction

Genome-wide association studies in human populations have

facilitated the creation of genomic profiles which combine the

effects of many associated genetic variants to predict risk of

disease. Genetic testing has long been available for Mendelian

genetic diseases for which variants within one gene are directly

responsible for the disease. In contrast, the etiology of complex

genetic diseases, such those listed in Table 1, comprises both

genetic and environmental risk factors. Results from genome-wide

association studies have provided empirical evidence that very few

associated genetic variants with effect size greater than odds ratio

of 1.5 exist [1,2]. Reconciliation of these effect sizes with the, often

sizeable, estimates of heritability for many complex diseases

(Table 1) means that we must expect there to be many (perhaps

thousands) of genetic variants underlying complex disease if the

effect size of any one variant is very small. It follows that each

individual will carry a different, probably unique, portfolio of risk

alleles. Whereas common risk variants have size too small to be

used individually as risk predictors, profiles based on many

associated genetic variants could provide useful predictions of

genetic risk [3,4]. We define genetic risk as the risk of disease given

an individual’s unique multi-locus genotype; genetic risk remains

unchanged throughout an individual’s lifetime and so could be

predicted at birth prior to exposure to many environmental risk

factors. Indeed, such risk predictions could be age specific, for

example, risk of type 2 diabetes at 10 years, 20 years or 50 years if

genomic profile sets based on empirical data were available for

these scenarios which have age-specific genetic epidemiologies. As

more variants are identified in the coming years, there will be

increasing interest in the prospects of genomic profiling. It has

been argued that genomic profiles should be assessed in terms of

their clinical validity as diagnostic classifiers [5,6]. The receiver

operator characteristic (ROC) curve [7] is a well established tool

for determining the efficacy of clinical diagnostic and prognostic

tests in correctly classifying diseased and non-diseased individuals

and has been used in the context of genomic profiling e.g., [6,8,9].

While the area under the ROC curve (AUC) is an important

measure for clinical validity it does not tell the whole story as it

does not differentiate between the accuracy with which the

genomic profile predicts the true genetic risk of individuals and the

accuracy with which true genetic risk predicts disease status, which

is not under our control. We believe that the ability to differentiate

between these components (i.e. the distinction between prediction

of genotype and phenotype) is important for interpretation of the

value of the genomic profile, particularly as the use of genomic

profiles is very much in its infancy at present. Our knowledge of

the genetic epidemiology of a disease means that we can know a

priori that genomic profiles might not, on their own, be accurate

diagnostic classifiers. For this reason, genomic profiles should

judged in the first instance on the basis of their analytic validity

[10] as predictors of genetic rather than absolute risk. Of course, in
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the long term genomic profiles can be combined with environ-

mental risk factors to predict absolute risk in the context of clinical

utility. Genomic profiles should improve upon family history

which has long been used as a crude estimate of genetic risk (see

Text S1).

In this paper, we provide insight into the genetic interpretation of

AUC. We begin by considering quantitative traits for which the

concepts of accuracy of risk prediction are well developed. For

disease traits we differentiate between measures on the observed

scale of disease versus the underlying scale of disease risk as we

believe recognition of scale of measurement is often overlooked. We

define AUCmax as the maximum AUC that could be achieved for a

disease when the test classifier is a perfect predictor of genetic risk.

We quantify the relationship between AUCmax and heritability of

liability and disease prevalence (lifetime morbidity risk). We show

how to interpret AUC (which is a measure on the observed disease

scale) of a genomic profile as the proportion of variance explained

(or accuracy of prediction squared) on the underlying liability scale.

Finally, we benchmark the value of genomic profiles by comparing

them to the AUC expected when family history resulting from

shared genetic risk factors is used as a predictor of genetic risk.

Methods

Background: quantitative traits
For quantitative traits, in which phenotypic scores are (or can be

transformed to be) normally distributed, the efficacy of a genomic

profile is naturally expressed as the proportion of the genetic

variance explained by the profile. The variance in phenotypes, VP,

can be partitioned into variance of genetic values, VG, so that the

proportion of the variance that is genetic is the heritability VG/VP.

Genomic profiling provides a direct estimate, ĜG, of true genetic

values, G, for individuals in a population and the efficacy of a

genomic profile can be expressed as the proportion of the genetic

variance explained by the profile VĜG/VG. We define r2
ĜGG

= VĜG/

VG, since in selection theory [11], used in livestock and plant

breeding, the correlation between predicted and true genetic risk

(rĜGG ) is used as the measure of accuracy of prediction,

rĜGG~
Cov ĜG,G

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VĜGVG

p , and if the predictor is unbiased (the regression

of G on ĜG is 1), rĜGG~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VĜG=VG

p
. The ratio VĜG/VP is estimated as

the R2 from the regression of P on ĜG and is interpreted recognising

its upper limit to be VG/VP or heritability. These measures show

that for quantitative traits, the accuracy with which the genomic

profile predicts genetic risk is clearly separable from accuracy with

which the true genetic risk predicts the phenotype. In contrast,

AUC is a measure of the efficacy with which ĜG predicts phenotype

which, as shown below, has an upper limit constrained by the

heritability, and also prevalence, of the disease.

Background: disease traits
For disease traits, the phenotype has two possible values, either

affected or not affected. On this observed scale, the directly

measurable genetic parameters are those of recurrence risks to

relatives, lR for relatives of type R, which is the ratio of the

prevalence of disease in the relatives of affected individuals (KR)

compared to the prevalence in the population (K),

lR~
KR

K
~1z

cov X ,Rð Þ
K2

where cov(X, R) the covariance in disease status between diseased

individuals X and their relatives on the observed disease risk scale

[12]. For example, when the relatives are monozygous twins

(R = MZ), Cov(X,MZ) = VG01
the genetic variance, with the

subscript ‘‘01’’ denoting the all-or-none disease risk scale. On this

scale, the majority of the genetic variance is non-additive,

especially when disease prevalence is low [13,14]. The broad

sense heritability on this scale is H2
01 = (lMZ -1)K/(1-K) where

lMZ is the monozygotic twin recurrence risk, assuming there

is no common environmental component to the recurrence

risk. H2
01 is not a normally reported statistic because of its

dependence on disease prevalence [15]. If the relatives

are siblings (R = S) then lS is the sibling risk ratio and

Cov(X,S) =
VA01

2
z

VD01

4
z

VAA01

4
z

VAD01

8
z

VDD01

16
z

VAAA01

8
z

VAAD01

16
z . . . [11], where the variance subscripts A and D denote

additive and dominance terms, and in combination denote epistatic

variance terms. Thus, although lS is an estimable quantity, it is not

simply related to the genetic variances on the observed binary scale.

The genetic properties of disease are much more easily

understood by using the threshold liability model [11], in which

risk of disease is transformed to a normally distributed liability

scale P ,N(0, 1) and P = A + E, where A,N(0, h2
L) are the genetic

effects on the liability scale. On this scale the genetic effects

combine in an additive way; h2
L is the narrow sense heritability on

the liability scale (or heritability of liability) and on this scale broad

sense and narrow sense heritability are equal. E are independent

environmental effects, E,N(0,1-h2
L). The biological plausibility of

an underlying normally distributed liability to disease is based on

the assumption that complex traits are influenced by many

variables; the central limit theorem states that the distribution of

the sum of independent random variables approaches normality as

the number of variables increases. Under the threshold liability

model individuals are affected when P .T, where T is the

threshold on the normal distribution which truncates the

proportion of affected individuals or disease prevalence (i.e., K),

T =W21(1-K), W(T) = 1-K, where W(T) is the cumulative density

function of the normal distribution up to values of T, e.g. if

K = 0.05, T = 1.645. The threshold liability of risk scale has much

nicer properties than the observed disease scale and provides a

framework for comparison of scenarios independent of disease

prevalence. The relationship between heritability of liability h2
L

and the directly estimable parameters of K and lS is

h2
L~

2 T{T1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ T2{T2

1

� �
1{T=ið Þ

qh i
izT2

1 i{Tð Þ
ð1Þ

[16] with i~z=K and z the height of the standard normal curve

and T1 =W21(1- lS K), i.e. the threshold T1,T when lS.1,

Author Summary

Genome-wide association studies in human populations
have facilitated the creation of genomic profiles that
combine the effects of many associated genetic variants to
predict risk of disease. However, genomic profiles are
inherently constrained in their ability to classify diseased
from non-diseased individuals dictated by the genetic
epidemiology of the disease. In this paper, we use a
genetic interpretation to provide insight into the con-
straints on genomic profiles for risk prediction. We provide
a strategy to estimate proportion of genetic variance
explained on the liability scale from estimates of AUC,
disease prevalence, and heritability available as an online
calculator.

Genetic Interpretation of AUC
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G

(l
S

[x
]

–
1

)/
(l

S
–

1
),

A
g

e
re

la
te

d
m

ac
u

la
r

d
e

g
e

n
e

ra
ti

o
n

[2
1

,2
2

]
1

1
.8

2
.2

0
.6

8
0

.9
2

0
.8

1
0

.7
2

0
.3

1
0

.2
7

U
n

ip
o

la
r

d
is

o
rd

e
r

[3
3

,3
4

]
1

0
1

.7
0

.3
9

0
.8

4
0

.7
4

0
.6

7
0

.5
2

0
.4

9

C
o

ro
n

ar
y

A
rt

e
ry

D
is

e
as

e
[3

5
]

5
.6

3
.2

0
.7

2
0

.9
5

0
.8

4
0

.7
5

0
.2

5
0

.1
8

B
re

as
t

ca
n

ce
r

[3
6

]
3

.6
2

.5
0

.4
4

0
.8

9
0

.7
9

0
.7

1
0

.3
6

0
.2

9

T
yp

e
-I

I
d

ia
b

e
te

s
[3

7
]

3
3

.5
0

.6
0

0
.9

4
0

.8
4

0
.7

5
0

.2
5

0
.1

8

P
ro

st
at

e
ca

n
ce

r
[3

6
]

2
.4

2
.8

0
.4

4
0

.9
0

0
.8

0
0

.7
2

0
.3

3
0

.2
5

A
st

h
m

a
[3

8
]

2
2

.6
0

.3
7

0
.8

8
0

.7
9

0
.7

1
0

.3
7

0
.2

9

Lu
n

g
ca

n
ce

r
[3

6
]

1
.7

6
.1

0
.7

6
0

.9
8

0
.8

9
0

.8
0

0
.1

7
0

.0
9

C
o

lo
n

ca
n

ce
r

[3
6

]
1

.5
5

.1
0

.6
4

0
.9

6
0

.8
7

0
.7

7
0

.2
0

0
.1

2

B
la

d
d

e
r

C
an

ce
r

[3
6

]
1

1
.7

0
.1

6
0

.7
9

0
.7

1
0

.6
5

0
.7

4
0

.7
0

St
o

m
ac

h
ca

n
ce

r
[3

6
]

1
6

0
.6

3
0

.9
7

0
.8

8
0

.7
8

0
.1

9
0

.1
0

B
ip

o
la

r
d

is
o

rd
e

r
[3

9
]

1
6

.8
0

.6
9

0
.9

7
0

.8
9

0
.8

0
0

.1
7

0
.0

8

B
ip

o
la

r
d

is
o

rd
e

r
[4

0
]

0
.4

5
7

.9
0

.6
0

0
.9

7
0

.9
0

0
.8

0
0

.1
7

0
.0

7

Sc
h

iz
o

p
h

re
n

ia
[2

5
,4

1
]

0
.8

5
8

.6
0

.7
6

0
.9

8
0

.9
0

0
.8

1
0

.1
5

0
.0

7

Sc
h

iz
o

p
h

re
n

ia
[4

0
]

0
.4

9
0

.6
3

0
.9

8
0

.9
0

0
.8

0
0

.1
5

0
.0

6

R
h

e
u

m
at

o
id

A
rt

h
ri

ti
s

[4
2

]
0

.7
5

8
0

.7
0

0
.9

8
0

.9
0

0
.8

0
0

.1
6

0
.0

7

T
yp

e
-I

d
ia

b
e

te
s

[4
3

]
0

.5
4

1
3

.7
0

.8
6

1
.0

0
0

.9
3

0
.8

4
0

.1
2

0
.0

4

C
ro

h
n

’s
d

is
e

as
e

[4
4

]
0

.1
2

6
0

.7
6

1
.0

0
0

.9
5

0
.8

6
0

.1
0

0
.0

2

Sy
st

e
m

ic
lu

p
u

s
e

ry
th

e
m

at
o

su
s

[4
5

]
0

.0
3

3
0

0
.6

4
1

.0
0

0
.9

5
0

.8
6

0
.1

0
0

.0
2

a
A

U
C

m
a

x
is

th
e

m
ax

im
u

m
A

U
C

p
o

ss
ib

le
b

as
e

d
o

n
th

e
g

e
n

e
ti

c
e

p
id

e
m

io
lo

g
y

p
ar

am
e

te
rs

o
f

d
is

e
as

e
p

re
va

le
n

ce
(K

)
an

d
si

b
lin

g
re

cu
rr

e
n

ce
ri

sk
i.e

.(
l

S
)

w
h

e
n

al
lt

h
e

kn
o

w
n

g
e

n
e

ti
c

va
ri

an
ce

is
e

xp
la

in
e

d
b

y
th

e
g

e
n

o
m

ic
p

ro
fi

le
,r

2 ĜG
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2 ĜG
G

an
d

(l
S

[x
]

–
1

)/
(l

S
–

1
),

p
ro

p
o

rt
io

n
o

f
si

b
lin

g
ri

sk
e

xp
la

in
e

d
,

w
h

e
n

th
e

m
e

as
u

re
d

A
U

C
fo

r
a

g
e

n
o

m
ic

p
ro

fi
le

is
0

.7
5

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
g

e
n

.1
0

0
0

8
6

4
.t

0
0

1

Genetic Interpretation of AUC

PLoS Genetics | www.plosgenetics.org 3 February 2010 | Volume 6 | Issue 2 | e1000864



reflecting that the prevalence amongst sibs of affected individuals,

KS is greater than the prevalence in the population as a whole (e.g.

if K = 0.05 and lS = 2, z = 0.103, T1 = 1.282, h2
L = 0.371).

Area under the ROC curve
The AUC is a statistic calculated on the observed disease scale and

is a measure of the efficacy of prediction of phenotype using a test

classifier. The ROC plots the true positive rate (TPR or sensitivity)

against the false-positive rate (FPR or 1-specificity). TPR = proba-

bility (positive test result|diseased) and FPR = probability (positive

test result|not diseased). Since these probabilities are conditional,

they are not dependent on the number of cases or controls tested,

except through the sampling variance associated with them. In

genomic profiling the ROC is obtained by ranking a set of

individuals with known disease status by their genomic profile from

lowest estimated risk (i.e., profile score) to highest estimated risk

and then assessing sensitivity and specificity assuming a cut-off after

each rank (starting with the highest ranked individual). If nd and nd’

are the numbers of diseased and not diseased individuals, and

if the individual with the highest predicted genetic risk has rank

r1 = nd + nd’ = n, AUC can be calculated directly from the mean rank

of the diseased individuals (�rrd ),

AUC ~
1

nd 0
�rrd{

nd

2
{

1

2

� �
ð2Þ

(see example in Figure S1). Equally, AUC can be calculated as

AUC = 0.5(1 + D) where D is the Somers’ rank correlation [17]

between risk profile and disease status (1 = diseased, 0 = not

diseased). Another equivalent definition of AUC is the probability

that a randomly selected pair of diseased (d) and non-diseased (d’ )

individuals are accurately classified [18]. The probability is the same

as the probability that difference between the genetic liability of the d

and d’ individuals is greater than zero. This difference is

approximately normally distributed with mean md - md’ and variance

s2
d z s2

d 0 . Using the liability threshold model and results of standard

genetic selection theory [11] the means (m) and variances (s2) of the

genetic liability of d and d’ individuals are

md~ih2
L,

md 0~vh2
L,

s2
d~h2

L 1{h2
Li i{Tð Þ

� �
,

s2
d~h2

L 1{h2
Li i{Tð Þ

� �
,

where v = -iK/(1 – K). The genetic liabilities of the d and d’ groups are

each approximately normally distributed, the approximation being

less accurate for high heritabilities.

Therefore,

AUCmax~Pr md{md 0w0ð Þ&

W
i{vð Þh2

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

L 1{h2
Li i{Tð Þ

�
z 1{h2

Lv v{Tð Þ
�� 	q

0
B@

1
CA ð3Þ

Using AUC measured by a genomic profile to estimate
the proportion of genetic variance explained

A useful property of AUC (as discussed above) is that for a given

disease the estimated AUC is independent of the relative

proportions of cases and controls in the sample being classified

[7], i.e. the mean rank is approximately the same if the proportion

of cases: controls is K: (1-K) or 1:1. Or equally, the probability of a

randomly selected case and control being correctly ranked is

independent (except for sampling) of the number of cases and

controls measured. We can use equation 3 to estimate the variance

on the liability scale explained by a genomic profile, x, by making

h2
L the subject of the equation, but renaming it as h2

L x½ �, recognising

that it represents the proportion of variance explained by the

profile. Then, from two measurable parameters, K and AUC, we

can calculate h2
L x½ �,

h2
L x½ �~

2Q2

v{ið Þ2zQ2i i{Tð Þzv v{Tð Þ
� � , ð4Þ

Where Q =W21(AUC). From this, we can calculate the

proportion of the known genetic variance explained by the

genomic profile

r2
ĜGG

~h2
L x½ �=h2

L ð5Þ

using the estimates of K and lS to calculate h2
L (equation 1). We can

also calculate the proportion of the sibling risk explained by the

profile, (lS[x] – 1)/(lS – 1), where lS[x] = (1-W(T1[x]))/K and

T1 x½ �~
T{h2

L x½ �i=2
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{h4

L x½ �i i{Tð Þ=4
q ð6Þ

[19]. r2
ĜGG

and (lS[x] – 1)/(lS – 1) measure the same concept but in

different ways and on different scales; both are useful criteria for

assessing the extent to which the genomic profile accounts for the

known genetic component of disease. We consider family history

as a predictor of genetic risk in the Text S1.

Simulation
We used simulation under the liability threshold model [11,14]

to check our derivations. We simulated 100,000 nuclear families

sampling risk on the liability scale, P = A + E, A , N(0, h2
L) for

parents, and A = KAdad+KAmum+Amend for children, where the

Mendelian segregation terms were random numbers sampled as

Amend , N(0, Kh2
L); E , N(0,1 - h2

L). Individuals were considered

affected, P01 = 1, if P .W21(1-K) = T, otherwise individuals were

not affected and P01 = 0. Genetic values on the observed scale, G01,

were calculated as the normal probability, G01~W
A{Tffiffiffiffiffiffiffiffiffiffiffiffiffi
1{h2

L

q
0
B@

1
CA.

From this we could calculate VG01
, VP01

, H2
01~VG01

=VP01
(using the

G01 and P01 of the first child from each family) and sibling

recurrence risk. AUCmax was calculated from the mean rank of

diseased individuals using equation 2 when ranked on A.

Results

The maximum value of AUC when the test classifier is a
genetic predictor depends on heritability and disease
prevalence

In Figure 1A we consider two diseases both with heritability of

liability, h2
L = 0.2, plotting probability of disease (i.e. G01) vs genetic

liability (i.e. A). To allow an extreme comparison, one of the

diseases has prevalence K = 0.5 and the other, K = 0.01. Figure 1B

ð3Þ
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also considers two diseases with prevalences K = 0.5 and 0.01, but

in this case both have h2
L = 0.8. In Figure 1A and 1B, the position

of the rise in probability of disease along the x-axis reflects the

disease prevalence and the steepness of the rise reflects the

heritability of the disease. In Figure 1A the distribution of genetic

liabilities on the underlying scale is exactly the same for these two

diseases, but when K = 0.01 higher genetic liabilities are needed

before probability of disease rises above virtual zero (virtual

because it is not exactly zero, but very close to zero); similarly for

the diseases in Figure 1B. Figure 1C and 1D plot the ROC curves

for the diseases considered in Figure 1A and 1B, respectively.

These graphs demonstrate firstly (not unexpectedly), that for

diseases with the same prevalence, genetic liability is a better

predictor of disease status for diseases with higher heritability and

secondly, that for diseases with the same heritability, genetic

liability is a better predictor of disease status for rarer diseases,

because a higher proportion of those with high genetic liability are

actually diseased. For example, if we used genetic liability of $1 as

our predictor of disease, then the TPR is 0.26 and the FPR = 0.00,

when K = 0.5, compared to TPR = 0.99 and the FPR = 0.12, when

K = 0.01. These graphs demonstrate that maximum value of AUC

(i.e. AUCmax) when the test classifier is a genetic predictor is

dependent on both h2
L and K.

Prediction of AUCmax from h2
L (or lS) and K

Figure 2 plots AUCmax vs h2
L, for K = 0.001, 0.01, 0.1, 0.3 from

simulation (dashed line) and from equation 3 (solid line) and

shows that AUCmax is particularly constrained for more common

or low heritability diseases. Jannsens et al [3], in their Fig. 4, have

shown the relationship between AUC and the proportion of

variance on the disease scale explained by the genomic profile;

since their genomic profile assumed all genetic variants were

known without error their graph represents the relationship

between AUCmax and H2
01. Our simulation results provided the

same relationship when plotted on this scale (Figure 3, solid line).

In Figure 3 we show the relationship of AUCmax with H2
01 and h2

L

(for each simulation combination of K and h2
L, the AUCmax and

H2
01 are calculated).

Figure 1. The dependence of maximum AUC (AUCmax) from a genomic profile on heritability and disese prevalence. (A,B) Probability of
disease versus genetic liability. (C,D) ROC curve [46].
doi:10.1371/journal.pgen.1000864.g001
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Complex genetic diseases
Table 1 lists AUCmax for a range of complex genetic diseases

calculated using equation 3, with h2
L calculated using equation 1

from published estimates of K and lS. Despite being observable,

the parameters K and lS are subject to considerable sampling

variance; we have tried, where possible, to take estimates from

reviews or large studies, but large study samples simply do not

exist for some low prevalence disorders. The values of AUCmax

show that it should be possible for a genomic profile for complex

diseases to exceed 0.75, the threshold regarded [20] as making a

diagnostic classifier clinically useful when applied to a sample

considered to be at increased risk. However, based on the results

in Table 1 only the diseases with high heritability and low

prevalence, such as Type I diabetes, Crohn’s Disease and Lupus,

can achieve an AUC, by genomic profiling alone, above the 0.99

threshold regarded [20] as being required for a diagnostic

classifier to be applied in the general population. In Table 1, we

also consider the AUC expected under scenarios where a

genomic profile accounts for only a half (AUChalf) or a quarter

(AUCquar) of the known genetic variance. These results show that

for rare diseases genomic profiles can be useful classifiers of

disease (AUC.0.8 when K,0.01), when the profile explains only

a quarter of the genetic variance.

Using equations (4) and (5) we calculate r2
ĜGG

for the diseases

listed in Table 1 when AUC = 0.75. The results (Table 1) show

that the same AUC can represent quite different successes of the

genomic profile in representing the known genetic variance,

ranging from 0.10 to 0.74. If we are able to explain half of the

known genetic variance with identified risk variants then genomic

profiles for most complex genetic disease (AUChalf, Table 1) will

achieve some clinical validity as AUC is .0.75 for all but bladder

cancer, for the examples provided.

Example: age related macular degeneration
Consider the first listed example in Table 1, age related macular

degeneration (AMD).

Based on the review of Scholl et al [21] and the large twin study

of Seddon et al [22] we have used a prevalence after 80 years age

of advanced AMD K = 11.8% and a sibling recurrence risk

representing the genetic contribution of lS = 2.2, which corre-

spond to heritability on the liability scale of h2
L = 0.68 (equation 1).

If the genetic test explains all the genetic variance (r2
ĜGG

= 1), the

maximum AUC that could be achieved by a genomic profile is

AUCmax = 0.92. If only half or a quarter of the genetic variance can

be detected by genomic markers then the maximum AUC that can

achieved are AUChalf = 0.81 and AUCquar = 0.72, respectively,

values that exceed the prediction of genetic risk based of the most

optimistic scenario from a prediction based on family history (Text

S1). If complete disease status is known for all siblings, parents,

grandparents, aunts, uncles and cousins then the maximum AUC

that could be achieved is 0.71, translating to a genomic profile that

explains 0.21 of the genetic variance (Table S1). In practice, the

AUC for a risk predictor based on rs1061170 a single nucleotide

polymorphism in the complement factor H (CFH) gene was 0.69

[23] (and was approximately equal for advanced AMD cases vs

controls and all AMD cases vs controls). From equations 4–6,

h2
L x½ � = 0.12, lS[x] = 1.17, r2

ĜGG
= 0.17 and (lS[x] – 1)/(lS – 1) = 0.15.

Discussion

Relationship of AUCmax to heritability and disease
prevalence when the disease classifier is a genetic risk
predictor

The AUC is a widely used statistic that summarises the clinical

validity of a diagnostic or prognostic test. However, the AUC

statistic of a genomic profile alone has an upper limit (i.e. AUCmax)

which depends on the genetic epidemiology of the disease, namely

the disease prevalence and heritability. It is important that in the

first instance, particularly when genomic profiling is in its infancy,

that genomic profiles are judged on their ability to predict genetic

risk (their analytic validity) rather than on the basis of clinical

Figure 2. Relationship between maximum AUC (AUCmax) from a
genomic profile and heritability on the liability scale h2

L. For
different disease prevalences (A–D) from simulation (dashed line) and
from equation 3 (solid line).
doi:10.1371/journal.pgen.1000864.g002

Figure 3. The relationship between maximum AUC (AUCmax)
from a genomic profile and heritability on the liability scale h2

L
(dashed line) or heritability on the observed scale H2

01 (solid
line), for disease prevalences in order from top left, K = 0.001,
0.01, 0.1, 0.3.
doi:10.1371/journal.pgen.1000864.g003
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validity [10]. Since AUC is estimated as a function of a rank

correlation its genetic interpretation is not immediately obvious.

Here we provide a genetic interpretation of the AUC expressed in

terms of it genetic epidemiology parameters (equation 3). A

relationship between AUCmax and heritability was first demon-

strated graphically by Janssens et al [3] (see solid line Figure 3).

However, their representation was of broad sense heritability on

the observed scale (i.e. H2
01) which is a little used measure of

heritability because of its dependence on disease prevalence [13].

Here we show (Figure 2 and equation 3) the relationship between

AUCmax and the more commonly used measure of heritability, the

heritability of liability (i.e., h2
L) We show that AUCmax is dependent

on both h2
L and disease prevalence (i.e. K).

Initially, it may seem counter-intuitive that AUC depends on

disease prevalence since for an individual disease TPR and FPR

are independent of the proportion of cases and controls measured

and therefore of the sample prevalence. However, as we have

clearly shown (Figure 1A and 1B) the dependence on disease

prevalence results from our ability to generalise across diseases in

the context of a test classifier being a genomic profile.

In contrast to our results and those of Janssens et al [3], Clayton

[24] provided an expression for ROC under a polygenic model

which is independent of population disease prevalence. His

derivation assumes that the effect of each locus is additive on

the log risk scale [25]. Slatkin [26] and we [27] have found that

this model allows probabilities of disease that exceed one, which

although they occur with low frequency can have substantial

impact on the estimates of recurrence risk and genetic variance.

Under this model there is a relationship between recurrence risk to

monozygotic twins and to siblings of lMZ/l2
S = 1; this ratio is not

achieved when probabilities of disease are constrained to their

natural parameter space of a maximum of 1. Furthermore,

empirical estimates of the ratio of lMZ/l2
S from the studies listed in

Table 1 that provide estimates of lMZ and lS are mostly less than

1.0 [27], particularly for low prevalence diseases. Recognising that

these estimates are subject to sampling variance, the estimates of

lMZ/l2
S are 1.1 (AMD), 0.4 (coronary artery disease), 0.8 (breast

cancer), 0.7 (schizophrenia [25]), 0.9 (rheumatoid arthritis) and 0.4

(Type I diabetes). Therefore, we believe the model used by

Clayton to derive the relationship between AUC and heritability

(or sibling recurrence risk) independent of disease prevalence is not

valid.

AUC and accuracy of genetic profiles
AUC is a useful measure because of its independence of the

numbers of diseased and diseased individuals tested, but we

advocate the reporting of an estimate of the proportion of the

known genetic variance on the liability scale (r2
ĜGG

) or the

proportion of sibling risk accounted for by the profile and we

provide a method to do this using the estimated AUC, disease

prevalence and heritability on the liability scale or sibling

recurrence risk (equation 5). An AUC of 0.75 can imply anything

from 0.10 to 0.74 of the genetic variance explained by the genomic

profile for the complex diseases listed in Table 1. The correlation

rĜGG has long been the benchmark in non-human genetics of

accuracy of genetic risk predictors. r2
ĜGG

can be calculated from

three measurable statistics, disease prevalence, sibling recurrence

risk and AUC of the profile (using equations (1) and (4)). In this

way, estimates of AUC can provide direct estimates of the

proportion of ‘missing heritability’ [28] which takes into account

the interdependence of identified associated variants.

Currently, the derivation of genomic profiles is very much in its

infancy. As the sample size of genome-wide association studies

increase, we can expect genomic profiles to include more and

more validated associated variants. However, r2
ĜGG

is constrained

by the variance that could be detected by the markers that are

genotyped recognising that the current generation of genome-wide

chips explain at most ,80% of the known variance in single

nucleotide polymorphisms across the Caucasian genome [29].

This, in turn, may only be a fraction of the total genomic variance

once structural variants such as copy number variants are included

[30]. The actual variance explained by the profile depends on the

sample size (i.e., power) of the studies from which associated

genetic variants have been detected. It is likely that there are many

variants which have such a small effect size that they will be

impossible to detect even with very large samples. Although each

such variant makes only a very small contribution to the genetic

variance, there may be so many that a sizeable proportion of the

variance will go undetected. Even if only quarter of the genetic

variance is detectable by our future genotyping technology, the

AUC is still greater for the genomic profile than for family history

(ignoring shared environmental risks of family members, Text S1).

Limitations
In our derivations we have assumed the liability threshold

model [11,14]. Slatkin [26] demonstrated that the threshold model

was one of several genetic models that provided the necessary

steep increase in probability of disease with increasing load of

genetic risk alleles [26]. The main assumption of the liability

threshold model is that the distribution of liability scores is

unimodal which should be achieved as long as there is no single

unidentified genetic or environmental of very large effect [11].

The model accommodates any distribution of risk allele effect sizes

and risk allele frequencies as long as there are sufficient (‘‘more

than one or a few’’ [11]) risk alleles in the population to create an

approximately normal distribution of genetic liability scores. Since

our simulation results of AUCmax vs H2
01 (Figure 3) based on the

liability threshold model agree with those of Janssens et al [3] who

used a logit model to combine genetic risks from individual genetic

variants, it is clear that the dependence of AUCmax on heritability

and disease prevalence is not a function of the threshold model.

We have also assumed that a genetic profile is applied in the

same ‘‘average’’ environment as the genetic risks were estimated

and we have assumed that all familiality is of genetic origin. The

AUCmax will be lower than those derived here if any part of the

sibling recurrence risk reflects co-variation of non-genetic origin.

Using recurrence risks from different types of relatives, the

importance of common environmental factors can be assessed

and a lS which reflects the genetic contribution of sibling

recurrence can be used in our calculations. We have also assumed

that the genomic profile consists of genetic markers associated with

disease that are passed on according to the rules of Mendelian

inheritance. In the future, a genomic profile might include non-

heritable genetic variants, for example recurrent de novo copy

number variants or perhaps methylation status variants (for which

the inheritance pattern, if any, is currently unclear [31]). Such

variants, although genetic, do not contribute to the similarity

between relatives, and so would be included in the environmental

component when partitioning variance. Under these circumstanc-

es it is possible that a genomic profile could exceed the AUCmax

based on sibling recurrence ratio. Our calculations assume that we

know the population parameters K and lS (and therefore h2
L).

Estimates of these parameters are sometimes based on small

sample size and are subject to sampling bias or different definitions

of the disease. In particular, prevalence rates can depend on the

age distribution of the population in which they are measured. In

addition, recurrence risk ratios of relatives have a maximum

possible value which is dependent on the disease prevalence, so

Genetic Interpretation of AUC
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that higher risk ratios are achievable when disease prevalence is

lower; and estimates of sibling risk ratio and disease prevalence

calculated in different studies sometimes reflect this dependence.

In Table 1, we included two different estimates for both

schizophrenia and bipolar disorder, but for these examples the

estimates of AUCmax are robust to the magnitude of differences

reported in genetic epidemiology parameters for individual

diseases. At present, genomic profiles based on validated

associated variants do not come anywhere close to the maximum

implied by their AUCmax; Jakobsdottir et al [6] have reported AUC

of 0.80 for risk of cardiovascular events, 0.64 for type 2 diabetes,

0.56 for prostate cancer, 0.66 for Crohn’s Disease and 0.79 for age

related macular degeneration. This is not surprising given the

effect size of individual associated variants discovered in genome-

wide association studies, which imply that much larger sample

sizes will be needed to discover the majority of the variants that

explain the genetic variance [4]. However, already these genomic

profiles outperform family history (resulting from shared genetic

risk only) for four out of five of these diseases. Although the AUC is

a useful summary statistic for clinical validity, in practice clinical

utility depends on many other factors such as the benefits versus

risks of the intervention strategies that follow from the risk

prediction [5,32]; these important factors are not considered here.

Conclusion
We have provided a genetic interpretation of and insight into

the AUC statistic calculated under a genomic profile. Time will tell

if genetic variants amenable to genotyping are able to reconstruct

the known genetic variance in its totality. Even if it is possible to

explain only a quarter of the known genetic variance, the genomic

profile will be a more useful predictor of genetic risk than self-

reported family history (in the absence of shared environmental

risk factors) which is a commonly used measure for targeted

screening programmes for complex genetic diseases. In practice,

predictions of risk to disease will incorporate both genetic and

environmental risk factors to produce the best predictions of

absolute risk to disease. Here we provide a benchmark for the

expected contribution from the genetic component of the

prediction illustrating that the same AUC estimated for different

diseases can imply quite different proportions of genetic variance

explained by the genomic profile, which is often overlooked (e.g.

[5]). Ultimately, genomic profiles may be used without contribu-

tions from environmental risk factors, since the contribution from

the genomic profile can be estimated perinatally, prior to exposure

by many environmental risk factors and when limited family

history of disease is available. Indeed, one purpose of a genetic risk

predictor is to allow individuals to choose to modify their exposure

to environmental risks. We provide a simple online calculator

(http://gump.qimr.edu.au/genroc) to calculate i) the maximum

AUC for a genomic profile of a disease given estimates of disease

prevalence and sibling recurrence risk or heritability of liability, ii)

the proportion of variance explained on the liability scale given an

estimate of AUC from a risk predictor and disease prevalence and

iii) proportion of genetic variance or of sibling risk explained given

an estimate AUC, disease prevalence and sibling recurrence risk

[2].

Supporting Information

Figure S1 Example calculation of ROC curve for a genomic

profile. An example of nd = 9 diseased (case) and nd’ = 10 non-

diseased (control) individuals listed in rank order on a genomic

profile. The area under the curve is calculated from equation 2,

which is derived as the sum of the horizontal rectangles (bounded

by dashed lines) of the ROC plot (solid line) generated by

progressing through the ranked list of individuals: each time the

next ranked individual is not diseased, the ROC line moves along

the x-axis by 1/nd’ and each time the next ranked individual is

diseased the ROC line moves up y-axis by 1/nd. The mean rank

value (ri) of the cases is �rrd = 13.2 and AUC = 0.82.

Found at: doi:10.1371/journal.pgen.1000864.s001 (0.07 MB TIF)

Table S1 AUC related statistics for complex genetic diseases:

Table 1 with added columns considering family history.

Found at: doi:10.1371/journal.pgen.1000864.s002 (0.10 MB PDF)

Text S1 AUC based on family history as a prediction of genetic

risk.

Found at: doi:10.1371/journal.pgen.1000864.s003 (0.07 MB PDF)
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