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Procedures for calculating the additive genetic variance-covariance matrix and its inverse are adapted 
to accommodate the occurrence of mutations in the genome. The inverse matrix can be used in 
mixed model methodology for best linear unbiased prediction of breeding values or for variance 
component estimation under a genetic model that includes mutation effects. 

1. Introduction 

In the mixed model methodology (Henderson, 1973) used in animal breeding to predict 
breeding values of animals, the additive genetic variance-covariance matrix (or, in fact, its 
inverse) is included with the aim of increasing the accuracy of prediction by accounting for 
all the additive genetic variances and covariances between individuals. In this way, the 
reduction in additive genetic variance (0:) due to inbreeding and to selection is intrinsically 
accounted for (Sorenson and Kennedy, 1984). However, these decreases in additive genetic 
variance may be counterbalanced to some extent by the occurrence of mutations of the 
genome. Genomic mutations include base pair substitution, duplications, insertions, and 
inversions of segments of chromosomes. They may occur at neutral sites (e.g., at introns 
or inactive sites), at active sites but at loci that are neutral with respect to the quantitative 
trait of interest, or at loci that affect the trait. In the latter case the new mutations would 
serve to increase a:. Mutation has been offered as one explanation for the continued 
response in long-term selection experiments in which the attainment of a selection plateau 
might be expected, for example, more than 50 generations of selection for oil in maize 
(Dudley, 1977). Hill (1982) examined the effects of mutation on response to selection by 
simulation and concluded that although mutation events had little impact on the initial 
generations of selection programmes, they should not be ignored in the design and analysis 
of long-term experiments, nor in the analysis of data on many generations from small 
animal populations, e.g., pigs and poultry. Inclusion of the effects of mutation into an 
additive genetic mixed model therefore seems important for the analysis of some animal 
breeding data (Dempfle, 1987; Dempfle and Grundl, 1988) and requires that account be 
taken of variances and covariances between animals accrued by mutations in previous 
generations, yet not traceable to the base population. 
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Few estimates of mutation variance exist; in a review of literature, Lynch (1988) found 
that estimates of mutation variance in laboratory species ranged from lop4 to 5 X lop2 of 
the error variance. No estimates are available for traits of commercial importance in 
livestock. Incorporation of mutation effects into the additive genetic variance-covariance 
matrix used in a variance component estimation procedure may then provide useful 
estimates of the mutation variance. 

When mutation effects are not included, A is the numerator relationship matrix, where 
A = (ai,) such that aij is the numerator of Wright's (1922) coefficient of relationship. 
Procedures exist for the construction of A (Emik and Terrill, 1949) and for construction of 
its inverse, A-l, without direct inversion (Henderson, 1976; Quaas, 1976; Thompson, 1977) 
from a list of animals and their sires and dams with the animals ordered by date of birth. 
The inverse additive genetic variance-covariance matrix used in mixed model methodology 
is A-' 

In this note these procedures are adapted to account for the random effects of mutation 
and their inheritance in the additive genetic variance-covariance matrix and its inverse. 

2. The Additive Genetic Model Including Mutation Effects 

The trait of interest is assumed to be under the control of many unlinked loci, each of 
small additive effect, the infinitesimal model. Individuals in the base population are 
assumed to have no mutation effects since any mutations in their genome contribute to 
the base additive genetic variance. New mutations are assumed to arise independently in 
individuals of the first and subsequent generations, and they are assumed to have a small 
additive effect [as justified by the simulations of Keightley and Hill (1988)l with mean zero 
and contributing a new variance of a& per individual. Mutations are inherited by descen- 
dants as infinitesimal additive genes. 

Let the additive genetic value or breeding value of animal i be denoted u,. Then 

where usand tid are the breeding values of the sire and dam of i ; f$i is the random Mendelian 
or within-family sampling effect unique to i, which is distributed with mean zero and 
~ a r ( f $ ~ ) ;and yi is the random mutation effect unique to i, which is distributed with 
mean zero and variance a&.  The variables f$i and yi are independent of each other and 
of usand t id .  

Let the additive genetic variance-covariance matrix including mutation effects be Mu:. 
MU:, up to time unit t, can be partitioned as 

where 6 = u&/ui. Aou: is the additive genetic variance-covariance matrix of additive effects 
attributed to the distribution of variance present in the base population. Aka& is 
the variance-covariance matrix of additive effects attributed to mutations arising in 
time unit k. For simplicity, time units hereafter will be called generations, which is 
appropriate for populations with discrete generations. For the situation of overlapping 
generations, time units can be considered as, for example, birth seasons. In fact, the only 
restriction on the allocation of time units is that parents must feature in an earlier time 
unit than their offspring. The elements of Ak are the additive genetic relationships if 
ancestors born in generations 0 to k - 1 are ignored. Elements of Ak, like those of A,, have 
a maximum value of 2, which represents complete identity by descent. Diagonal elements 
of Ak (for k 2 0) are 1 +J;,k, where is the inbreeding coefficient of individual i ignoring 
common ancestors born in generations 0 to k - 1. The J;,krepresent the proportional 
reduction of the segregation variance contributed by individual i to its progeny and which 
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can be traced to effects arising in generation k (or, if k = 0, effects which were present in 
the base population). Elements of M are similar to those of Ak in that they are the sums of 
relationships over generations weighted by 0, but as such, they have no limiting value and 
therefore MU; is most simply interpreted as a variance-covariance matrix. In M,  terms 
denoted h, are defined which are similar ~ O J ; , ~  in Ak, for k > 0, in that it in A. and ~ o J ; . ~  
represents the amount by which segregation variance is reduced, but hi may be greater 
than 1 since it may contain a term in 0. An important assumption implicit in the infini- 
tesimal model is that there is an infinitesimally small probability of a new mutation 
destroying the homology at an inbred locus. However, new mutations themselves may be 
subject to inbreeding. 

For an individual in the base population, generation 0, var(ui) = 02 .  For an individual 
in generation 1, var(ui) = a: + a;, because inbreeding is not possible in the first generation 
of a population in which selfing does not occur. In generation 2 and thereafter, the presence 
of mutation effects in the parent generations and the inbreeding of the offspring and also 
parents (in generation 3 and after) must be considered: 

The first three terms of equation (3) comprise the between-family variance, which can be 
written as 

(.25mss+ .25mdd+ .5msd)u: = (.25mss+ .25mdd + h , )~ : ,  (4) 

where mi, are the elements of M and h, = .5mSd. 
Var(q5;) is the variation within full-sib families caused by Mendelian sampling at segre- 

gating loci and can be separated into the sampling variance of male parent gametes and 
female parent gametes. If mutation effects are ignored, then the within-sire family variation 
is .25a; in the base population. In later generations, this is reduced by a factorf, [f,is the 
inbreeding coefficient of the sire and f,a; = .5 cov(u,,, usd), where us, and uSd are the 
breeding values of the paternal grandsire and grandam of individual i]. f,accounts for the 
proportion of loci which are identical by descent and therefore contribute no segregation 
sampling variance. In this circumstance, 

which can be written as 

~ a r ( $ ~ )= [.25(a,, + add) - .5f, - .5&]a:. (5) 

When mutation effects are considered, the variability attributed to a non-inbred parent is 
greater than .25a: because of the mutations which serve to increase the variability. 
Inbreeding of the parents will reduce the segregation variance in the same way as before, 
with hsa; = .5 cov(u,,, uSd) representing the reduction of variance. The within-family 
variance analogous to equation (5) is 

In follows that, in total, var(ui) is 

which reduces to the more familiar equality var(ui) = (1 +J)a; when mutation effects are 
not included. 

3. Procedure for Constructing the Additive Genetic Variance-Covariance Matrix Ma: 

M can be computed recursively from a list of individual, sire, and dam identifications 
ordered by the age of the individuals (hereafter called the ordered pedigree file). Any sire 
or dam identified must previously have appeared in the list as an individual. Unknown 
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parents are identified by 0. Any individual with both parents unknown is assumed to be 
sampled from the base population and so has no accumulated mutation effect. The vector 
h stores the hi coefficients. 

(i) If both parents of individual i are known, say p and q, 

m,, = mi, = .5(mj,, + mill) f o r j =  1, . . . ,  i - 1 

rn,, = .5(m,+ mqq+ m,,- h, - h,) + 6' 

(ii) If only one parent is known, say p, 

m,, = m,, = Sm,, 

(iii) If neither parent is known, 

m,, = mi, = 0 

m,, = 1 

4. Procedure for Constructing the Inverse of the Additive Genetic 
Variance-Covariance Matrix, M-' al2 

To form the mixed model equations applied to animal breeding data, A-' g i 2  is added to 
the animal x animal block of the least squares equations. Henderson (1976) showed that 
A-I can be constructed directly without the costly procedure of forming A itself and 
inverting this sparse matrix. A, being a symmetric matrix, can be written as a product of a 
lower triangular matrix, L, and its transpose L' : A = LL'. In addition, L has elements I, 
and let L = TD, where D is a diagonal matrix with diagonal elements (di) identical to the 
diagonal elements of L, and T is a lower triangular matrix with diagonal elements equal 
to 1. Then 

A-1 = ( L L / ) - ~= ( ~ ~ 2 ~ 0 - l= (T- ' ) ' (D-~)~T-~ .  

Henderson (1976) demonstrated that each row of T-' has a maximum of two nonzero 
elements which have the value -.5 in the columns corresponding to the parents of the 
individuals represented by the row. Exploiting this structure, A-' can be easily constructed 
from a list of individual (i), sire (s), and dam (d) identifications, ordered by the age of the 
individuals. For completeness those rules are simply to add: 

6, to a" 

.25bi to ass, asd, ads, add 

where aiJ is the (i, j )  element of A-' and bi = l,i2 = d;2. The only requirement, therefore, 
is that the diagonal elements are known and these are var($;)/a; (Thompson, 1977), 
where var(q5;) was defined in equation (5). Each d?  is simply (4- L/4 - fd/4), a -A14 
(or -fd/4), or 1, depending on whether 2, 1, or 0 parents, respectively, are identified, and 
these items are easily found if A is known. Alternatively, Henderson (1976) found the 
diagonal elements by construction and storage of L, which could require substantial 
computer memory when the number of individuals is large. Quaas (1976) presented an 
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algorithm that does not require L or A to be stored and, therefore, can be used on very 
large data sets. These algorithms can be easily updated to account for mutations. 

4.1 Adapting the Method of Henderson (1976) to Account for Mutation Effects 

M is a symmetric matrix and can be written as a product of a lower triangular matrix L 
and its transpose, L'. Similarly, each of the Ak ( k  2 0) matrices in equation (2) can be 
written as a product of lower triangular matrices Lkand their transpose Lk : 

Lkfor k > 0 has null columns corresponding to individuals in generations 0 to k - 1; the 
remaining columns are identical to Lo. In addition, Lk= TODk(k 2 O), where, analogous 
to the presentation of Henderson (1976) above, Dk is a diagonal matrix with diagonal 
elements identical to those of Lkand Tois a lower triangular matrix with diagonal elements 
1. Let Eo = Doand let Ek= D ~ & .Then 

and 
- I  

M u 2  = ( T )( E )  T;' 0;'. 

Therefore, exactly the same rules niay be used to construct M-' as for A-' above [equations 
(7)], with the bi being the ith diagonal element of E;), which is identical to 1z2, 
where lii is the ith diagonal element of L from M = LL'. If an alternative but equivalent 
derivation, analogous to that of Thompson (1977), is followed, then the diagonal elements 
are easily observed to be [var($,) + u&]/u;. 

Each row of L can be computed in order by the following method from the ordered 
pedigree list. Vector h contains the h, values. 

(1) If both parents of individual i are known, say p and q where p < q, 

liJ = .5(1,, + I,,) f o r j  = 1, . . . , p  

(2) If only one parent of individual i is known, say p, 

1, = .5lPj f o r j  = 1, . . . ,p 
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(3) If neither parent of individual i is known, 

M-' is constructed by the rules (7) above using bi = 1,'. If M is known, the 1: can be 
found directly without constructing L as 

( I )  If both parents are known, say p and q, 

1; = .25(m,, + m,,) - .5(hs + hd) + 0 

(2) If only one parent is known, say p, 

1;. = .5 + .25m, - .5hs + 0 

(3) If neither parent is known, 

/,[2 
= 1 

4.2 Adapting the Method of Qzlaas (1976) to Accoz~nt for Mzitation Effects 

The method of Quaas (1976) is adapted to find the diagonal elements of L, where 
M = LL', without storing L. Again the procedure requires the ordered pedigree list. For n 
individuals, n rounds of the procedure are performed. Three vectors, u, v, and h, are defined 
with ith elements ui, ui, and hi, respectively. The sum of squares of the entries of each row 
of L are stored in u. After the kth round of the procedure the first Ic elements of v contain 
the diagonal elements of L. Vector h stores the hi coefficients. 

For the lcth round: 

C 
(a) 


J.25(z~,+ u,) - .5(h, + h,) + 0 if 0 < p < q 


uk = lkk = 4.5 + .25uq- .5hq + 0 i f p = O < q  

where p and q are the parents of the lcth individual and an unknown parent is denoted 0. 
(b) F o r j = l c +  1, . . . , n, 

where pj and q, are the parents of individual j, p, < q,. 
(c) F o r j  = 12 + 1, . . . , n, 

h, + .5u,u, if k s pJ < q, 

4 if p, < lc 

(d) For j = Ic, n, 

21, = u, + u,2 

To construct M-' by equations (7), use bi = 1 i 2= u,?. 
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5. Example 


Consider the following pedigree: 


For all methods the pedigree data entered are 

1 0 0  

2  0 0 

3 1 2  
 1 

1 
2  
2  
3  
4  

4 1 2  

5 4 3  

6 4 2  

7 6 5 

8 7 5  


Time unit 
0 
0 

A4 is null except for the last element, which is 1.  
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Using d = 10 to demonstrate clearly what is happening, 

and 

Entries of the u, v, and h vectors for the updated Quaas method are presented in Table 1; 
the first four entries of h are 0 in all rounds. Individual 4 is a common ancestor of individual 
7; the segregation variance of individual 7 attributable to the new mutations arising in 
individual 4 is therefore reduced because the new mutations have been subject to inbreeding. 

Table 1 
Entries for u, v, and h for each round 

Round 

Entry 1 

Vector u 
1 1 .000 
2 .000 
3 .250 
4 .250 
5 .250 
6 .063 
7 .I41 
8 .I91 

Vector v 
1 1.000 
2 .000 
3 .500 
4 .500 
5 .so0 
6 .250 
7 ,375 
8 .438 

Vector h 
5 .I25 .250 .250 .250 .250 .250 .250 .250 
6 .000 .250 ,250 .250 .250 .250 .250 .250 
7 .063 .250 ,250 1.563 1.563 1.563 1.563 1.563 
8 .094 .250 .906 2.219 6.094 6.094 6.094 6.094 
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6. Discussion 

Mutation effects are easily incorporated into the rules for constructing the additive genetic 
variance-covariance matrix and its inverse, and so M-' could be incorporated into the 
mixed model equations for predicting breeding values if u$ or 0 is known. If they are not 
known, then Ma: could be included in a restricted maximum likelihood (REML) analysis, 
iterating on different values of 0, resulting in an estimate of a;. More explicitly, the 
likelihood function in the derivative-free REML method of Smith and Graser (1986) 
depends on a function of observations and I A 1 ,  the determinant of A. Jn a mutation 
model this will depend on I M I, which in turn is determined by the product of the d,. This 
method is currently being used to estimate mutation variance in lines of mice selected for 
increased and decreased body weight (P. Keightley, personal communication). The base 
population mice are a standard inbred laboratory strain and therefore have a very low base 
additive genetic variance. 

For simplicity, individuals with unidentified parents are assumed to be sampled from 
the base population. The procedure could be easily updated to account for the approximate 
generation of an individual and therefore impose expected accumulated mutation effects. 
However, it is anticipated that this procedure is most likely to be applicable to experimental 
populations in which full pedigree records are available. 

I would like to thank Professor W. G. Hill and Dr Robin Thompson for their constructive 
criticism of the manuscript and the latter for demonstrating how to include mutation effects 
into REML. 

On adapte les prockdures de calcul de la matrice de covariance gknktique additive et son inverse pour 
tenir compte des mutations dans le gknome. On peut utiliser la matrice inverse dans la mkthodologie 
du modble mixte pour la meilleure pridiction linkaire non biaiske des valeurs en croisement ou pour 
l'estimation de composantes de la variance quand un modble gknktique inclut les effets de mutation. 
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