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Prediction of individual genetic risk of complex disease
Naomi R Wray1, Michael E Goddard2 and Peter M Visscher1
Most common diseases are caused by multiple genetic and

environmental factors. In the last 2 years, genome-wide

association studies (GWAS) have identified polymorphisms

that are associated with risk to common disease, but the effect

of any one risk allele is typically small. By combining

information from many risk variants, will it be possible to predict

accurately each individual person’s genetic risk for a disease?

In this review we consider the lessons from GWAS and the

implications for genetic risk prediction to common disease. We

conclude that with larger GWAS sample sizes or by combining

studies, accurate prediction of genetic risk will be possible,

even if the causal mutations or the mechanisms by which they

affect susceptibility are unknown.

Addresses
1 Genetic Epidemiology and Queensland Statistical Genetics,

Queensland Institute of Medical Research, Brisbane, Australia
2 Faculty of Land and Food Resources, University of Melbourne and

Department of Primary Industries, Victoria, Australia

Corresponding author: Wray, Naomi R (Naomi.Wray@qimr.edu.au)
Current Opinion in Genetics & Development 2008, 18:257–263

This review comes from a themed issue on

Genetics of disease

Edited by Nick Hastie and Aravinda Chakravarti

Available online 28th August 2008

0959-437X/$ – see front matter

# 2008 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.gde.2008.07.006

Introduction
Common complex diseases, such as psychiatric disorders,

cancer, diabetes, heart disease and asthma, are caused by

multiple genetic and environmental factors. Significant

heritabilities and increased risk to relatives quantify the

importance of the genetic factors. To predict the risk of a

complex disease for a healthy individual we need to know

and be able to measure risk factors, their effect sizes and

how they interact. Although prediction of total risk is an

ultimate goal, prediction of genetic risk, the risk that can be

attributed to inherited genetic variants, is an important

component and is the focus of this review.

Predictive genetic tests are already available for a huge

range of Mendelian disorders, those for which a single

genetic mutation is known to cause the disease [1], but for

common complex diseases, very few causal genetic risk

factors have been identified. Consequently genetic pre-
www.sciencedirect.com
diction has been mostly limited to family history infor-

mation. However, the value of family history information

in clinical diagnosis is limited: for example, all children in

a nuclear family are predicted to have the same genetic

risk based on the history of disease in their parents and

more distant relatives, yet they are genetically different.

Great progress has been made in the last 2 years in the

identification of common polymorphisms that are associ-

ated with risk of disease in the population. Now that these

risk variants have been identified, can they be used to

predict an individual’s genetic risk for a particular disease

more accurately than can be done using family history

information?

The possible impact of prediction of genetic risk on

individual and population health has been recognized

for sometime [2,3,4�], but it is only the new developments

in high-density genotyping technology [5] that make

genetic risk prediction within reach. In this review, we

discuss the recent advances made by genome-wide

association studies in identifying genetic variants associ-

ated with disease and the way in which these results can

be used for ‘genomic profiling’ [6], the prediction of

genetic risk to disease.

Genetic architecture of complex diseases
Genetic architecture of a disease refers to the number of

genetic polymorphisms that affect risk of disease, the

distribution of their allelic frequencies, the distribution of

their effect sizes and their genetic mode of action (addi-

tive, dominant and/or epistatic). Prediction of genetic risk

is dependent on the underlying genetic architecture

because as the number of causal variants increases, the

proportion of variance explained by each decreases. As a

consequence, it becomes harder to detect them exper-

imentally and to estimate their allelic effects accurately.

Genome-wide association studies (GWAS) –
what can they tell us about genetic
architecture of complex diseases?
Following the sequencing of the human genome and the

creation of a map of common haplotypes [7], commercial

panels of �300 to �500 thousand single nucleotide poly-

morphisms (SNPs) were created that covered most com-

mon variation. These SNP chips have been used

extensively in the last two years in large GWAS for

common diseases and quantitative traits. To date, more

than 25 (e.g. [8��]) of these studies have been published

and many more are under way. Validation studies have

shown that at least some of the associations found in

GWAS are replicated in independent samples. What
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Figure 1

Frequency distribution of effect sizes expressed as Odds ratio for the

risk allele of 92 validated associated SNPs identified from GWAS. These

SNPs represent associations with one of 16 disorders (listed in

Appendix A). The power of the GWAS to detect variants with effect size

of 1.1 or smaller was low.
general conclusions can we draw from these recent stu-

dies about the genetic architecture of complex diseases?
(i) M
Curre
ost associated variants that have been detected are

common (minor allele frequency, MAF >0.05),

although this is mostly a reflection of study design

in terms of SNPs selected for genotyping and power

of the sample size. Risk variants are almost equally

likely to be the minor or major alleles.
(ii) A
lthough a few variants of large effects (allelic Odds

ratio, OR > 2) have been detected, the vast majority

of the effect sizes of risk alleles are small, typically

OR <1.5 but many around 1.1 and 1.2 (Figure 1),

which are the limits of detection given the

experimental sample sizes employed to date.
(iii) F
or most diseases, the detected variants explain little

of the total genetic variance that we know exist (from

twin and family studies). For breast cancer, prior to

GWAS, about 20% of the familial risk could be

accounted for by variants in six genes (16% from

BRACA1 and BRAC2 alone) [9�,10]. Results from

GWAS have identified variants that account for only

an additional 2.3% of the familial risk [9�].

(iv) T
he genetic mode of action is additive on the

logarithm of risk (log-risk) scale (multiplicative on the

risk scale) for the majority of variants identified, as

expected from the significant heritabilities [11], but

the power to detect interactions between variants has

been limited by the sample sizes used to date [8��].
Together these studies point to a genetic architecture of a

few risk variants of large or moderate size, but a very

substantial number of variants which generate small
nt Opinion in Genetics & Development 2008, 18:257–263
increases in disease risk [8��]. But why has so little of

the genetic variance been explained? First, the effect

sizes may be underestimated as the associated variants

may only be in linkage disequilibrium (LD) with the

causal variants. Second, the genotyped markers may not

be representative of all the inherited genetic variance,

especially structural variation [12�,13�,14�]. Thirdly, the

GWAS SNP panels are limited to polymorphisms with

MAF >0.01. Rare causal variants are likely to exist but

will not be represented (‘tagged’) by the genotyped

SNPs, as high r2 LD between SNPs requires a close

matching of allele frequencies [15]. However, such var-

iants cannot individually (by virtue of being rare) explain

much of the genetic variance [16,17�].

Since most of the identified associated SNPs have effect

size close to the limit dictated by the power of the studies,

a likely explanation, at least in part, is that there are many

common polymorphisms with effects that were too small

to pass the stringent significance thresholds. Given the

effect size of variants detected so far, study samples of the

order of 10 000 cases and controls would be needed to

detect variants which explain the majority of genetic

variance [8��,18�].

Prediction of genetic risk from genome-wide
markers
Many genetic variants each conferring only a small

increased risk to disease are individually not useful in

predicting a person’s genetic risk to disease. However, a

risk equation combining presence/absence of each risk

variant and its effect size can generate a personalised

prediction of genetic risk. Given the emerging evidence

for the genetic architecture underlying complex diseases,

how accurate would a prediction equation be in predict-

ing individual genetic risk? The SNPs (or other markers)

do not have to be the causative mutations: they just need

to be in high LD with the causative mutations so that

there is a consistent association between the SNP and

disease risk. We investigated this problem using simu-

lation of GWAS based on realistic assumptions of under-

lying genetic architecture [18�]. For simplicity we

assumed perfect LD between causal and genotyped

SNPs and that the genotyped SNPs could explain all

the genetic variance by combining additively on the log-

risk scale. Our results confirmed that GWAS of only a

couple of thousand of cases and controls (the current

norm) are still too small to detect most of the causal

variants and those detected will not explain enough of the

genetic variance to be useful in risk prediction (Figure 2).

However, for a case-control study with 10 000 cases and

controls our results show that even for diseases controlled

by 1000 loci with mean relative risk of only 1.04 (and

maximum �1.3), it will be possible to identify �75 of the

larger loci that explain >50% of the genetic variance

and yield a correlation between predicted and true

genetic risk >0.7 [18�]. If 500 loci affect disease risk,
www.sciencedirect.com
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Figure 2

Proportion of sibling risk (ls) explained from GWAS of either N = 2000 or 10 000 cases and controls for a common complex disease with ls = 2 or 5.

Simulation results using method presented in Ref. [18�] assuming a GWAS of 300 000 SNPs of which n explain all the genetic variance; these n have

allele frequencies drawn from a uniform distribution and have effect size drawn from an exponential distribution and act additively on the log-risk scale.

As n increases the mean effect size for associated alleles decreases. The mean effect size has OR 1.08 when 1000 loci and 1.30 when 100 loci explain

the genetic variance, when ls = 5. Results are robust to the prevalence rate of the disease in the population.
the correlation is�0.9. Therefore, as results from multiple

GWAS are combined, a larger fraction of the genetic

variance is likely to be explained and accurate prediction

of genetic risk to disease will become possible even though

the risks conveyed by individual variants are small.

A practical issue is identification of optimal statistical

methods for selecting and combining SNPs into a predic-

tion equation. The central problem of selecting a set of

predictors when the number of measured variables is very

large and greater than the number of observed phenotypic

values is a common statistical challenge – the large p small n

paradigm – arising in a wide range of diverse fields (in-

cluding gene expression data, for example [19]) and a

number of these methods have been applied to SNP

selection [20–25,26�]. Just as the individual SNP associ-

ations discovered in GWAS need to be validated in inde-

pendent datasets, prediction equations estimated from one

dataset need to be validated in other independent data.

Assessing the utility of prediction of genetic
risk
The precision of a prediction of genetic risk can be

assessed by the correlation (r) between true and pre-

dicted genetic risk or by r2 which is the proportion of the

genetic variance explained by the associated variants in

data independent of that used to identify them. The

magnitude of r depends on the proportion of the genetic

variance tagged by the genotyped markers and the

accuracy with which their effects on risk are estimated.
www.sciencedirect.com
Whereas r is a tangible measure for quantitative traits, for

disease traits it is perhaps best expressed at the proportion

of the sibling risk ratio (ls) explained by the prediction

(Figure 2).

The utility of the multi-marker equation for predicting

absolute risk of disease depends on the heritability of the

trait. If the heritability is low, the value of predicting the

genetic component of risk in predicting disease will also

be low. The ability to predict disease status given perfect

knowledge of genetic risk (r = 1) was the subject of [27].

The receiver operator characteristic (ROC) curve can be

used to compare the sensitivity and specificity of a geno-

mic profile test in correctly classifying diseased and non-

diseased individuals. However, the maximum area under

the curve explained by a genetic prediction is limited by

the heritability of the disease (and also disease prevalence

if applied to a population sample). Therefore, we have

argued that use of ROC statistics can be confusing for

assessing the accuracy of the genetic component of risk

prediction [18�].

The epidemiological measure population attributable

fraction (PAF) can be used to quantify the decrease in

disease prevalence if the identified set of risk factors is

eliminated. PAF measures the change in the mean of

disease prevalence and can be high even when the

proportion of genetic variance explained by the markers

is low. For example, the 11 validated variants for type

2 diabetes identified by GWAS [28], have risk allele
Current Opinion in Genetics & Development 2008, 18:257–263
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frequencies ranging from 0.31 to 0.87 and OR ranging

from 1.10 to 1.37; together they explain <5% of the

genetic variance or ls but have PAF >80%. PAF

describes the effect of eliminating risk alleles on the

population mean whereas r2 quantifies the precision of

genetic prediction to individuals. These two measures

represent utility to the so-called ‘population’ and ‘high-

risk’ based approaches to prevention of common disease,

discussed in detail in the context of genomic profiling by

[6].

The use of genetic risk prediction
Prediction of genetic risk will be useful in diagnosis,

treatment, prognosis and prevention strategies, as family

history is currently, but with greater power. For diseases

with very low population prevalence, genetic risk predic-

tion might be limited to those with family history of the

disease, providing differential risk prediction for family

members. For higher prevalence disease, genetic risk

prediction could be applied at a population level to

identify a sub-group genetically most at risk. Figure 3

shows that, even for diseases with ls of only 2, the

majority of future disease cases occur in the 15% of people

with highest genetic risk [29]. If we assume that environ-

mental (E) risk factors, like genetic (G) risk factors, act

additively on the log- risk scale, then on the risk scale they

will act multiplicatively, implying substantial G � E

interaction on this scale. Therefore, the effects of

environmental risk factors or intervention strategies will

be larger for those individuals with high genetic risk to

disease. For example, if an intervention strategy reduces
Figure 3

The cumulative proportion of disease cases present in the population when

(after [29]). Even for diseases with ls of only 2, 70% of cases occur within th

genetic risk. These results are independent of disease prevalence, although

Current Opinion in Genetics & Development 2008, 18:257–263
relative risk by 50% then people with a 40% genetic risk

of disease can cut their absolute risk to 20% whereas

people at a low genetic risk of 1% will cut their risk to

0.5%. Therefore, it would be efficient use of resources to

target the intervention to the small proportion of the

population at high risk (Figure 3). Such strategies would

have even more importance if G � E is present on the

log-risk scale.

A number of studies have already used associated genetic

variants to predict genetic risk of disease, often in com-

bination with environmental factors [30–35], but their

success has been limited by the small proportion of

genetic variance explained by the variants identified to

date. Time will tell if larger study samples in GWAS are

sufficient for identification of variants that explain the

majority of the genetic variance. For some diseases (e.g.

psychiatric disorders [36,37]), increasing phenotypic

homogeneity of clinical diagnosis in samples used in

GWAS may be needed before accurate predictions can

be made. Moreover, biologically driven, genotypically

defined diagnoses, so-called ‘reverse phenotyping’ [38],

may result [37].

Implementation of risk prediction in a clinical context has

the potential to be of major economic benefit to popu-

lation health [4�]. It also raises serious ethical and social

concerns [4�,39,40], but these may have been by-passed

as November 2007 saw the launch of three new compa-

nies (Decodeme, 23andme, Navigenics) offering genomic

profile services for less that US $1000.
ranked from lowest to highest genetic risk for diseases with different ls

e top 27% and 50% of cases occur in the top 12% of those ranked on

ls is constrained to be low for high prevalence diseases.

www.sciencedirect.com
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Conclusion
The results of GWAS provide empirical evidence that the

genetic architecture of complex disease is one of many

common causal variants each of small, additive effect.

GWAS have not yet identified variants that explain

enough of the genetic variance to make accurate predic-

tions of genetic risk. However, simulation studies and

experiments suggest that with larger sample sizes or by

combining studies, accurate prediction of genetic risk will

be possible. In the long term, complete sequencing of

each person’s genome [41] means that risk of a disease

could be predicted from all sequence variants. In the short

term, genome variation can be represented by the geno-

typing of a representative set of SNPs. The value from

predicting individual disease risk from multiple associ-

ated variants could be reaped long before the causal

mechanism of each is determined. Cost-effective inter-

vention strategies could be targeted to the subset of the

population most at genetic risk to disease. In the long-

term prediction of this additive genetic risk can be

combined with predictions from environmental risk fac-

tors, non-additive genetic factors and interactions be-

tween them, along with other molecular (such as gene

or protein expression) profiles [42�]. However, an indi-

vidual’s genomic profile could be available from birth,

long before exposure to most environmental risk factors

takes place.
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Appendix A
References for the 16 disorders used in Figure 2:
1. A
www
bdominal aortic aneurysm [43].
2. A
ge-related macular degeneration [44].
3. A
myotrophic lateral sclerosis [45].
4. A
nkylosing spondylitis [46].
5. A
sthma [47].
6. A
utoimmune thyroid disease [46].
7. B
reast cancer [48].
8. C
hildhood obesity [49].
9. C
olorectal cancer [50].
10. C
oronary heart disease [51,52].
11. C
rohn’s disease [53–56].
12. P
rostate cancer [57,58].
13. R
heumatoid arthritis [59,60].
14. S
ystemic lupus erythematosus [61–63].
15. T
ype 1 diabetes [64,65].
16. T
ype 2 diabetes [28].
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