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Calculation of prediction error variances
using sparse matrix methods

By R. Tromeson’, N. R. Wray? and R. E. Cruar®

Introduction

Genetic evaluation of beef cattle based on Best Linear Unbiased Predicrion (BLUP) (HEwN-
DERSON 1973) has been introduced recently in Britain (Bryan et al. 1992a). Traits are evalu-
ated using an animal model which includes maternal genetic effects for birth weight and 200
day weight. Estimates of accuracies can be calculated from (the diagonal elements of) the
inverse of the coefficient matrix of the mixed model equations. In general, calculation of the
inverse is considered to be too demanding computationally because of the large number of
equations. Methods to calculate approximate accuracies are available which are appropriate
for direct genetic effects for single trait sire models {e. g. VAN RaDEN and FREEMAN 1985;
GREENHALGH et al. 1986; Rozinson and JoNEs 1987), single trait animal models (e. g. Misz-
1AL and WicGans 1988; MEYER 1989; BiocHarp and LEE 1992) or multipl® trait animal -
models (TiEr et al. 1991). Tn these approximations the diagonal element is adjusted for con-
nections to a few other effects decided by the known siructure of the data, for example,
Meveg (1989) makes adjustments for connections to parents, progeny and fixed effects for
each animal effect. There has been little investigation of these approximate methods for
models which include maternal effects.

The exact inverse of a mixed mode] coefficient matrix can be found using sparse matrix
methodology (TR and Smrre 1989; Miszrar 1990). We develop this paper using parti-
tioned matrix theory and sparse matrix methods, an algorithm which provides a:major
reduction in the number of calculations when only diagonals of the inverse are required..
Either the exact inverse or an approximate inverse can result depending on the size of a
threshold, whereby adjustments less than the threshold are ignored. A similar algorithm for
calculating exact elements of inverses has been given by MiszraL and PErez-ENCISO {1993)
based on a result of TAKAHASHI et al. (1975) and properties of triangular matrices. MISZTAL
and Prrez-Enciso show that the algorithm requires only three times the computing time as
calculating the determinant of the system of equations, but also requires two to three times
the memory. Our formulation shows that the caleulations can be carried out using pract-
cally no extra memory. Originally, this method was investigated to provide an exact inverse
as 2 benchmark for comparison with approximations resulting from extension of the
approximate methods used for direct genetic effects. However, it has been found that the
algorithm is sufficiently efficient that it is now used routinely within the genetic evaluation
system for beef cattle in Britain.
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Methods
Model
A univariate animal model is considered with direct and maternal effects of the form

y=Xb+Za+Z.m+Zc+e n
with E(y) = Xb and

a Aol Ag,, 0

m Ac_  Ac’ 0
Var — am m s

c Is: 0

3 0 & 0 R

where b represents fixed effects and a, m, ¢ and ¢ are vectors of random effects representing
direct and maternal genetic effects, permanent environmental effects of dams and residual
effects respectively. The incidence matrices X, Za, Zr and Z, link effects to the observations,
v, and normally Z,, = Z.. The mixed model equations are of the form Cx = d with

XR'X XR'Z, X'R7Z, X'R7Z,
| Z/RX Z/R'ZA4 AT, Z'RTZ +ATv,, ZRTZ,

C
Z'RX Z'RZ+Ave, ZR'Z +ATa, Z RZ
Z/R"X Z'R'Z, Z/RZ, ZR7Z o+ 1y,

b X'R7y
‘w1

c=| *|andd=| 2R

m Z. Ry

¢ Z/Ry

with

and v = 1/0%, R = Io®

The prediction error variances and covariances are the elements of C. In practice results
are often presented in terms of reliabilities for random effect i, r}, which are the squared
accuracies of predicted effects derived from prediction error variances, PEV;, using PEV; =
Gi(1-r3) where Gi is the variance of the effect (e. g. 61 for direct genetic effects). The matrix
C contains a large proportion of zero elements, therefore methods are investigated that take
account of the sparseness of C.

Calculation of variances

Three methods of caleulating inverses using sparse matrix methods have been described
recently in the animal breeding literature (Tier and Smrs 1989; MiszraL 1990; Miszrat. and
Perez-Enciso 1993).

These techniques can be explained using Gaussian elimination recursively on the set of
equations Cx = d using

C c X . d
1 I = C" , ! " , n — d‘
(C; CMJ i+l [ij Xatt {dm:] a+l (2)

where n + 1 is the number of rows in the symmetric matrix Cs) and in the vectors x%,; and
di.q, and 7 is the number of rows in Ca, o, xn and do. Note that cas1, Ko and daet are scalars
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and ¢, &, and d, are row vectors. This is a convenient way of denoting partitions of {n + 1)
x {n + 1) matrices and {n + 1) vectors. Initially C% = C, x¥ = x and d% = d where N is the
total number of effects to be estimated and predicted. The number of equations to be solved
can be reduced by one by elimination of x;.1 resulting in

(Cn — rncn’) Xn = dn - rnérﬁl (3)

where 12 = ¢a (car1)™ 1s the regression of x, on x,a. Initially n = N-1 and after elimination
of %a+1 then

Ci=C,- rnCn’d:rE-L = dn - rndn+1 (4)

can be defined. Successive use of equations (2) and {4) with n = N-1, N-2, etc. defines ¢na
to be the variance for variable n + 1 after correction for the last N-n-1 variables and simi-
larly C. to be the covariance between the first n variables after correction for the last
N-n-1 variables. Use of n = N-1, ... 1 in turn results in one equation in one unkaown

Cixe = d¥
hence x; can be found and, in turn, %3, ... ;xx by using %o = dner(cae)™ - ra'xn (5)

The computational cost of (4) can be reduced if account is taken of the zero elements in ¢a.

As C C' =1 the i-th column of C* can zlso be found as the solution of the equations
Cz; = £ where f; is the column of the identity matrix. One disadvantage of this procedure
when only variances are required, is that all elements of the i-th column are calculated, and
there are redundant calculations if C is symmietric, Miszrar (1990) discusses this technique
in detail but it is not clear if he takes advantage of the sparseness in the columns of fi

Tier and Saati (1989) also discuss sparse matrix methods and point out that solving a
set of equations Cx = d can be thought of using operations (2) and (4) on a partitioned

matrix C* (BD, }é) and if B, C and D are mxm matrices and B = O and D = I then after

m operations of (2) and (4) then the matrix B will contain ~C™%. If only selected elements of
B are required then the calculations in {4) can be reduced by only performing the caleula-
tions for the reqmrcd clements. In both these techmques effectively dummy right hand
sides are used: in the first, solutions are used o give C), in the second, effectively sums of
squares and products after ‘fitting’ a model are used to give G

An alternative algorithm was recently described by Miszrar and Perz-Enciso (1993)
to allow the calculation of only selected clements in the inverse of C™' based on work of
Taxanast et al. (1973). Their description is in terms of triangular matrices but an alterna-
tive recursive development of the algorithm in terms of partitioned matrices is of interest.

The inverse of C#y in (2) can be written as

-1 -
(Cn - Cn(cn—rl)i[cn ) p _(Cn - Cn(cn%l)_1 Cn ] Cn (Cn+1)_1

o) efComeen) s) (G e wCa o) e ) e (0!

2

or
¢ -G
/C7 o (e,,) 4 C
so that
e Cn Cn
Cn+i a3 s % (6)
S Cau

denotes the inverse of C%., then CF = Ci™" and the covariance between x, and %, is

given by ¢ = -Ci¥r, 7)
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and the variance of xne1 given by ¢ = 1/cae1 — e {8
orcifi=1/cort — ' Ci¥ 1 (%

Miszrar and PeEREZ-ENCTso (1993) have given similar formulae by decompesing C into
U’DU, with their D corresponding to the diagonal elements ca and U is upper trianguiar
containing the column vectors t,. Thelr equation (3) is equivalent to (7) and (8) it we note
they eliminate effects in the reverse order.

From (9) the variance term, cifi can be thought of as a variance term of %ni1, 1/cast,
adjusted for xi(i>n+1) and an adjustment ', C¥* ra for correction for terms xi{i<n+1). The
recursion starts with C¥* as C#+tand (6} - (8) used withn =1, ..., m-1 in turn.

If C is sparse and only variances are of interest then it is not necessary to calculate all the
elements of C'. For example from (8) the covariance between x; and xq41 only needs caleu-
lating, to from i, if the regression of x; on Xa.1 is non-zero. TAKAHASHI et al. (1973) show
that, if only variances are required, the only covariances required are those covariances cor-
responding to the ‘sparsity pattern’ of C. This sparsity pattern of C is related to the non-
zero elements in the adjusted covariance matrices C, (and C%) (n = 1,.. ,N), and contains
elements {1,j) if at any time during the construction of adjusted covariance matrices C the
(1,))th element is non-zero. This results partly from observing that the covariance required
to evaluate (9) and so {8) and form C#¥ are precisely for those elements which are changed
in forming C% from C, and so are non-zero elements of at least one of C§ and Ca. This spar-

“sity pattern can potentially be larger than the pattern used by Miszral and Perez-Enciso
{1993) who suggest using the zero elements of U, essentially only considering the element
of vectors 1o, to judge the sparsity. A numerical example below illustrates this difference but
our analysis suggests this is a very minor problem.

TER and SmitH (1989) give an algorithm to find C% and their algorithm can be easily
modified to include in their list of elements the sparsity pattern. In their algorithm, in order
to form C¥ using (9), each initially non-zero or adjusted element of ¢, is compared to a
working zero, The calculation (4) only operates on the effectively non-zero elements. If all
caleniated elements were used then C¥ corresponding to the sparsity pattern would be gen-
erated. :

For ease of exposition, the development has been given in terms of C,, C¥ and Cf* in
practice the methods can be programmed so that C% and Ci* overwrite C* using only
minor extensions of the pracedures described by TrEr and Smrrh (1989).

In contrast to (6)~(8) which calculate covariances by columns, ci*, the MisztaL and
Prrez-Enciso (1993) scheme calculates covariances by rows, this requiring two to three
times as much space as our implementation.

Numerical Example

We consider a small numerical example to illustrate the formulae and the concept of the
sparsity pattern of C. We use

¢

1
0
3
0
1

—_ = Yt =
=
[ e & ]

Using (2)
4={0111Dandes=2
and hence r’s = (0 0.5 0.5 0.5)
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Using (4) and (2) gives
¢5=(0 0.5-05)and s =05
r3=(010)

Continuing gives
¢>={10)andc3 =2
'y = (O 5 O)
r'1=(05),c2c=2andci =1

Fence the matrix of regression coefficients U can be constructed as

10505 1 0
o 1 fo] 1 05
U={0 0 1 -1 05
6o 0 0 1 05
0 0 0 0 1

In the example all the elements except (1,5) are in the sparcity pattern of C. The element
(2,3) altough zero in C% and U was —0.5 in C¥ and hence needs calculating in (6)-(8). In this
case ¢f ¥ =i = (1).
Using (7) withn =1

e = r'1o}* = (<0.5)
and ¢ = V- 1= (0.5 +0.25) = 0.75
continuing gives

ci* ={-0.5025),ci* =075

2 (0-0505) ¢t =3

¢ = (< > 025075 -1.5), ¢i* = 1.75
In this example the only covariance not requiring calculating in the formation of the vari-
ances was the {1,5) element indicated by < >,

Analysis

The performance of this algorithm depends on the proportion of elements of ¢, that are in
the sparsity pattern. If the effectively non-zero regression coefficients are equal to the num-
ber of elements in the sparsity pattern then it would be expected that the aumber of multi-
plicaticns in (7) and (8) is approximately twice as many as those in (4) {(Miszrar and Perez-
Enciso 1993). Miszrar (1993) gives comparative times for the operations in (4) where the
variances are formed by his method. Tf the Miszrar. and PerEz-Enciso {1993) method takes
three times as long as the operations in (4) then it should be 10-20 times faster from
Miszrar’s examplc

A symmetric banded matrix of width 2d + 1 with Gy =0 j<i + dis perhaps the sim-
plest matrix to use to compare the methods. The MISZTAL {1990) scheme needs of the order
of dm? multiplications to from both C™ and the diagonals of C™* taking account of the sym-
metry of C and sparsity of the right hand siddes. In contrast the Smrrs and Tier (1989)
algorithm scheme requires of the order of (m*/6) multiplications to form C™' but order of
{m*(d + 1)/2) multiplications to form the diagonals of €. In contrast the MiszTAL and
Perez-Enciso (1993) scheme uses the order of (dm?) multiplications to form C™ but only
of order 3{d’m)/2 multiplications to form the dizgonal of C!. Hence if only the variances
of x were required this partmoned algorithm being proportional to a lower power of m
would be seen to be a major improvement.
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Approximation

One problem with these methods is that a large number of elements may be required to
form C% exactly. The order of effects in the equations can have a drastic effect on the per-
formance of the algorithm (Borpman and Van Vieck 1991), In the application to British
beef cartle the effects are ordered with fixed effects and sires ordered first according to size
and number of progeny and then the rest of the effects are ordered within female parentage.
This means that a major part of the equations has a block diagenal structure. One approx-
imation used to reduce ‘infill’ was to only initiate adjustment for an initially zero element
if the magnitude of the adjustment was greater than a tolerance of 107 where J ist a pre-
specified number with J — ¢ indicating that all adjustments arc accumulated. Juca {1992)
has found that a value of 3 useful in giving adequate approximations to likelihoods in indi-
vidual animal models. In addition covariances were only calculated and vsed in (8) if the
regression coefficient was effectively non-zero.

Example

The algorithm was used in an analysis of data recorded and published by the Meat and
Livestock Commission on South Devon cattle (BoND et al. 1992).

For 200 day weight there arc 26 702 animals in the pedigree, 11 439 males and 15 262
females with 10 710 and 9,791 recorded males and females respectively. There were fixed
effects of contemporary groups. Equations are ordered as described in the previous section.
Parameter values were, in terms of the phenotypic variance, 03, 63/03 = 0.28, 65 =0.07,
O/ V0265, = —0.32, 6¥/6% = 0.08. In forming C%, regression coefficients r, were calculated
and written to disk for groups of 50 female families and after every 200 equations when
sires and fixed effects were being eliminated because, afrer adjustment for %1 the 1, were
not required in the formation of C% To form the prediction error variances the processes
were repeated in reverse, reading in the required regression coeffcients and overwriting
covariances not required further. For instance to calculate variances for fixed effects and
sires, the regression coefficients on dams are not required. Similarly for the ith group of
dam familics only covariances for fixed and sirc effects and regression coefficients for only
that group are required. This was a primitive (but successful) attempt to reduce paging. The
optimality of the technique depends on the configuration of the cumputer and the popula-
tion structure.

Table 1 summarizes the performance of the algorithm on a Sun Sparcstation 2 worksta-
tion wit 64MB memory, for different values of the J threshold. This table shows that the
total time varied between 2 and 3 times the time to form C#%. As ] increases more elements

Table 1. Comparison of algorithms to calculate diagonals of C with different threshold (1¢7) in
terms of number of elements used, number of adjustments ignored, time to form C; and total

J Maximum number Adjustments Time to Total time
of elements (x10%)  ignored (x10%) form C,

(secs) {secs)
a0 2,940 ¢ 11,982 28,321
12 2,137 72,759 7,821 18,377
5 709 58,542 2,004 4,610
4 538 48,878 1,341 3,055
3 286 35,605 593 1,295
2 166 7,527 204 428
1.3 121 1,845 134 219
1 94 1,262 110 242
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Table 2, Comparison of estimates of reliabilities for different thresholds with | ==

Correlations Maximum Difference
J Direct Maternal  Permanent Direct Maternal Permanent
reliability  reliability  reliability
3 1.0000 1.0000 1.0000 0.0183 00102 0.0006
4 1.0000 1.0000 1.6000 0.0254 0.0183 4.0018
3 (.9999 1.0000 1.0000 0.0257  (.0224 0.0027
2 0.9999 (.9998 1.0000 0.0277 0.0471 0.0021
13 0.5985 0.9989 0.9999 0.0576  0.0461 0.0127
1 0.9934 0.9974 0.9996 0.1739 .07 0.0266

are stored and more adjustments are ignored and the time increases dramaticaily. Table 2
compares correlations between estimates of reliabilities based on different thresholds for J.
The value J = 2 would seem to be perfectly adequate for practical purposes for these param-
eter values.

Discussion

Calculation and analysis suggest that the MiszTal and Perez-Encisc (1993) method is to be
preferred. Both the Tier and Swmrra (1989) and the Miszrar (1990) schemes essentially cal-
culate non-zero elements in adjusted right hand sides of equations (the element in D in the
T1eR and SmITE scheme). TTER and Saate (1989) caleulate variances from weighted sums of
squares of elements of I and Miszrar (1990) from back solution of the set of eguations.
The former will normally take less calculation than the latter. In the numerical example
above 1o calculate the variances for 1,500 effects associated with sires took over 30 000 sec-
onds using the Tigr and SmiTH scheme, suggesting that the calculation of all variances
would be 15-25 times as long as the partitioned method. MiszTar {1989} dives comparative
times involved in his method. If the operations involved in (4) are a third of the time in the
partitioned method, then for his examples the partitioned method should be 15-25 times
faster. Using a threshold of 2 gave acceptable prediction error variances and reduced the
computing time by a factor of over fifty.

This work was initiated to provide an exact inverse as a benchmark for comparison with
approximations resulting from extension of the approximate methods used for direct
genetic effects to maternal genetic effects. However, as a by-product it has generated a flex-
ible class of approgimations, and several common approxzimations to prediction error vari-
ance can be considered as specific examples within this framework. For example, the recip-
rocal of the diagonals of animals after absorbing fixed effects, a simple and common way of
approximating prediction error variances particularly under a sire model (e. g. approxima-
tionr 1 of ROBINSON and Jowes 1987} corresponds to using a very high threshold (J) for
adjustments between sires after correction for fixed effects. Better approximations can be
made, if say for the i-th animal the off-diagonals between it and its parents, progeny and
fixed effects are used (e. g. MEYER 1989}. In this case ] is usually e, but —es for the speciticd
adjustments. Other 1terative procedures {e. g. MiszTal and Wiccans 1988} do not fit into
this frameworks as naturally, but certainly | = oo is used for some of their adjustments and
iteration between a form of (4) and (8} is used.

The method is now used routinely to provide estimates of accuracies for predicted
breeding values in the British genetic evaluation system for beef cattle. Breeding values are
predicted using a multiple trait animal model (Bryan et al. 1992) but accuracies are calcu-
lated using a single trait models for cach trait separately. An approximate multiple trait
accuracy for each animal is calculated by combination of the single trait accuracies, but this
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will be the subject of a separate note. In principle, the procedure can be used for a multiple
trait coefficient matrix but in most national genetic evaluations the number of equations is
prohibitive at present. The computer time resulss for the method can be severely influenced
by the order of the equations on which operations are performed. The order has been cho-
sen so that equations expected to have the least number of off-diagonal elements are elimi-
nated first based on numbers of descendants for sires and using female family structure for
dams. This ordering is based on information routinely calculated for summarisation of the
results of the genetic evaluation, and is therefore achieved at no estra cost.
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Summary

The use of exact and approximate algorithms to calculate prediction error variances using sparse matrix
methods are demonstrated for an individual animal effect including maternal effects. One exact algo-
rithm is substantially faster than two others. An approximation of the best exact method gave an accep-
table level of reliabilities and reduced the compurarion by a factor of approximately fifty compared
with the exact computation and is routine in national beef evaluation in Britain.
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