Supplementary Information for:

Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk

Jodie N Painter ${ }^{1}$, Tracy A O’Mara ${ }^{1}$, Jyotsna Batra ${ }^{2}$, Timothy Cheng ${ }^{3}$, Felicity A Lose ${ }^{1}$, Joe Dennis ${ }^{4}$, Kyriaki Michailidou ${ }^{4}$, Jonathan P Tyrer ${ }^{5}$, Shahana Ahmed ${ }^{5}$, Kaltin Ferguson ${ }^{1}$, Catherine S Healey ${ }^{5}$, Susanne Kaufmann ${ }^{1}$, Kristine M Hillman ${ }^{1}$, Carina Walpole ${ }^{2}$, Leire Moya ${ }^{2}$, Pamela Pollock ${ }^{6}$, Angela Jones 3, Kimberley Howarth ${ }^{3}$, Lynn Martin ${ }^{3}$, Maggie Gorman ${ }^{3}$, Shirley Hodgson ${ }^{7}$, National Study of Endometrial Cancer Genetics Group (NSECG) ${ }^{3,8}$, CHIBCHA Consortium ${ }^{3,8}$, Ma. Magdalena Echeverry de Polanco ${ }^{9}$, Monica Sans ${ }^{10}$, Angel Carracedo ${ }^{11,12}$, Sergi Castellvi-Bel ${ }^{13}$, Augusto RojasMartinez ${ }^{14}$, Erika Santos ${ }^{15}$, Manuel R Teixeira ${ }^{16}$, Luis Carvajal-Carmona ${ }^{3,9,17}$, Xiao-Ou Shu ${ }^{18}$, Jirong Long ${ }^{18}$, Wei Zheng ${ }^{18}$, Yong-Bing Xiang ${ }^{19}$, The Australian National Endometrial Cancer Study Group (ANECS $)^{1,8}$, Grant W Montgomery ${ }^{1}$, Penelope M Webb ${ }^{1}$, Rodney J Scott ${ }^{20-22}$, Mark McEvoy ${ }^{23}$, John Attia ${ }^{20,23}$, Elizabeth Holliday ${ }^{20,24}$, Nicholas G Martin ${ }^{1}$, Dale R Nyholt ${ }^{1}$, Anjali K Henders ${ }^{1}$, Peter A Fasching ${ }^{25,26}$, Alexander Hein ${ }^{26}$, Matthias W Beckmann ${ }^{26}$, Stefan P Renner ${ }^{26}$, Thilo Dörk ${ }^{27}$, Peter Hillemanns ${ }^{28}$, Matthias Dürst ${ }^{29}$, Ingo Runnebaum ${ }^{29}$, Diether Lambrechts ${ }^{30,31}$, Lieve Coenegrachts ${ }^{32}$, Stefanie Schrauwen ${ }^{32}$, Frederic Amant ${ }^{33}$, Boris Winterhoff ${ }^{34}$, Sean C Dowdy ${ }^{34}$, Ellen L Goode ${ }^{35}$, Attila Teoman ${ }^{34}$, Helga B Salvesen ${ }^{36,37}$, Jone Trovik ${ }^{36,37}$, Tormund S Njolstad ${ }^{36,37}$, Henrica MJ Werner ${ }^{36,37}$, Katie Ashton ${ }^{21,38}$, Tony Proietto ${ }^{39}$, Geoffrey Otton ${ }^{39}$, Gerasimos Tzortzatos ${ }^{40}$, Miriam Mints ${ }^{40}$, Emma Tham ${ }^{41}$, RENDOCAS ${ }^{8,41}$, Per Hall ${ }^{42}$, Kamila Czene ${ }^{42}$, Jianjun Liu ${ }^{43}$, Jingmei Li^{43}, John L Hopper ${ }^{44}$, Melissa C Southey ${ }^{45}$, Australian Ovarian Cancer Study (AOCS $)^{1,8,46}$, Arif B Ekici ${ }^{47}$, Matthias Ruebner ${ }^{26}$, Nicola Johnson ${ }^{48}$, Julian Peto ${ }^{49}$, Barbara Burwinkel ${ }^{50,51}$, Frederik Marme ${ }^{50,52}$, Hermann Brenner ${ }^{53,54}$, Aida K Dieffenbach ${ }^{53,54}$, Alfons Meindl ${ }^{55}$, Hiltrud Brauch ${ }^{56}$, The GENICA Network ${ }^{8,51-56}$, Annika Lindblom ${ }^{41}$, Jeroen Depreeuw ${ }^{30}$, Matthieu Moisse ${ }^{30}$, Jenny Chang-Claude ${ }^{62}$, Anja Rudolph ${ }^{63}$, Fergus J Couch ${ }^{64}$, Janet E Olson ${ }^{35}$, Graham G Giles ${ }^{44,65,66}$, Fiona Bruinsma ${ }^{65}$, Julie M Cunningham ${ }^{64}$, Brooke L. Fridley ${ }^{67}$, Anne-Lise Børresen-Dale ${ }^{68,69}$, Vessela N Kristensen ${ }^{68-70}$, Angela Cox ${ }^{71}$, Anthony J Swerdlow ${ }^{72,73}$, Nicholas Orr ${ }^{73}$, Manjeet K Bolla ${ }^{4}$, Qin Wang ${ }^{4}$, Rachel Palmieri Weber ${ }^{74}$, Zhihua Chen ${ }^{75}$, Mitul Shah ${ }^{5}$, Juliet D French ${ }^{1}$, Paul D P Pharoah ${ }^{5}$, Alison M Dunning ${ }^{5}$, Ian Tomlinson ${ }^{3}$, Douglas F Easton ${ }^{4,5}$, Stacey L Edwards ${ }^{1}$, Deborah J Thompson ${ }^{5}$, Amanda B Spurdle* ${ }^{1}$

1. QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
2. Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation, and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
3. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
4. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
5. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
6. Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
7. Department of Clinical Genetics, St George’s Hospital Medical School, London, UK
8. See Supplementary Information for full list of members
9. Grupo de investigación Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Tolima, Colombia
10. Department of Biological Anthropology, College of Humanities and Educational Sciences, University of the Republic, Magallanes, Montevideo, Uruguay
11. Grupo de Medicina Xenómica, Fundación Galega de Medicina Xenómica (SERGAS) and CIBERER- Universidade de Santiago de Compostela- Santiago de Compostela, Spain
12. Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
13. Genetic Predisposition to Colorectal Cancer Group, Gastrointestinal \& Pancreatic Oncology Team, IDIBAPS/CIBERehd/Hospital Clínic,Centre Esther Koplowitz (CEK), Barcelona, Spain
14. Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León, Mexico
15. Hospital A.C. Camargo, São Paulo, Brazil
16. Department of Genetics, Portuguese Oncology Institute, Porto, Portugal, and Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
17. Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
18. Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
19. Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
20. Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, Australia
21. Hunter Area Pathology Service, John Hunter Hospital, Newcastle, NSW, Australia
22. Centre for Information Based Medicine and School of Biomedical Science and Pharmacy, University of Newcastle, NSW, Australia
23. Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, NSW, Australia
24. Centre for Information Based Medicine and School of Medicine and Public Health, University of Newcastle, NSW, Australia
25. University of California at Los Angeles, Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, Los Angeles, CA, USA
26. University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
27. Hannover Medical School, Gynaecology Research Unit, Hannover, Germany
28. Hannover Medical School, Clinics of Gynaecology and Obstetrics, Hannover, Germany
29. Friedrich Schiller University Jena, Dept. of Gynaecology, Jena, Germany
30. Vesalius Research Center, VIB, Leuven, Belgium
31. Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Belgium
32. Department of Oncology, KU Leuven, Belgium
33. Division of Gynaecological Oncology, Department of Oncology, University Hospital Leuven, KU Leuven, Belgium
34. Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Mayo Clinic, Rochester, MN, USA
35. Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
36. Centre for Cancerbiomarkers, Department of Clinical Science, The University of Bergen, Norway
37. Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
38. Centre for Information Based Medicine and the Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, NSW, Australia
39. School of Medicine and Public Health, Faculty of Health, University of Newcastle, NSW, Australia
40. Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
41. Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
42. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
43. Human Genetics, Genome Institute of Singapore, Singapore, Sweden
44. Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, VIC, Australia
45. Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
46. Peter MacCullum Cancer Centre, Melbourne, VIC, Australia
47. Institute of Human Genetics, University Hospital, Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.
48. Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK
49. London School of Hygiene and Tropical Medicine, London, UK
50. Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
51. Molecular Epidemiology, C080, German Cancer Research Center, DKFZ, Heidelberg, Germany
52. National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
53. Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
54. German Cancer Consortium (DKTK), Heidelberg, Germany
55. Department of Obstetrics and Gynecology, Division of Tumor Genetics, Technical University of Munich, Munich, Germany
56. Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, University of Tuebingen, Germany
57. Institute for Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany
58. Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
59. Institute of Pathology, Medical Faculty of the University of Bonn, Bonn, Germany
60. Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany
61. Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
62. Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
63. Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
64. Departments of Laboratory Medicine and Pathology, and Health Science Research, Mayo Clinic, Rochester, MN, USA
65. Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, VIC, Australia
66. Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC Australia
67. Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
68. Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
69. The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
70. Department of Clinical Molecular Oncology, Division of Medicine, Akershus University Hospital, Ahus, Norway
71. Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
72. Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
73. Division of Breast Cancer Research, Institute of Cancer Research, London, UK
74. Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC, USA
75. Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA

* Correspondence to: Amanda B. Spurdle, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, 4006, Queensland, Australia.
Ph: +61 (0)7 33620379
Fax: +61 (0)7 33620105
Email: Amanda.Spurdle@qimrberghofer.edu.au

INDEX

A. Detailed Description of the Case and Control Sample Sets 6
B. Genotype, expression and methylation in endometrial cancer tumor samples 10
Supplementary Figure 1. Signal intensity cluster plot for rs7501939 from the iCOGS array genotyping of 4,402 endometrial cancer cases and 28,758 country-matched controls 10
Supplementary Figure 2. Regional linkage disequilibrium to our top SNP rs11263763 for Caucasian, Asian and African individuals in the 1000Genomes pilot data (http://www.broadinstitute.org/mpg/snap/ldplot.php). 11
Supplementary Figure 3. HNF1B isoform expression. 14
C. References 16
D. ECAC Study Collaborators (for case samples): 18
E. BCAC and OCAC Study Collaborators (for control samples): 19
F. Supplementary Acknowledgements 19
G. Additional Acknowledgments of Funding to BCAC/OCAC control groups 21

SUPPLEMENTARY INFORMATION

A. Detailed Description of the Case and Control Sample Sets

A summary of the studies included in the iCOGS fine-mapping dataset and the genome-wide association study (GWAS) datasets is shown in Supplementary Table 1, with additional details provided below. All studies were predominantly of women of European ancestry, with the exception of SECGS which was based on women of Asian ancestry from China. All studies have the relevant IRB approval in each country in accordance with the principles embodied in the Declaration of Helsinki, and informed consent was obtained from all participants. A total of 6,608 cases and 37,925 controls were included in the Caucasian meta-analysis, and an additional 834 cases and 1936 controls were available from the SECGS Asian sample set.

Fine-mapping (iCOGS) Case Sample Sets:

The iCOGS fine-mapping data set included cases from 9 studies detailed below, as well as additional European ancestry cases from ANECS and SEARCH (non-overlapping with the GWAS datasets).

BECS

The Bavarian Endometrial Cancer Cases and Controls Study (BECS) is a single-center case-control study, conducted between 2002 and 2008, with the aim of investigating genetic and epidemiological risk factors for endometrial cancer. Cases were either incident cases referred to the University Hospital Erlangen by surrounding practioners (66% of the case sample set), or prevalent cases that were outpatients in follow-up care approached within 6.2 ($\pm 4.6 \mathrm{SD}$) years after treatment for primary endometrial cancer in the same hospital (34% of the case sample set). Epidemiological information was collected by a structured questionnaire completed during an interview and clinical data for the cases was obtained from clinical health records.

CAHRES

Details of the population selection process have been published previously for the Cancer Hormone Replacement Epidemiology Study (CAHRES) (1). Formerly known as the Singapore and Sweden Breast/Endometrial Cancer Study (SASBAC), this population based case-control study was conducted among Swedish women aged 50-74 years, who were residing in Sweden between January $1^{\text {st }} 1994$ and December $31^{\text {st }} 1995$. Endometrial cancer cases were identified through the nation-wide cancer registries in Sweden. All participants provided detailed questionnaire information. For endometrial cancer, histological specimens were reviewed and re-classified by the study pathologist. All participants reported Caucasian ethnicity.

HJECS

The Hannover-Jena Endometrial Cancer Study (HJECS), a hospital-based case-control study, included 250 German women, aged 31-89 years, who were recruited either at the Friedrich Schiller University of Jena or at Hannover Medical School after having been diagnosed with histologically confirmed primary incident endometrial carcinoma between 2004 and 2010. Epidemiological data were obtained from questionnaires, and information on tumor stage and histology was obtained from pathology and clinical reports. Over 98% were of German descent. Interviews were conducted at either the Friedrich Schiller University of Jena or at Hannover Medical School, and peripheral blood was collected for the extraction of DNA from white blood cells.

LES

The Leuven Endometrial Study (LES) is a hospital based case-control study. Eligible cases,
identified by active surveillance of electronic patient files at the Leuven University Hospital, were white women aged 27-80 years diagnosed with endometrial cancer. Clinical data for endometrial cancer patients were recorded during interview at the time of diagnosis, and from pathology reports. All medical records were reviewed by trained abstractors and pathology reports compatible with primary, invasive, epithelial endometrial adenocarcinoma of all stages (I-IV) and all grades were consulted. Participation rates exceeded 95% for cases.

MECS

The Mayo Endometrial Cancer Study (MECS) is a hospital based prospective biobank collection. The majority of patients seen at Mayo Clinic Rochester with primary endometrial cancer diagnosed at age 18 and older are enrolled. The collection was started in 2006 and contains blood and fresh frozen tissue. DNA was isolated from white blood cells using Qiagen isolation kits. DNA concentration was measured with picogreen. Clinical data were abstracted from electronic medical records. Control data were obtained from Mayo Clinic OCAC controls.

MoMaTEC

Molecular Markers in Treatment of Endometrial Cancer (MoMaTEC) cases were recruited from an unselected patient population primarily treated for endometrial carcinoma at Haukeland University Hospital, Bergen during 2001-2009. This is the referral hospital for Hordaland county; the area is demographically well defined, with about 450,000 inhabitants, representing approximately 10% of the Norwegian population and with a similar incidence rate and prognosis as the total Norwegian population of endometrial cancers (2-4). Clinical Information for cases regarding age, FIGO stage, histologic subtype, grade and prognosis was extracted from medical records.DNA was extracted from peripheral blood samples.

NECS

The Newcastle Endometrial Cancer Study (NECS) includes histologically confirmed endometrial cancer cases consecutively recruited from 1992 up to 2005 at the Hunter Centre for Gynaecological Cancer, John Hunter Hospital, Newcastle, New South Wales, Australia(5). The final analysis included 194 endometrial cancer patients. Data on reproductive and environmental risk factors including ethnicity, was collected using self-reported questionnaires. Information regarding recurrence, stage, grade and histology of endometrial cancer was collected from medical records. Patients presenting at this hospital-based site were captured by ANECS recruitment from 2005 onwards.

NSECG

National Study of the Genetics of Endometrial Cancer (NSECG) cases were identified from collaborating clinicians throughout the UK from 2008 to present, taking care not to recruit from centres involved in SEARCH. Inclusion criteria were adenocarcinomas of the uterus presenting at 70 years of age or younger. Almost all cases were incident and sampled within 6 months of diagnosis. Peripheral blood was collected from each participant and DNA extracted using standard methods. Tumor histology was confirmed from routine hospital reports and further details of histopathology and other tumor pathology characteristic was abstracted from these clinical pathology reports. A sample of 797 cases that were non-overlapping with the NSECG GWAS were genotyped using the iCOGS chip, as indicated in Supplementary Table 1.

RENDOCAS

The Registry of Endometrial Cancer in Sweden (RENDOCAS) is a hospital based case-control study. Patients ($\mathrm{n}=262$) who underwent surgery for endometrial cancer at Karolinska University hospital Solna, Sweden between 2008 and 2011 were included in the study. For each patient, the following was collected: blood and tumor samples; detailed family history and formulation of a pedigree where all suspected cancer cases were verified in medical records/pathology report if
possible; questionnaire covering relevant environmental factors underlying endometrial cancer.

Control sample sets

As indicated in Supplementary Table 1, endometrial cancer case sample sets were matched by country to combined control sample sets from the same country that had been genotyped using the iCOGS chip. Data was largely from control sample sets that participated in the Breast Cancer Association Consortium iCOGS experiment (6), with iCOGS data also accessed for controls from the Mayo Clinic via the Ovarian Cancer Association Consortium (MAY) (7). In addition, iCOGS genotyping was performed for 183 Norwegian female controls, recruited in Bergen via the blood bank specifically for use in the MoMaTEC case-control genotyping studies.

GWAS Case and Control Sample Sets:

ANECS
The Australian National Endometrial Cancer Study (ANECS) is an Australian population-based case-control family study of cancer of the uterine corpus (8). Women aged 18-79, newly diagnosed with histologically confirmed primary cancer of the endometrium between July 2005 and December 2007 were identified through major hospitals nationally, and also from state-based cancer registries. Excluding women who could not be contacted (mostly due to death, illness or failure to contact), case participation rate was 63%. Participants completed a detailed questionnaire providing clinical and epidemiological information, including ethnicity of all four grandparents. Information on tumor pathology characteristics was abstracted in standardized format from clinical pathology reports for all patients.

SEARCH

The Studies of Epidemiology and Risk factors in Cancer Heredity (SEARCH) is an ongoing population-based study with cases ascertained through the Eastern Cancer Registration and Information Centre (http://www.ecric.org.uk). All women diagnosed with endometrial cancer between the ages of 18-69 years (average age of diagnosis 58 years) from August 2001 to September 2007 were eligible for inclusion. Approximately 54% of eligible patients have enrolled in the study. Women taking part in the study were asked to provide a 20 ml blood sample for DNA analysis, and to complete a comprehensive epidemiological questionnaire. Controls were also drawn from SEARCH (http://ccge.medschl.cam.ac.uk/search/), but had no prior history of cancer at the time of recruitment. They were female, also between the ages of $18-69$ at the time of recruitment and matched to cases in geographical profile. Approximately 35% of eligible controls enrolled in the study. All participants reported Caucasian ethnicity. Information on tumor pathology characteristics was provided by the Eastern Cancer Registration and Information Centre and was derived from clinical pathology reports for all patients.

Genome-wide genotyping of the ANECS and SEARCH cases was performed using an Illumina Infinium 610K array and called using the Illuminus algorithm. Genotypes were available for 1317 cases with endometrial cancer. Samples were excluded as follows: probable Turner's syndrome or male sex based on genotypes for markers on the X and Y chromosomes ($\mathrm{n}=4$); call rate $<95 \%$ ($\mathrm{n}=15$); heterozygosity outside 5 standard deviations from the mean ($\mathrm{n}=7$); probable sibling pairs identified as close relatives by identity-by-state probabilities >0.85 ($\mathrm{n}=3$); $>15 \%$ non-European ancestry estimated from identity-by-state scores ($\mathrm{n}=1$), leaving a total of 1287 cases (606 from ANECS and 681 from SEARCH). The duplicate concordance was 99.998\%.

QIMR

The QIMR Berghofer Medical Research Institute control sample (9) is a subsection of individuals recruited as part of the Brisbane Adolescent Twin Study (10, 11). Twins were recruited from schools in Brisbane, Australia and surrounding areas of southeast Queensland and were examined close to their 12th birthday. Blood was obtained from all twins and most parents. Parents were
asked the ancestry of all eight great-grandparents of the twins. More than 95% of greatgrandparents were identified as being of northern European ancestry, mainly from Britain and Ireland. This analysis used genotype data from parents and siblings only, extracted from an existing Illumina 610 K BeadChip genome-wide association scan (9) and recalled using the Illuminus algorithm. After standard QC steps (as for the case data) 1,846 QIMR Berghofer controls were included in the analysis.

HCS

The Hunter Community Study (HCS) is a population-based cohort study consisting of men and women aged 55-85 years of age in Newcastle, New South Wales, Australia (12). Participants were randomly selected from the NSW State electoral roll (listing on the electoral roll is compulsory in Australia) and contacted between December 2004 and December 2007. Non-English speaking persons and those living in a residential aged-care facility were ineligible for participation in the study. Participants were asked to complete five self-report questionnaires as well as attend the HCS data collection centre so clinical measures could be obtained. In total, 44.5% of eligible controls agreed to participate in this study. Genotype data for this study were extracted from an existing Illumina 610 K BeadChip genome-wide association study scan and recalled using the Illuminus algorithm. After standard QC steps (as for the case data) 1,237 HCS controls were included in the analysis.

WTCCC

Controls utilized for stage 1 analysis were genotyped as part of the Wellcome Trust Case Control Consortium (WTCCC2) (13). These controls are drawn from two sources: 2,922 controls from the 1958 Birth Cohort (1958BC), a population-based study in the United Kingdom of individuals born in 1 week in 1958 (14); and 2,737 controls identified through the UK National Blood Service (NBS) (13). The analyses presented here are based on 2,694 1958BC and 2,496 NBS controls for which valid genotype data were available at the time of analysis.

NSECG

As detailed above, NSECG cases were identified from collaborating clinicians throughout the UK, based on diagnosis of adenocarcinoma of the uterus at 70 years of age or younger. A sample of 919 non-overlapping NSECG cases were genotyped at the Wellcome Trust Centre for Human Genetics Oxford using the Illumina 660K genome-wide array. Controls were spouses or partners of colorectal cancer cases unaffected by cancer and without a personal family history (to $2^{\text {nd }}$ degree relative level) of colorectal neoplasia drawn from the UK1/CORGI colorectal cancer sample set, genotyped previously using the Illumina 550K genome-wide array (15).

SECGS Asian dataset

The Shanghai Endometrial Cancer Genetic Study (SECGS) includes 834 endometrial cancer cases who were recruited to the Shanghai Endometrial Cancer Study (SECS) and 1936 controls who were recruited to the Shanghai Breast Cancer Study (SBCS). As described in detail elsewhere, both SECS and SBCS are two population-based case-control studies that were conducted in parallel in Shanghai during same period using an identical study protocol (16, 17). Briefly, 1,199 women aged between 30 and 69 with newly diagnosed with EC between 1997 and 2003 were identified through the population-based tumor registry and recruited to the SECS (response rate 83\%). The SBCS controls were randomly selected from the general population using the Shanghai Resident Registry with response rate of 74%. Women with prior hysterectomies were not eligible for inclusion in this study. Participants completed a detailed in-person interview at the time of enrollment and provided a blood or buccal cell sample. Case and control genotype data for stage 2 SNPs, or for correlated SNPs with $r^{2}>0.8$, were extracted from existing Affymetrix 6.0 genome-wide scan data (18).

B. Genotype, expression and methylation in endometrial cancer tumor samples

Supplementary Figure 1. Signal intensity cluster plot for rs7501939 from the iCOGS array genotyping of 4,402 endometrial cancer cases and 28,758 country-matched controls.

Supplementary Figure 2. Regional linkage disequilibrium to our top SNP rs11263763 for Caucasian, Asian and African individuals in the 1000Genomes pilot data (http://www.broadinstitute.org/mpg/snap/ldplot.php).

Expression and methylation analyses

SNP rs4430796 was recently reported as an an eQTL in benign prostate tissue (19), with the presence of the minor ' G ' allele significantly decreasing HNF1B expression in histologically normal prostate tissue from European American, African American and Japanese patients. The eQTL effect was consistent although not significant in tumor tissue, however the sample sizes were typically smaller (19). Conversely, expression levels in ovarian cancer appear to be mediated through epigenetic mechanisms (7,20). In invasive serous tumors HNF1B expression is typically absent, with high levels of promoter methylation in $\sim 42 \%$ of tumors (with another epigenetic mechanism proposed to influence HNF1B expression in the remaining tumors), while HNF1B is expressed in most clear cell ovarian tumors concurrent with typically unmethylated HNF1B promoters (20). SNP rs757210, associated with both serous and clear cell ovarian cancer risk, is not associated with HNF1B expression but is associated with HNF1B methylation in serous ovarian cancer (7).

To begin investigating whether the decreased risk of endometrial cancer mediated through rs1163763 (and/or SNPs in LD with it) resembles associations seen in either prostate or clear cell ovarian cancer (as HNF1B methylation is typically absent in endometrial cancer tumors) we mined various datasets generated by us for our ANECS samples, and also The Cancer Genome Atlas (TCGA: https://tcga-data.nci.nih.gov/tcga/).

The Cancer Genome Atlas data

Level 3 (processed) data from endometrial tumors is publically available through TCGA (21). Analyses were restricted to incorporate data only from tumor samples of endometrioid endometrial cancer (type I, the most common form) with no evidence of copy-number alterations taken from individuals of Caucasian ancestry. SNP genotypes (Affymetrix 6.0 arrays) were downloaded through the controlled access portal, while epidemiological data, normalized RNA_Seq data (Illumina GAIIx) and DNA methylation data (Illumina Infinium HumanMethylation 450 Beadchips) were downloaded through the public access TCGA portal. RNA-Seq ZScores, tumor categories and GISTIC copy number calls for TCGA samples were obtained from the cBio Portal for Cancer Genomics (http://www.cbioportal.org/public-portal/index.do) and compared back to the TCGA data to confirm relative gene expression, tumor category and copy number assignments.

SNP data

Level 2 (preprocessed) germline GWAS data from endometrial cancer patients was downloaded from the TCGA data portal and the following QC performed. SNPs were excluded for call rate $<95 \%$, MAF $<99 \%$ or deviations from HWE significant at 10^{-4}. Samples were excluded for low overall call rate ($<95 \%$), heterozygosity >3 standard deviations from the mean, inconclusive sex status (X-chromosome homozygosity rate between 0.2 and 0.8), or samples >6 standard deviations from the mean scores for principal component 1 or 2, calculated using CEU individuals in HapMap (http://hapmap.ncbi.nlm.nih.gov/). For duplicate samples or samples identified as close relatives by IBS probabilities >0.85, the sample with the lower call rate was excluded.

Gene expression (eQTL analysis)

HNF1B mRNA expression by genotype, and molecular tumor type
Genotypes for SNPs located between chr17: 35,599,377-36,602,919 on the Affymetrix 6.0 array and normalized RNA_Seq gene expression data were available for 213 tumor samples. There were significant associations observed between the rs11263763 and rs11658063 genotypes and gene expression for the HNF1B gene (Kruskal-Wallis $P=1.3 \times 10^{-2}$ and 5.0×10^{-3} respectively), but not for any other gene located within 1 Mb of HNF1B (data not shown). There was also no association between HNF1B expression and tumor molecular phenotype category, as defined by TCGA
($P=0.47$), namely: copy number high, copy number low, microsatellite instability hypermutated, and POLEultramutated.

Isoform-specific expression

Genetic databases show a number of different HNF1B transcripts and isoforms. A previous study in prostate cancer showed a significant shift in isoform usage between benign prostate and tumor tissue, with isoform C predominating in benign tissue and isoform B predominating in malignant tissue (22). We therefore tested this suggestion that isoform expression differences could influence cancer risk at this locus in the endometrial cancer cell lines. Contrary to prostate cancer, no significant down-regulation of isoform C was observed in tumor cell lines when compared to a normal cell line (Supplementary Fig 3).

Further, we investigated the association between genotype and HNF1B isoform expression in the TCGA data. This dataset provides normalized RNA_Seq data for 3 isoforms A (uc010wdi.1), B (uc002hok.3), and C (uc010cve.1). It should be noted that uc 010 cve. 1 is not equivalent to the isoform C described above (uc010cve. 1 includes only exons 3 and an extended exon 4), although expression of this transcript is likely to also capture the longer isoform C tested above. There was no significant association between genotype and isoform usage ($P=0.45$); rs11263763 genotype was significantly associated with expression of isoform B (uc002hok.3; $P=2.2 \times 10^{-2}$) and isoform A (uc010wdi.1; $P=2.1 \times 10^{-2}$), while isoform C (uc010cve.1) was expressed at an extremely low level in those samples in which expression was detected.

Supplementary Figure 3. HNF1B isoform expression. A. RT-PCR results using HNF1B isoformspecific primers. i. HNF1B isoforms A and B; ii. HNF1B isoform C as described by Harries et al. (including exons 1-4) (22); iii. HPRT1 positive control. Lanes 1-10 are endometrial cell lines (lane 2 is the immortalized normal cell line); NTC non-template control. LNCaP prostate cancer cell line. 2% agarose gels. DNA Molecular Weight Marker ($0.07-12.2 \mathrm{Kbp}$). B. HNF1B isoforms included in the TCGA dataset, where isoform A corresponds to uc010wdi.1, B corresponds to uc002hok.3, and C corresponds to uc 010 cve. 1 (distinct from the Harries et al. (22) isoform C described above).

Gene expression by DNA methylation analysis.

Gene expression (RNA-Seq) and HNF1B methylation data were available for 199 tumor samples. Investigations into HNF1B methylation in ovarian tumors have focused on Illumina probe cg14487292 (7, 20), however, data for this probe was missing from the TCGA endometrial cancer data. Instead, we analysed average methylation across 18 probes located with the region of the HNF1B CpG island (cg15246719, cg12134754, cg24712484, cg03433642, cg09679923, cg17652435, cg03348978, cg02435495, cg05110178, cg11862993, cg09463047, cg04917276, cg04433035, cg05222347, cg02335804, cg12788467, cg13230606, and cg19378036), all of which had beta values suggesting very low/no methylation (beta values <0.2) for the majority of tumor samples (average beta across all 18 probes $=0.098$). There was a significant negative correlation between methylation at these probes and HNF1B expression (Pearson's $\mathrm{r}=-0.358, P=2.1 \times 10^{-7}$). As above, there was also no association between HNF1B methylation and tumor category as defined by TCGA tumor subtype ($P=0.78$). Additionally, there was no association between rs11263763 or rs116658063 genotype with HNF1B methylation ($P=0.42$ and 0.37 respectively) or MLH1 methylation at 'region C' probes (23) cg11600697, cg21490561 and cg00893636 ($P=0.58$ and 0.22 respectively).

rs4430796 genotype and MLH1 methylation in ANECS samples

Additionally, data was available for 182 of our ANECS samples for both MLH1 methylation, performed as part of a larger project to investigate the methylation profile of this gene in relation to endometrial tumor MMR protein expression and germline MMR gene mutation status(24), and genotype at the original GWAS SNP rs4430796, performed as part of the initial follow-up of the association at the HNF1B locus (25). Of these samples, 86 showed MLH1 methylation while 96 showed no methylation at this locus. There was no association between rs4430796 genotype and methylation status in these samples ($P=0.91$).

C. References

1 Weiderpass, E., Adami, H.O., Baron, J.A., Magnusson, C., Bergstrom, R., Lindgren, A., Correia, N. and Persson, I. (1999) Risk of endometrial cancer following estrogen replacement with and without progestins. J Natl Cancer Inst, 91, 1131-1137.
2 Wik, E., Trovik, J., Iversen, O.E., Engelsen, I.B., Stefansson, I.M., Vestrheim, L.C., Haugland, H.K., Akslen, L.A. and Salvesen, H.B. (2009) Deoxyribonucleic acid ploidy in endometrial carcinoma: a reproducible and valid prognostic marker in a routine diagnostic setting. Am J Obstet Gynecol, 201, 603 e601-607.
3 Salvesen, H.B., Iversen, O.E. and Akslen, L.A. (1999) Prognostic significance of angiogenesis and Ki-67, p53, and p21 expression: a population-based endometrial carcinoma study. J Clin Oncol, 17, 1382-1390.
4 Salvesen, H.B., Carter, S.L., Mannelqvist, M., Dutt, A., Getz, G., Stefansson, I.M., Raeder, M.B., Sos, M.L., Engelsen, I.B., Trovik, J. et al. (2009) Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci U S A, 106, 4834-4839.
5 Ashton, K.A., Proietto, A., Otton, G., Symonds, I., McEvoy, M., Attia, J., Gilbert, M., Hamann, U. and Scott, R.J. (2008) The influence of the Cyclin D1 870 G>A polymorphism as an endometrial cancer risk factor. BMC Cancer, 8, 272.
6 Michailidou, K., Hall, P., Gonzalez-Neira, A., Ghoussaini, M., Dennis, J., Milne, R.L., Schmidt, M.K., Chang-Claude, J., Bojesen, S.E., Bolla, M.K. et al. (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet, 45, 353-361, 361e351-352.
7 Pharoah, P.D., Tsai, Y.Y., Ramus, S.J., Phelan, C.M., Goode, E.L., Lawrenson, K., Buckley, M., Fridley, B.L., Tyrer, J.P., Shen, H. et al. (2013) GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet, 45, 362-370, 370e361362.

8 Spurdle, A. and Webb, P. (2008) Re: Excess of early onset multiple myeloma in endometrial cancer probands and their relatives suggests common susceptibility. Gynecol Oncol, 109, 153; author reply 154.
9 Painter, J.N., Anderson, C.A., Nyholt, D.R., Macgregor, S., Lin, J., Lee, S.H., Lambert, A., Zhao, Z.Z., Roseman, F., Guo, Q. et al. (2011) Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat Genet, 43, 51-54.
10 McGregor, B., Pfitzner, J., Zhu, G., Grace, M., Eldridge, A., Pearson, J., Mayne, C., Aitken, J.F., Green, A.C. and Martin, N.G. (1999) Genetic and environmental contributions to size, color, shape, and other characteristics of melanocytic naevi in a sample of adolescent twins. Genet Epidemiol, 16, 40-53.
11 Zhu, G., Duffy, D.L., Eldridge, A., Grace, M., Mayne, C., O'Gorman, L., Aitken, J.F., Neale, M.C., Hayward, N.K., Green, A.C. et al. (1999) A major quantitative-trait locus for mole density is linked to the familial melanoma gene CDKN2A: a maximum-likelihood combined linkage and association analysis in twins and their sibs. Am J Hum Genet, 65, 483-492.
12 McEvoy, M., Smith, W., D'Este, C., Duke, J., Peel, R., Schofield, P., Scott, R., Byles, J., Henry, D., Ewald, B. et al. (2010) Cohort profile: The Hunter Community Study. Int J Epidemiol, 39, 1452-1463.
13 Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661-678.
14 Power, C. and Elliott, J. (2006) Cohort profile: 1958 British birth cohort (National Child Development Study). Int J Epidemiol, 35, 34-41.
15 Houlston, R.S., Cheadle, J., Dobbins, S.E., Tenesa, A., Jones, A.M., Howarth, K., Spain, S.L., Broderick, P., Domingo, E., Farrington, S. et al. (2010) Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet, 42, 973-977.
16 Xu, W.H., Long, J.R., Zheng, W., Ruan, Z.X., Cai, Q., Cheng, J.R., Zhao, G.M., Xiang, Y.B.
and Shu, X.O. (2009) Association of thymidylate synthase gene with endometrial cancer risk in a Chinese population. Cancer Epidemiol Biomarkers Prev, 18, 579-584.
17 Zheng, W., Long, J., Gao, Y.T., Li, C., Zheng, Y., Xiang, Y.B., Wen, W., Levy, S., Deming, S.L., Haines, J.L. et al. (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet, 41, 324-328.
18 Long, J., Zheng, W., Xiang, Y.B., Lose, F., Thompson, D., Tomlinson, I., Yu, H., Wentzensen, N., Lambrechts, D., Dork, T. et al. (2012) Genome-wide association study identifies a possible susceptibility locus for endometrial cancer. Cancer Epidemiol Biomarkers Prev, 21, 980-987.
19 Grisanzio, C., Werner, L., Takeda, D., Awoyemi, B.C., Pomerantz, M.M., Yamada, H., Sooriakumaran, P., Robinson, B.D., Leung, R., Schinzel, A.C. et al. (2012) Genetic and functional analyses implicate the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer pathogenesis. Proc Natl Acad Sci U S A, 109, 11252-11257.
20 Shen, H., Fridley, B.L., Song, H., Lawrenson, K., Cunningham, J.M., Ramus, S.J., Cicek, M.S., Tyrer, J., Stram, D., Larson, M.C. et al. (2013) Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nat Commun, 4, 1628.
21 The Cancer Genome Atlas Research Network. (2013) Integrated genomic characterization of endometrial carcinoma. Nature, 497, 67-73.
22 Harries, L.W., Perry, J.R., McCullagh, P. and Crundwell, M. (2010) Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer. BMC Cancer, 10, 315.
23 Metcalf, A.M. and Spurdle, A.B. (2013) Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review. Familial cancer, in press.
24 Buchanan DD, T.Y., Walsh MD, Clendenning M, Metcalf AM, Ferguson K, Arnold ST, Thompson BA, Lose FA, Parsons MT, Walters RJ, Pearson S-A, Cummings M, Oehler MK, Blomfield PB, Quinn MA, Kirk JA, Stewart CJ, Obermair A, Young JP, Webb PM, Spurdle AB. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age <60 Years optimizes triage for populationlevel germline mismatch repair gene mutation testing. J Clin Oncol, 32, 90-100.
25 Spurdle, A.B., Thompson, D.J., Ahmed, S., Ferguson, K., Healey, C.S., O'Mara, T., Walker, L.C., Montgomery, S.B., Dermitzakis, E.T., Fahey, P. et al. (2011) Genome-wide association study identifies a common variant associated with risk of endometrial cancer. Nat Genet, 43, 451-454.

D. ECAC Study Collaborators (for case samples):

The ANECS Group comprises: AB Spurdle, PM Webb, J Young (QIMR Berghofer Medical Research Institute); Consumer representative: L McQuire; Clinical Collaborators: NSW: S BaronHay, D Bell, A Bonaventura, A Brand, S Braye, J Carter, F Chan, C Dalrymple, A Ferrier (deceased), G Gard, N Hacker, R Hogg, R Houghton, D Marsden, K McIlroy, G Otton, S Pather, A Proietto, G Robertson, J Scurry, R Sharma, G Wain, F Wong; Qld: J Armes, A Crandon, M Cummings, R Land, J Nicklin, L Perrin, A Obermair, B Ward; SA: M Davy, T Dodd, J Miller, M Oehler, S Paramasivum, J Pierides, F Whitehead; Tas: P Blomfield, D Challis; Vic: D Neesham, J Pyman, M Quinn, R Rome, M Weitzer; WA: B Brennan, I Hammond, Y Leung, A McCartney (deceased), C Stewart, J Thompson; Project Managers: S O'Brien, S Moore; Laboratory Manager: K Ferguson; Pathology Support: M Walsh; Admin Support: R Cicero, L Green, J Griffith, L Jackman, B Ranieri; Laboratory Assistants: M O'Brien, P Schultz; Research Nurses: B Alexander, C Baxter, H Croy, A Fitzgerald, E Herron, C Hill, M Jones, J Maidens, A Marshall, K Martin, J Mayhew, E Minehan, D Roffe, H Shirley, H Steane, A Stenlake, A Ward, S Webb, J White.

CHIBCHA (study of hereditary cancer in Europe and Latin America) collaborators include: Ma. Magdalena Echeverry de Polanco, Mabel Elena Bohórquez, Rodrigo Prieto, Angel Criollo, Carolina Ramírez, Ana Patricia Estrada, Jhon Jairo Suárez (Grupo de Citogenética Filogenia y Evolución de Poblaciones, Universidad del Tolima, Colombia); Augusto Rojas Martinez (Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, Mexico); Silvia Rogatto, Samuel Aguiar Jnr, Ericka Maria Monteiro Santos (Department of Urology, School of Medicine, UNESP - São Paulo State University, Botucatu, Brazil); Monica Sans, Valentina Colistro, Pedro C. Hidalgo, Patricia Mut (Department of Biological Anthropology, College of Humanities and Educational Sciences, University of the Republic, Magallanes, Montevideo, Uruguay); Angel Carracedo, Clara Ruiz Ponte, Ines Quntela Garcia (Fundacion Publica Galega de Medicina Xenomica, CIBERER, Genomic Medicine Group-University of Santiago de Compostela, Hospital Clinico, Santiago de Compostela, Galicia, Spain); Sergi Castellvi-Bel (Department of Gastroenterology, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, IDIBAPS, University of Barcelona, Barcelona, Catalonia, Spain); Manuel Teixeira (Department of Genetics, Portuguese Oncology Institute, Rua Dr, António Bernardino de Almeida, Porto, Portugal).

NECS collaborators include: Ute Hamann and Michael Gilbert.
The NSECG Group comprises: Ian Tomlinson (Oxford University); M Adams, A Al-Samarraie, S Anwar, R Athavale, S Awad, A Bali, A Barnes, G Cawdell, S Chan, K Chin, P Cornes, M Crawford, J Cullimore, S Ghaem-Maghami, R Gornall, J Green, M Hall, M Harvey, J Hawe, A Head, J Herod, M Hingorani, M Hocking, C Holland, T Hollingsworth,J Hollingworth, T Ind, R Irvine, C Irwin, M Katesmark, S Kehoe, G Kheng-Chew, K Lankester, A Linder, D Luesley, C BLynch,V McFarlane, R Naik, N Nicholas, D Nugent, S Oates, A Oladipo, A Papadopoulos, S Pearson, D Radstone, S Raju, A Rathmell, C Redman, M Rymer, P Sarhanis, G Sparrow, N Stuart, S Sundar, A Thompson, S Tinkler, S Trent, A Tristram, N Walji, R Woolas.

RENDOCAS investigators include: Annika Lindblom, Gerasimos Tzortzatos, Miriam Mints, Emma Tham, Ofra Castro, Kristina Gemzell-Danielsson.

SEARCH collaborators include: Helen Baker, Caroline Baynes, Don Conroy, Bridget Curzon, Patricia Harrington, Sue Irvine, Craig Luccarini, Rebecca Mayes, Hannah Munday, Barbara Perkins, Daisy Pharoah, Radka Platte, Anne Stafford and Judy West.

SECGS investigators include: Xiao Ou Shu, Wei Zheng, Jirong Long, Qiuyin Cai, Qi Dai, Hui

Cai, Ryan Delahanty and Chun Li (Vanderbilt University), Yong-Bing Xiang, Yutang Gao, WangHong Xu (Shanghai Cancer Institute), Wei Lu, Ying Zheng, and Kai Gu (Shanghai Institute of Preventive Medicine).

E. BCAC and OCAC Study Collaborators (for control samples):

The Australian Ovarian Cancer Study Group comprises: R Stuart-Harris; NSW- F Kirsten, J Rutovitz, P Clingan, A Glasgow, A Proietto, S Braye, G Otton, J Shannon, T Bonaventura, J Stewart, S Begbie, M Friedlander, D Bell, S Baron-Hay, A Ferrier (deceased), G Gard, D Nevell, N Pavlakis, S Valmadre, B Young, C Camaris, R Crouch, L Edwards, N Hacker, D Marsden, G Robertson, P Beale, J Beith, J Carter, C Dalrymple, R Houghton, P Russell, L Anderson, M Links, J Grygiel, J Hill, A Brand, K Byth, R Jaworski, P Harnett, R Sharma, G Wain; QLD- D Purdie, D Whiteman, B Ward, D Papadimos, A Crandon, M Cummings, K Horwood. A Obermair, L Perrin, D Wyld, J Nicklin; SA- M Davy, MK Oehler, C Hall, T Dodd, T Healy, K Pittman, D Henderson, J Miller, J Pierdes, A Achan; TAS- P Blomfield, D Challis, R McIntosh, A Parker; VIC- B Brown, R Rome, D Allen, P Grant, S Hyde, R Laurie M Robbie, D Healy, T Jobling, T Manolitsas, J McNealage, P Rogers, B Susil, E Sumithran, I Simpson, I Haviv, K Phillips, D Rischin, S Fox, D Johnson, S Lade, P Waring, M Loughrey, N O’Callaghan, B Murray, L Mileshkin, P Allan; V Billson, J Pyman, D Neesham, M Quinn, A Hamilton, C Underhill, R Bell, LF Ng, R Blum, V Ganju; WA- I Hammond, A McCartney (deceased), C Stewart, Y Leung, M Buck, N Zeps (WARTN); AOCS Management Group- DDL Bowtell, AC Green, G Chenevix-Trench, A deFazio, D Gertig, PM Webb.

BSUCH collaborator: Peter Bugert.
ESTHER collaborators: Volker Arndt, Heiko Müller, Christa Stegmaier.
GENICA Network collaborators: Wing-Yee Lo, Christina Justenhoven, Ute Hamann, Thomas Brüning, Beate Pesch, Yon-Dschun Ko, Sylvia Rabstein, Anne Lotz, Christina Baisch, Hans-Peter Fischer, Volker Harth.

F. Supplementary Acknowledgements

The authors thank the many individuals who participated in this study and the numerous institutions and their staff who have supported recruitment.

ANECS thanks members of the Molecular Cancer Epidemiology and Cancer Genetic laboratories at QIMR Berfhofer Medical Research Institute for technical assistance, and the ANECS research team for assistance with the collection of risk factor information and blood samples. ANECS also gratefully acknowledges the cooperation of the following institutions: NSW: John Hunter Hospital, Liverpool Hospital, Mater Misericordiae Hospital (Sydney), Mater Misericordiae Hospital (Newcastle), Newcastle Private Hospital, North Shore Private Hospital, Royal Hospital for Women, Royal Prince Alfred Hospital, Royal North Shore Hospital, Royal Prince Alfred Hospital, St George Hospital; Westmead Hospital, Westmead Private Hospital; Qld: Brisbane Private Hospital, Greenslopes Hospital, Mater Misericordiae Hospitals, Royal Brisbane and Women's Hospital, Wesley Hospital, Queensland Cancer Registry; SA: Adelaide Pathology Partners, Burnside Hospital, Calvary Hospital, Flinders Medical Centre, Queen Elizabeth Hospital, Royal Adelaide Hospital, South Australian Cancer Registry; Tas: Launceston Hospital, North West Regional Hospitals, Royal Hobart Hospital; Vic: Freemasons Hospital, Melbourne Pathology Services, Mercy Hospital for Women, Royal Women's Hospital, Victorian Cancer Registry; WA: King Edward Memorial Hospital, St John of God Hospitals Subiaco \& Murdoch, Western Australian

Cancer Registry.
SEARCH thanks the SEARCH research team for recruitment, and also acknowledges the assistance of the Eastern Cancer Registration and Information Centre for subject recruitment.

BECS thanks Reiner Strick, Silke Landrith and Sonja Oeser for their logistic support during the study.

CAHRES (formerly known as SASBAC) thanks Li Yuqing from the Genome Institute of Singapore for contributions to this study, and also acknowledges previous input to SASBAC resource creation by Anna Christensson, Boel Bissmarck, Kirsimari Aaltonen, Karl von Smitten, Nina Puolakka, Christer Halldén, Lim Siew Lan and Irene Chen, Lena U. Rosenberg, Mattias Hammarström, and Eija Flygare.

HJECS thanks Wen Zheng, Hermann Hertel, and Tjoung-Won Park-Simon at Hannover Medical School for their contribution to sample recruitment.

LES gratefully acknowledges Helena Soenen, Gilian Peuteman and Dominiek Smeets for their technical assistance.

MECS thanks Tom Sellers, Catherine Phelan, Andrew Berchuck, and Kimberly Kalli, Amanda von Bismarck, Luisa Freyer and Lisa Rogmann.

MoMaTEC thanks Britt Edvardsen, Ingjerd Bergo and Mari Kyllsø Halle for technical assistance and Inger Marie Aksnes and Tor Audun Hervig at the Blood bank, Haukeland University Hospital for assistance with control recruitment.

NECS thanks staff at the University of Newcastle and the Hunter Medical Research Institute.
NSECG thank Ella Barclay and Lynn Martin for their contribution, and acknowledge the invaluable help of the National Cancer Research Network with the collection of study participants.

QIMR Berghofer thanks Margie Wright, Lisa Bowdler, Sara Smith, Megan Campbell and Scott Gordon for control sample collection and data processing, Kerenaftali Klein for statistical advice and Brendan Ryan for assistance with the figures.

RENDOCAS thanks Berith Wejderot, Sigrid Sahlen, Tao Liu, Margareta Ström, Maria Karlsson, and Birgitta Byström for their contribution to the study.

SECGS thanks research staff and participants of the Shanghai Endometrial Cancer Study and Shanghai Breast Cancer Study for their contributions in the study.

BSUCH thanks the Medical Faculty, Mannheim, the Diemtmar Hopp Foundation and the German Cancer Research Center.

MCCS was made possible by the contribution of many people, including the original investigators and the diligent team who recruited the participants and who continue working on follow up. We would like to express our gratitude to the many thousands of Melbourne residents who continue to participate in the study.

The UKBGS thank Breakthrough Breast Cancer and the Institute of Cancer Research for support and funding, and the Study participants, Study staff, and the doctors, nurses and other health care
staff and data providers who have contributed to the Study. The ICR acknowledges NHS funding to the NIHR Biomedical Research Centre.

In addition, the iCOGS study would not have been possible without the contributions of: Andrew Berchuck (OCAC), Rosalind A. Eeles, Ali Amin Al Olama, Zsofia Kote-Jarai , Sara Benlloch (PRACTICAL), Georgia Chenevix-Trench, Antonis Antoniou, Lesley McGuffog, Fergus Couch and Ken Offit (CIMBA), Andrew Lee, and Ed Dicks, Craig Luccarini and the staff of the Centre for Cancer Genetic Epidemiology Laboratory (Cambridge), Javier Benitez, Anna Gonzalez-Neira and the staff of the CNIO genotyping unit, Jacques Simard and Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoissière and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, Stig E. Bojesen, Sune F. Nielsen, Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility.

H. Additional Acknowledgments of Funding to BCAC/OCAC control groups

The ESTHER study was funded by the Baden-Württemberg state Ministry of Science, Research and Arts (Stuttgart, Germany), the Federal Ministry of Education and Research (Berlin, Germany) and the Federal Ministry of Family Affairs, Senior Citizens, Women and Youth (Berlin, Germany).

The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany, as well as the Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany.

Financial support for the KARBAC study was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, as well as the Swedish Cancer Society.

The MARIE study was supported by the Deutsche Krebshilfe e.V. [70-2892-BR I], the Hamburg Cancer Society and the German Cancer Research Center.

MAY was supported by R01-CA122443, P50-CA136393, the Fred C. and Katherine B. Andersen Foundation, and the Mayo Foundation.

MCBCS recognizes funding from the Breast Cancer Research Foundation (BCRF), the David F. and Margaret T. Grohne Family Foundation, and the Ting Tsung and Wei Fong Chao Foundation

MCCS recruitment was funded by VicHealth and Cancer Council Victoria, and its follow-up has been continuously supported by infrastructure provided by Cancer Council Victoria.

UKBGS was funded by Breakthrough Breast Cancer and the Institute of Cancer Research, which acknowledges NHS funding to the NIHR Biomedical Research Centre.

Supplementary Information for:

Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk

Jodie N Painter ${ }^{1}$, Tracy A O’Mara ${ }^{1}$, Jyotsna Batra ${ }^{2}$, Timothy Cheng ${ }^{3}$, Felicity A Lose ${ }^{1}$, Joe Dennis ${ }^{4}$, Kyriaki Michailidou ${ }^{4}$, Jonathan P Tyrer ${ }^{5}$, Shahana Ahmed ${ }^{5}$, Kaltin Ferguson ${ }^{1}$, Catherine S Healey ${ }^{5}$, Susanne Kaufmann ${ }^{1}$, Kristine M Hillman ${ }^{1}$, Carina Walpole ${ }^{2}$, Leire Moya ${ }^{2}$, Pamela Pollock ${ }^{6}$, Angela Jones 3, Kimberley Howarth ${ }^{3}$, Lynn Martin ${ }^{3}$, Maggie Gorman ${ }^{3}$, Shirley Hodgson ${ }^{7}$, National Study of Endometrial Cancer Genetics Group (NSECG) ${ }^{3,8}$, CHIBCHA Consortium ${ }^{3,8}$, Ma. Magdalena Echeverry de Polanco ${ }^{9}$, Monica Sans ${ }^{10}$, Angel Carracedo ${ }^{11,12}$, Sergi Castellvi-Bel ${ }^{13}$, Augusto RojasMartinez ${ }^{14}$, Erika Santos ${ }^{15}$, Manuel R Teixeira ${ }^{16}$, Luis Carvajal-Carmona ${ }^{3,9,17}$, Xiao-Ou Shu ${ }^{18}$, Jirong Long ${ }^{18}$, Wei Zheng ${ }^{18}$, Yong-Bing Xiang ${ }^{19}$, The Australian National Endometrial Cancer Study Group (ANECS $)^{1,8}$, Grant W Montgomery ${ }^{1}$, Penelope M Webb ${ }^{1}$, Rodney J Scott ${ }^{20-22}$, Mark McEvoy ${ }^{23}$, John Attia ${ }^{20,23}$, Elizabeth Holliday ${ }^{20,24}$, Nicholas G Martin ${ }^{1}$, Dale R Nyholt ${ }^{1}$, Anjali K Henders ${ }^{1}$, Peter A Fasching ${ }^{25,26}$, Alexander Hein ${ }^{26}$, Matthias W Beckmann ${ }^{26}$, Stefan P Renner ${ }^{26}$, Thilo Dörk ${ }^{27}$, Peter Hillemanns ${ }^{28}$, Matthias Dürst ${ }^{29}$, Ingo Runnebaum ${ }^{29}$, Diether Lambrechts ${ }^{30,31}$, Lieve Coenegrachts ${ }^{32}$, Stefanie Schrauwen ${ }^{32}$, Frederic Amant ${ }^{33}$, Boris Winterhoff ${ }^{34}$, Sean C Dowdy ${ }^{34}$, Ellen L Goode ${ }^{35}$, Attila Teoman ${ }^{34}$, Helga B Salvesen ${ }^{36,37}$, Jone Trovik ${ }^{36,37}$, Tormund S Njolstad ${ }^{36,37}$, Henrica MJ Werner ${ }^{36,37}$, Katie Ashton ${ }^{21,38}$, Tony Proietto ${ }^{39}$, Geoffrey Otton ${ }^{39}$, Gerasimos Tzortzatos ${ }^{40}$, Miriam Mints ${ }^{40}$, Emma Tham ${ }^{41}$, RENDOCAS ${ }^{8,41}$, Per Hall ${ }^{42}$, Kamila Czene ${ }^{42}$, Jianjun Liu ${ }^{43}$, Jingmei Li^{43}, John L Hopper ${ }^{44}$, Melissa C Southey ${ }^{45}$, Australian Ovarian Cancer Study (AOCS $)^{1,8,46}$, Arif B Ekici ${ }^{47}$, Matthias Ruebner ${ }^{26}$, Nicola Johnson ${ }^{48}$, Julian Peto ${ }^{49}$, Barbara Burwinkel ${ }^{50,51}$, Frederik Marme ${ }^{50,52}$, Hermann Brenner ${ }^{53,54}$, Aida K Dieffenbach ${ }^{53,54}$, Alfons Meindl ${ }^{55}$, Hiltrud Brauch ${ }^{56}$, The GENICA Network ${ }^{8,51-56}$, Annika Lindblom ${ }^{41}$, Jeroen Depreeuw ${ }^{30}$, Matthieu Moisse ${ }^{30}$, Jenny Chang-Claude ${ }^{62}$, Anja Rudolph ${ }^{63}$, Fergus J Couch ${ }^{64}$, Janet E Olson ${ }^{35}$, Graham G Giles ${ }^{44,65,66}$, Fiona Bruinsma ${ }^{65}$, Julie M Cunningham ${ }^{64}$, Brooke L. Fridley ${ }^{67}$, Anne-Lise Børresen-Dale ${ }^{68,69}$, Vessela N Kristensen ${ }^{68-70}$, Angela Cox ${ }^{71}$, Anthony J Swerdlow ${ }^{72,73}$, Nicholas Orr ${ }^{73}$, Manjeet K Bolla ${ }^{4}$, Qin Wang ${ }^{4}$, Rachel Palmieri Weber ${ }^{74}$, Zhihua Chen ${ }^{75}$, Mitul Shah ${ }^{5}$, Juliet D French ${ }^{1}$, Paul D P Pharoah ${ }^{5}$, Alison M Dunning ${ }^{5}$, Ian Tomlinson ${ }^{3}$, Douglas F Easton ${ }^{4,5}$, Stacey L Edwards ${ }^{1}$, Deborah J Thompson ${ }^{5}$, Amanda B Spurdle* ${ }^{1}$

1. QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
2. Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation, and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
3. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
4. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
5. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
6. Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
7. Department of Clinical Genetics, St George’s Hospital Medical School, London, UK
8. See Supplementary Information for full list of members
9. Grupo de investigación Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Tolima, Colombia
10. Department of Biological Anthropology, College of Humanities and Educational Sciences, University of the Republic, Magallanes, Montevideo, Uruguay
11. Grupo de Medicina Xenómica, Fundación Galega de Medicina Xenómica (SERGAS) and CIBERER- Universidade de Santiago de Compostela- Santiago de Compostela, Spain
12. Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
13. Genetic Predisposition to Colorectal Cancer Group, Gastrointestinal \& Pancreatic Oncology Team, IDIBAPS/CIBERehd/Hospital Clínic,Centre Esther Koplowitz (CEK), Barcelona, Spain
14. Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León, Mexico
15. Hospital A.C. Camargo, São Paulo, Brazil
16. Department of Genetics, Portuguese Oncology Institute, Porto, Portugal, and Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
17. Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
18. Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
19. Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
20. Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, Australia
21. Hunter Area Pathology Service, John Hunter Hospital, Newcastle, NSW, Australia
22. Centre for Information Based Medicine and School of Biomedical Science and Pharmacy, University of Newcastle, NSW, Australia
23. Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, NSW, Australia
24. Centre for Information Based Medicine and School of Medicine and Public Health, University of Newcastle, NSW, Australia
25. University of California at Los Angeles, Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, Los Angeles, CA, USA
26. University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
27. Hannover Medical School, Gynaecology Research Unit, Hannover, Germany
28. Hannover Medical School, Clinics of Gynaecology and Obstetrics, Hannover, Germany
29. Friedrich Schiller University Jena, Dept. of Gynaecology, Jena, Germany
30. Vesalius Research Center, VIB, Leuven, Belgium
31. Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Belgium
32. Department of Oncology, KU Leuven, Belgium
33. Division of Gynaecological Oncology, Department of Oncology, University Hospital Leuven, KU Leuven, Belgium
34. Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Mayo Clinic, Rochester, MN, USA
35. Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
36. Centre for Cancerbiomarkers, Department of Clinical Science, The University of Bergen, Norway
37. Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
38. Centre for Information Based Medicine and the Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, NSW, Australia
39. School of Medicine and Public Health, Faculty of Health, University of Newcastle, NSW, Australia
40. Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
41. Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
42. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
43. Human Genetics, Genome Institute of Singapore, Singapore, Sweden
44. Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, VIC, Australia
45. Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
46. Peter MacCullum Cancer Centre, Melbourne, VIC, Australia
47. Institute of Human Genetics, University Hospital, Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.
48. Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK
49. London School of Hygiene and Tropical Medicine, London, UK
50. Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
51. Molecular Epidemiology, C080, German Cancer Research Center, DKFZ, Heidelberg, Germany
52. National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
53. Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
54. German Cancer Consortium (DKTK), Heidelberg, Germany
55. Department of Obstetrics and Gynecology, Division of Tumor Genetics, Technical University of Munich, Munich, Germany
56. Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, University of Tuebingen, Germany
57. Institute for Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany
58. Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
59. Institute of Pathology, Medical Faculty of the University of Bonn, Bonn, Germany
60. Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany
61. Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
62. Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
63. Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
64. Departments of Laboratory Medicine and Pathology, and Health Science Research, Mayo Clinic, Rochester, MN, USA
65. Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, VIC, Australia
66. Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC Australia
67. Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
68. Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
69. The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
70. Department of Clinical Molecular Oncology, Division of Medicine, Akershus University Hospital, Ahus, Norway
71. Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
72. Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
73. Division of Breast Cancer Research, Institute of Cancer Research, London, UK
74. Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC, USA
75. Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA

* Correspondence to: Amanda B. Spurdle, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, 4006, Queensland, Australia.
Ph: +61 (0)7 33620379
Fax: +61 (0)7 33620105
Email: Amanda.Spurdle@qimrberghofer.edu.au

INDEX

A. Detailed Description of the Case and Control Sample Sets 6
B. Genotype, expression and methylation in endometrial cancer tumor samples 10
Supplementary Figure 1. Signal intensity cluster plot for rs7501939 from the iCOGS array genotyping of 4,402 endometrial cancer cases and 28,758 country-matched controls 10
Supplementary Figure 2. Regional linkage disequilibrium to our top SNP rs11263763 for Caucasian, Asian and African individuals in the 1000Genomes pilot data (http://www.broadinstitute.org/mpg/snap/ldplot.php). 11
Supplementary Figure 3. HNF1B isoform expression. 14
C. References 16
D. ECAC Study Collaborators (for case samples): 18
E. BCAC and OCAC Study Collaborators (for control samples): 19
F. Supplementary Acknowledgements 19
G. Additional Acknowledgments of Funding to BCAC/OCAC control groups 21

SUPPLEMENTARY INFORMATION

A. Detailed Description of the Case and Control Sample Sets

A summary of the studies included in the iCOGS fine-mapping dataset and the genome-wide association study (GWAS) datasets is shown in Supplementary Table 1, with additional details provided below. All studies were predominantly of women of European ancestry, with the exception of SECGS which was based on women of Asian ancestry from China. All studies have the relevant IRB approval in each country in accordance with the principles embodied in the Declaration of Helsinki, and informed consent was obtained from all participants. A total of 6,608 cases and 37,925 controls were included in the Caucasian meta-analysis, and an additional 834 cases and 1936 controls were available from the SECGS Asian sample set.

Fine-mapping (iCOGS) Case Sample Sets:

The iCOGS fine-mapping data set included cases from 9 studies detailed below, as well as additional European ancestry cases from ANECS and SEARCH (non-overlapping with the GWAS datasets).

BECS

The Bavarian Endometrial Cancer Cases and Controls Study (BECS) is a single-center case-control study, conducted between 2002 and 2008, with the aim of investigating genetic and epidemiological risk factors for endometrial cancer. Cases were either incident cases referred to the University Hospital Erlangen by surrounding practioners (66% of the case sample set), or prevalent cases that were outpatients in follow-up care approached within 6.2 ($\pm 4.6 \mathrm{SD}$) years after treatment for primary endometrial cancer in the same hospital (34% of the case sample set). Epidemiological information was collected by a structured questionnaire completed during an interview and clinical data for the cases was obtained from clinical health records.

CAHRES

Details of the population selection process have been published previously for the Cancer Hormone Replacement Epidemiology Study (CAHRES) (1). Formerly known as the Singapore and Sweden Breast/Endometrial Cancer Study (SASBAC), this population based case-control study was conducted among Swedish women aged 50-74 years, who were residing in Sweden between January $1^{\text {st }} 1994$ and December $31^{\text {st }} 1995$. Endometrial cancer cases were identified through the nation-wide cancer registries in Sweden. All participants provided detailed questionnaire information. For endometrial cancer, histological specimens were reviewed and re-classified by the study pathologist. All participants reported Caucasian ethnicity.

HJECS

The Hannover-Jena Endometrial Cancer Study (HJECS), a hospital-based case-control study, included 250 German women, aged 31-89 years, who were recruited either at the Friedrich Schiller University of Jena or at Hannover Medical School after having been diagnosed with histologically confirmed primary incident endometrial carcinoma between 2004 and 2010. Epidemiological data were obtained from questionnaires, and information on tumor stage and histology was obtained from pathology and clinical reports. Over 98% were of German descent. Interviews were conducted at either the Friedrich Schiller University of Jena or at Hannover Medical School, and peripheral blood was collected for the extraction of DNA from white blood cells.

LES

The Leuven Endometrial Study (LES) is a hospital based case-control study. Eligible cases,
identified by active surveillance of electronic patient files at the Leuven University Hospital, were white women aged 27-80 years diagnosed with endometrial cancer. Clinical data for endometrial cancer patients were recorded during interview at the time of diagnosis, and from pathology reports. All medical records were reviewed by trained abstractors and pathology reports compatible with primary, invasive, epithelial endometrial adenocarcinoma of all stages (I-IV) and all grades were consulted. Participation rates exceeded 95% for cases.

MECS

The Mayo Endometrial Cancer Study (MECS) is a hospital based prospective biobank collection. The majority of patients seen at Mayo Clinic Rochester with primary endometrial cancer diagnosed at age 18 and older are enrolled. The collection was started in 2006 and contains blood and fresh frozen tissue. DNA was isolated from white blood cells using Qiagen isolation kits. DNA concentration was measured with picogreen. Clinical data were abstracted from electronic medical records. Control data were obtained from Mayo Clinic OCAC controls.

MoMaTEC

Molecular Markers in Treatment of Endometrial Cancer (MoMaTEC) cases were recruited from an unselected patient population primarily treated for endometrial carcinoma at Haukeland University Hospital, Bergen during 2001-2009. This is the referral hospital for Hordaland county; the area is demographically well defined, with about 450,000 inhabitants, representing approximately 10% of the Norwegian population and with a similar incidence rate and prognosis as the total Norwegian population of endometrial cancers (2-4). Clinical Information for cases regarding age, FIGO stage, histologic subtype, grade and prognosis was extracted from medical records.DNA was extracted from peripheral blood samples.

NECS

The Newcastle Endometrial Cancer Study (NECS) includes histologically confirmed endometrial cancer cases consecutively recruited from 1992 up to 2005 at the Hunter Centre for Gynaecological Cancer, John Hunter Hospital, Newcastle, New South Wales, Australia(5). The final analysis included 194 endometrial cancer patients. Data on reproductive and environmental risk factors including ethnicity, was collected using self-reported questionnaires. Information regarding recurrence, stage, grade and histology of endometrial cancer was collected from medical records. Patients presenting at this hospital-based site were captured by ANECS recruitment from 2005 onwards.

NSECG

National Study of the Genetics of Endometrial Cancer (NSECG) cases were identified from collaborating clinicians throughout the UK from 2008 to present, taking care not to recruit from centres involved in SEARCH. Inclusion criteria were adenocarcinomas of the uterus presenting at 70 years of age or younger. Almost all cases were incident and sampled within 6 months of diagnosis. Peripheral blood was collected from each participant and DNA extracted using standard methods. Tumor histology was confirmed from routine hospital reports and further details of histopathology and other tumor pathology characteristic was abstracted from these clinical pathology reports. A sample of 797 cases that were non-overlapping with the NSECG GWAS were genotyped using the iCOGS chip, as indicated in Supplementary Table 1.

RENDOCAS

The Registry of Endometrial Cancer in Sweden (RENDOCAS) is a hospital based case-control study. Patients ($\mathrm{n}=262$) who underwent surgery for endometrial cancer at Karolinska University hospital Solna, Sweden between 2008 and 2011 were included in the study. For each patient, the following was collected: blood and tumor samples; detailed family history and formulation of a pedigree where all suspected cancer cases were verified in medical records/pathology report if
possible; questionnaire covering relevant environmental factors underlying endometrial cancer.

Control sample sets

As indicated in Supplementary Table 1, endometrial cancer case sample sets were matched by country to combined control sample sets from the same country that had been genotyped using the iCOGS chip. Data was largely from control sample sets that participated in the Breast Cancer Association Consortium iCOGS experiment (6), with iCOGS data also accessed for controls from the Mayo Clinic via the Ovarian Cancer Association Consortium (MAY) (7). In addition, iCOGS genotyping was performed for 183 Norwegian female controls, recruited in Bergen via the blood bank specifically for use in the MoMaTEC case-control genotyping studies.

GWAS Case and Control Sample Sets:

ANECS
The Australian National Endometrial Cancer Study (ANECS) is an Australian population-based case-control family study of cancer of the uterine corpus (8). Women aged 18-79, newly diagnosed with histologically confirmed primary cancer of the endometrium between July 2005 and December 2007 were identified through major hospitals nationally, and also from state-based cancer registries. Excluding women who could not be contacted (mostly due to death, illness or failure to contact), case participation rate was 63%. Participants completed a detailed questionnaire providing clinical and epidemiological information, including ethnicity of all four grandparents. Information on tumor pathology characteristics was abstracted in standardized format from clinical pathology reports for all patients.

SEARCH

The Studies of Epidemiology and Risk factors in Cancer Heredity (SEARCH) is an ongoing population-based study with cases ascertained through the Eastern Cancer Registration and Information Centre (http://www.ecric.org.uk). All women diagnosed with endometrial cancer between the ages of 18-69 years (average age of diagnosis 58 years) from August 2001 to September 2007 were eligible for inclusion. Approximately 54% of eligible patients have enrolled in the study. Women taking part in the study were asked to provide a 20 ml blood sample for DNA analysis, and to complete a comprehensive epidemiological questionnaire. Controls were also drawn from SEARCH (http://ccge.medschl.cam.ac.uk/search/), but had no prior history of cancer at the time of recruitment. They were female, also between the ages of $18-69$ at the time of recruitment and matched to cases in geographical profile. Approximately 35% of eligible controls enrolled in the study. All participants reported Caucasian ethnicity. Information on tumor pathology characteristics was provided by the Eastern Cancer Registration and Information Centre and was derived from clinical pathology reports for all patients.

Genome-wide genotyping of the ANECS and SEARCH cases was performed using an Illumina Infinium 610K array and called using the Illuminus algorithm. Genotypes were available for 1317 cases with endometrial cancer. Samples were excluded as follows: probable Turner's syndrome or male sex based on genotypes for markers on the X and Y chromosomes ($\mathrm{n}=4$); call rate $<95 \%$ ($\mathrm{n}=15$); heterozygosity outside 5 standard deviations from the mean ($\mathrm{n}=7$); probable sibling pairs identified as close relatives by identity-by-state probabilities >0.85 ($\mathrm{n}=3$); $>15 \%$ non-European ancestry estimated from identity-by-state scores ($\mathrm{n}=1$), leaving a total of 1287 cases (606 from ANECS and 681 from SEARCH). The duplicate concordance was 99.998\%.

QIMR

The QIMR Berghofer Medical Research Institute control sample (9) is a subsection of individuals recruited as part of the Brisbane Adolescent Twin Study (10, 11). Twins were recruited from schools in Brisbane, Australia and surrounding areas of southeast Queensland and were examined close to their 12th birthday. Blood was obtained from all twins and most parents. Parents were
asked the ancestry of all eight great-grandparents of the twins. More than 95% of greatgrandparents were identified as being of northern European ancestry, mainly from Britain and Ireland. This analysis used genotype data from parents and siblings only, extracted from an existing Illumina 610 K BeadChip genome-wide association scan (9) and recalled using the Illuminus algorithm. After standard QC steps (as for the case data) 1,846 QIMR Berghofer controls were included in the analysis.

HCS

The Hunter Community Study (HCS) is a population-based cohort study consisting of men and women aged 55-85 years of age in Newcastle, New South Wales, Australia (12). Participants were randomly selected from the NSW State electoral roll (listing on the electoral roll is compulsory in Australia) and contacted between December 2004 and December 2007. Non-English speaking persons and those living in a residential aged-care facility were ineligible for participation in the study. Participants were asked to complete five self-report questionnaires as well as attend the HCS data collection centre so clinical measures could be obtained. In total, 44.5% of eligible controls agreed to participate in this study. Genotype data for this study were extracted from an existing Illumina 610 K BeadChip genome-wide association study scan and recalled using the Illuminus algorithm. After standard QC steps (as for the case data) 1,237 HCS controls were included in the analysis.

WTCCC

Controls utilized for stage 1 analysis were genotyped as part of the Wellcome Trust Case Control Consortium (WTCCC2) (13). These controls are drawn from two sources: 2,922 controls from the 1958 Birth Cohort (1958BC), a population-based study in the United Kingdom of individuals born in 1 week in 1958 (14); and 2,737 controls identified through the UK National Blood Service (NBS) (13). The analyses presented here are based on 2,694 1958BC and 2,496 NBS controls for which valid genotype data were available at the time of analysis.

NSECG

As detailed above, NSECG cases were identified from collaborating clinicians throughout the UK, based on diagnosis of adenocarcinoma of the uterus at 70 years of age or younger. A sample of 919 non-overlapping NSECG cases were genotyped at the Wellcome Trust Centre for Human Genetics Oxford using the Illumina 660K genome-wide array. Controls were spouses or partners of colorectal cancer cases unaffected by cancer and without a personal family history (to $2^{\text {nd }}$ degree relative level) of colorectal neoplasia drawn from the UK1/CORGI colorectal cancer sample set, genotyped previously using the Illumina 550K genome-wide array (15).

SECGS Asian dataset

The Shanghai Endometrial Cancer Genetic Study (SECGS) includes 834 endometrial cancer cases who were recruited to the Shanghai Endometrial Cancer Study (SECS) and 1936 controls who were recruited to the Shanghai Breast Cancer Study (SBCS). As described in detail elsewhere, both SECS and SBCS are two population-based case-control studies that were conducted in parallel in Shanghai during same period using an identical study protocol (16, 17). Briefly, 1,199 women aged between 30 and 69 with newly diagnosed with EC between 1997 and 2003 were identified through the population-based tumor registry and recruited to the SECS (response rate 83\%). The SBCS controls were randomly selected from the general population using the Shanghai Resident Registry with response rate of 74%. Women with prior hysterectomies were not eligible for inclusion in this study. Participants completed a detailed in-person interview at the time of enrollment and provided a blood or buccal cell sample. Case and control genotype data for stage 2 SNPs, or for correlated SNPs with $r^{2}>0.8$, were extracted from existing Affymetrix 6.0 genome-wide scan data (18).

B. Genotype, expression and methylation in endometrial cancer tumor samples

Supplementary Figure 1. Signal intensity cluster plot for rs7501939 from the iCOGS array genotyping of 4,402 endometrial cancer cases and 28,758 country-matched controls.

Supplementary Figure 2. Regional linkage disequilibrium to our top SNP rs11263763 for Caucasian, Asian and African individuals in the 1000Genomes pilot data (http://www.broadinstitute.org/mpg/snap/ldplot.php).

Expression and methylation analyses

SNP rs4430796 was recently reported as an an eQTL in benign prostate tissue (19), with the presence of the minor ' G ' allele significantly decreasing HNF1B expression in histologically normal prostate tissue from European American, African American and Japanese patients. The eQTL effect was consistent although not significant in tumor tissue, however the sample sizes were typically smaller (19). Conversely, expression levels in ovarian cancer appear to be mediated through epigenetic mechanisms (7,20). In invasive serous tumors HNF1B expression is typically absent, with high levels of promoter methylation in $\sim 42 \%$ of tumors (with another epigenetic mechanism proposed to influence HNF1B expression in the remaining tumors), while HNF1B is expressed in most clear cell ovarian tumors concurrent with typically unmethylated HNF1B promoters (20). SNP rs757210, associated with both serous and clear cell ovarian cancer risk, is not associated with HNF1B expression but is associated with HNF1B methylation in serous ovarian cancer (7).

To begin investigating whether the decreased risk of endometrial cancer mediated through rs1163763 (and/or SNPs in LD with it) resembles associations seen in either prostate or clear cell ovarian cancer (as HNF1B methylation is typically absent in endometrial cancer tumors) we mined various datasets generated by us for our ANECS samples, and also The Cancer Genome Atlas (TCGA: https://tcga-data.nci.nih.gov/tcga/).

The Cancer Genome Atlas data

Level 3 (processed) data from endometrial tumors is publically available through TCGA (21). Analyses were restricted to incorporate data only from tumor samples of endometrioid endometrial cancer (type I, the most common form) with no evidence of copy-number alterations taken from individuals of Caucasian ancestry. SNP genotypes (Affymetrix 6.0 arrays) were downloaded through the controlled access portal, while epidemiological data, normalized RNA_Seq data (Illumina GAIIx) and DNA methylation data (Illumina Infinium HumanMethylation 450 Beadchips) were downloaded through the public access TCGA portal. RNA-Seq ZScores, tumor categories and GISTIC copy number calls for TCGA samples were obtained from the cBio Portal for Cancer Genomics (http://www.cbioportal.org/public-portal/index.do) and compared back to the TCGA data to confirm relative gene expression, tumor category and copy number assignments.

SNP data

Level 2 (preprocessed) germline GWAS data from endometrial cancer patients was downloaded from the TCGA data portal and the following QC performed. SNPs were excluded for call rate $<95 \%$, MAF $<99 \%$ or deviations from HWE significant at 10^{-4}. Samples were excluded for low overall call rate ($<95 \%$), heterozygosity >3 standard deviations from the mean, inconclusive sex status (X-chromosome homozygosity rate between 0.2 and 0.8), or samples >6 standard deviations from the mean scores for principal component 1 or 2, calculated using CEU individuals in HapMap (http://hapmap.ncbi.nlm.nih.gov/). For duplicate samples or samples identified as close relatives by IBS probabilities >0.85, the sample with the lower call rate was excluded.

Gene expression (eQTL analysis)

HNF1B mRNA expression by genotype, and molecular tumor type
Genotypes for SNPs located between chr17: 35,599,377-36,602,919 on the Affymetrix 6.0 array and normalized RNA_Seq gene expression data were available for 213 tumor samples. There were significant associations observed between the rs11263763 and rs11658063 genotypes and gene expression for the HNF1B gene (Kruskal-Wallis $P=1.3 \times 10^{-2}$ and 5.0×10^{-3} respectively), but not for any other gene located within 1 Mb of $H N F 1 B$ (data not shown). There was also no association between HNF1B expression and tumor molecular phenotype category, as defined by TCGA
($P=0.47$), namely: copy number high, copy number low, microsatellite instability hypermutated, and POLEultramutated.

Isoform-specific expression

Genetic databases show a number of different HNF1B transcripts and isoforms. A previous study in prostate cancer showed a significant shift in isoform usage between benign prostate and tumor tissue, with isoform C predominating in benign tissue and isoform B predominating in malignant tissue (22). We therefore tested this suggestion that isoform expression differences could influence cancer risk at this locus in the endometrial cancer cell lines. Contrary to prostate cancer, no significant down-regulation of isoform C was observed in tumor cell lines when compared to a normal cell line (Supplementary Fig 3).

Further, we investigated the association between genotype and HNF1B isoform expression in the TCGA data. This dataset provides normalized RNA_Seq data for 3 isoforms A (uc010wdi.1), B (uc002hok.3), and C (uc010cve.1). It should be noted that uc 010 cve. 1 is not equivalent to the isoform C described above (uc010cve. 1 includes only exons 3 and an extended exon 4), although expression of this transcript is likely to also capture the longer isoform C tested above. There was no significant association between genotype and isoform usage ($P=0.45$); rs11263763 genotype was significantly associated with expression of isoform B (uc002hok.3; $P=2.2 \times 10^{-2}$) and isoform A (uc010wdi.1; $P=2.1 \times 10^{-2}$), while isoform C (uc010cve.1) was expressed at an extremely low level in those samples in which expression was detected.

Supplementary Figure 3. HNF1B isoform expression. A. RT-PCR results using HNF1B isoformspecific primers. i. HNF1B isoforms A and B; ii. HNF1B isoform C as described by Harries et al. (including exons 1-4) (22); iii. HPRT1 positive control. Lanes 1-10 are endometrial cell lines (lane 2 is the immortalized normal cell line); NTC non-template control. LNCaP prostate cancer cell line. 2% agarose gels. DNA Molecular Weight Marker ($0.07-12.2 \mathrm{Kbp}$). B. HNF1B isoforms included in the TCGA dataset, where isoform A corresponds to uc010wdi.1, B corresponds to uc002hok.3, and C corresponds to uc 010 cve. 1 (distinct from the Harries et al. (22) isoform C described above).

Gene expression by DNA methylation analysis.

Gene expression (RNA-Seq) and HNF1B methylation data were available for 199 tumor samples. Investigations into HNF1B methylation in ovarian tumors have focused on Illumina probe cg14487292 (7, 20), however, data for this probe was missing from the TCGA endometrial cancer data. Instead, we analysed average methylation across 18 probes located with the region of the HNF1B CpG island (cg15246719, cg12134754, cg24712484, cg03433642, cg09679923, cg17652435, cg03348978, cg02435495, cg05110178, cg11862993, cg09463047, cg04917276, cg04433035, cg05222347, cg02335804, cg12788467, cg13230606, and cg19378036), all of which had beta values suggesting very low/no methylation (beta values <0.2) for the majority of tumor samples (average beta across all 18 probes $=0.098$). There was a significant negative correlation between methylation at these probes and HNF1B expression (Pearson's $\mathrm{r}=-0.358, P=2.1 \times 10^{-7}$). As above, there was also no association between HNF1B methylation and tumor category as defined by TCGA tumor subtype ($P=0.78$). Additionally, there was no association between rs11263763 or rs116658063 genotype with HNF1B methylation ($P=0.42$ and 0.37 respectively) or MLH1 methylation at 'region C' probes (23) cg11600697, cg21490561 and cg00893636 ($P=0.58$ and 0.22 respectively).

rs4430796 genotype and MLH1 methylation in ANECS samples

Additionally, data was available for 182 of our ANECS samples for both MLH1 methylation, performed as part of a larger project to investigate the methylation profile of this gene in relation to endometrial tumor MMR protein expression and germline MMR gene mutation status(24), and genotype at the original GWAS SNP rs4430796, performed as part of the initial follow-up of the association at the HNF1B locus (25). Of these samples, 86 showed MLH1 methylation while 96 showed no methylation at this locus. There was no association between rs4430796 genotype and methylation status in these samples ($P=0.91$).

C. References

1 Weiderpass, E., Adami, H.O., Baron, J.A., Magnusson, C., Bergstrom, R., Lindgren, A., Correia, N. and Persson, I. (1999) Risk of endometrial cancer following estrogen replacement with and without progestins. J Natl Cancer Inst, 91, 1131-1137.
2 Wik, E., Trovik, J., Iversen, O.E., Engelsen, I.B., Stefansson, I.M., Vestrheim, L.C., Haugland, H.K., Akslen, L.A. and Salvesen, H.B. (2009) Deoxyribonucleic acid ploidy in endometrial carcinoma: a reproducible and valid prognostic marker in a routine diagnostic setting. Am J Obstet Gynecol, 201, 603 e601-607.
3 Salvesen, H.B., Iversen, O.E. and Akslen, L.A. (1999) Prognostic significance of angiogenesis and Ki-67, p53, and p21 expression: a population-based endometrial carcinoma study. J Clin Oncol, 17, 1382-1390.
4 Salvesen, H.B., Carter, S.L., Mannelqvist, M., Dutt, A., Getz, G., Stefansson, I.M., Raeder, M.B., Sos, M.L., Engelsen, I.B., Trovik, J. et al. (2009) Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci U S A, 106, 4834-4839.
5 Ashton, K.A., Proietto, A., Otton, G., Symonds, I., McEvoy, M., Attia, J., Gilbert, M., Hamann, U. and Scott, R.J. (2008) The influence of the Cyclin D1 870 G>A polymorphism as an endometrial cancer risk factor. BMC Cancer, 8, 272.
6 Michailidou, K., Hall, P., Gonzalez-Neira, A., Ghoussaini, M., Dennis, J., Milne, R.L., Schmidt, M.K., Chang-Claude, J., Bojesen, S.E., Bolla, M.K. et al. (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet, 45, 353-361, 361e351-352.
7 Pharoah, P.D., Tsai, Y.Y., Ramus, S.J., Phelan, C.M., Goode, E.L., Lawrenson, K., Buckley, M., Fridley, B.L., Tyrer, J.P., Shen, H. et al. (2013) GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet, 45, 362-370, 370e361362.

8 Spurdle, A. and Webb, P. (2008) Re: Excess of early onset multiple myeloma in endometrial cancer probands and their relatives suggests common susceptibility. Gynecol Oncol, 109, 153; author reply 154.
9 Painter, J.N., Anderson, C.A., Nyholt, D.R., Macgregor, S., Lin, J., Lee, S.H., Lambert, A., Zhao, Z.Z., Roseman, F., Guo, Q. et al. (2011) Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat Genet, 43, 51-54.
10 McGregor, B., Pfitzner, J., Zhu, G., Grace, M., Eldridge, A., Pearson, J., Mayne, C., Aitken, J.F., Green, A.C. and Martin, N.G. (1999) Genetic and environmental contributions to size, color, shape, and other characteristics of melanocytic naevi in a sample of adolescent twins. Genet Epidemiol, 16, 40-53.
11 Zhu, G., Duffy, D.L., Eldridge, A., Grace, M., Mayne, C., O'Gorman, L., Aitken, J.F., Neale, M.C., Hayward, N.K., Green, A.C. et al. (1999) A major quantitative-trait locus for mole density is linked to the familial melanoma gene CDKN2A: a maximum-likelihood combined linkage and association analysis in twins and their sibs. Am J Hum Genet, 65, 483-492.
12 McEvoy, M., Smith, W., D'Este, C., Duke, J., Peel, R., Schofield, P., Scott, R., Byles, J., Henry, D., Ewald, B. et al. (2010) Cohort profile: The Hunter Community Study. Int J Epidemiol, 39, 1452-1463.
13 Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661-678.
14 Power, C. and Elliott, J. (2006) Cohort profile: 1958 British birth cohort (National Child Development Study). Int J Epidemiol, 35, 34-41.
15 Houlston, R.S., Cheadle, J., Dobbins, S.E., Tenesa, A., Jones, A.M., Howarth, K., Spain, S.L., Broderick, P., Domingo, E., Farrington, S. et al. (2010) Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet, 42, 973-977.
16 Xu, W.H., Long, J.R., Zheng, W., Ruan, Z.X., Cai, Q., Cheng, J.R., Zhao, G.M., Xiang, Y.B.
and Shu, X.O. (2009) Association of thymidylate synthase gene with endometrial cancer risk in a Chinese population. Cancer Epidemiol Biomarkers Prev, 18, 579-584.
17 Zheng, W., Long, J., Gao, Y.T., Li, C., Zheng, Y., Xiang, Y.B., Wen, W., Levy, S., Deming, S.L., Haines, J.L. et al. (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet, 41, 324-328.
18 Long, J., Zheng, W., Xiang, Y.B., Lose, F., Thompson, D., Tomlinson, I., Yu, H., Wentzensen, N., Lambrechts, D., Dork, T. et al. (2012) Genome-wide association study identifies a possible susceptibility locus for endometrial cancer. Cancer Epidemiol Biomarkers Prev, 21, 980-987.
19 Grisanzio, C., Werner, L., Takeda, D., Awoyemi, B.C., Pomerantz, M.M., Yamada, H., Sooriakumaran, P., Robinson, B.D., Leung, R., Schinzel, A.C. et al. (2012) Genetic and functional analyses implicate the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer pathogenesis. Proc Natl Acad Sci U S A, 109, 11252-11257.
20 Shen, H., Fridley, B.L., Song, H., Lawrenson, K., Cunningham, J.M., Ramus, S.J., Cicek, M.S., Tyrer, J., Stram, D., Larson, M.C. et al. (2013) Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nat Commun, 4, 1628.
21 The Cancer Genome Atlas Research Network. (2013) Integrated genomic characterization of endometrial carcinoma. Nature, 497, 67-73.
22 Harries, L.W., Perry, J.R., McCullagh, P. and Crundwell, M. (2010) Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer. BMC Cancer, 10, 315.
23 Metcalf, A.M. and Spurdle, A.B. (2013) Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review. Familial cancer, in press.
24 Buchanan DD, T.Y., Walsh MD, Clendenning M, Metcalf AM, Ferguson K, Arnold ST, Thompson BA, Lose FA, Parsons MT, Walters RJ, Pearson S-A, Cummings M, Oehler MK, Blomfield PB, Quinn MA, Kirk JA, Stewart CJ, Obermair A, Young JP, Webb PM, Spurdle AB. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age <60 Years optimizes triage for populationlevel germline mismatch repair gene mutation testing. J Clin Oncol, 32, 90-100.
25 Spurdle, A.B., Thompson, D.J., Ahmed, S., Ferguson, K., Healey, C.S., O'Mara, T., Walker, L.C., Montgomery, S.B., Dermitzakis, E.T., Fahey, P. et al. (2011) Genome-wide association study identifies a common variant associated with risk of endometrial cancer. Nat Genet, 43, 451-454.

D. ECAC Study Collaborators (for case samples):

The ANECS Group comprises: AB Spurdle, PM Webb, J Young (QIMR Berghofer Medical Research Institute); Consumer representative: L McQuire; Clinical Collaborators: NSW: S BaronHay, D Bell, A Bonaventura, A Brand, S Braye, J Carter, F Chan, C Dalrymple, A Ferrier (deceased), G Gard, N Hacker, R Hogg, R Houghton, D Marsden, K McIlroy, G Otton, S Pather, A Proietto, G Robertson, J Scurry, R Sharma, G Wain, F Wong; Qld: J Armes, A Crandon, M Cummings, R Land, J Nicklin, L Perrin, A Obermair, B Ward; SA: M Davy, T Dodd, J Miller, M Oehler, S Paramasivum, J Pierides, F Whitehead; Tas: P Blomfield, D Challis; Vic: D Neesham, J Pyman, M Quinn, R Rome, M Weitzer; WA: B Brennan, I Hammond, Y Leung, A McCartney (deceased), C Stewart, J Thompson; Project Managers: S O'Brien, S Moore; Laboratory Manager: K Ferguson; Pathology Support: M Walsh; Admin Support: R Cicero, L Green, J Griffith, L Jackman, B Ranieri; Laboratory Assistants: M O'Brien, P Schultz; Research Nurses: B Alexander, C Baxter, H Croy, A Fitzgerald, E Herron, C Hill, M Jones, J Maidens, A Marshall, K Martin, J Mayhew, E Minehan, D Roffe, H Shirley, H Steane, A Stenlake, A Ward, S Webb, J White.

CHIBCHA (study of hereditary cancer in Europe and Latin America) collaborators include: Ma. Magdalena Echeverry de Polanco, Mabel Elena Bohórquez, Rodrigo Prieto, Angel Criollo, Carolina Ramírez, Ana Patricia Estrada, Jhon Jairo Suárez (Grupo de Citogenética Filogenia y Evolución de Poblaciones, Universidad del Tolima, Colombia); Augusto Rojas Martinez (Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, Mexico); Silvia Rogatto, Samuel Aguiar Jnr, Ericka Maria Monteiro Santos (Department of Urology, School of Medicine, UNESP - São Paulo State University, Botucatu, Brazil); Monica Sans, Valentina Colistro, Pedro C. Hidalgo, Patricia Mut (Department of Biological Anthropology, College of Humanities and Educational Sciences, University of the Republic, Magallanes, Montevideo, Uruguay); Angel Carracedo, Clara Ruiz Ponte, Ines Quntela Garcia (Fundacion Publica Galega de Medicina Xenomica, CIBERER, Genomic Medicine Group-University of Santiago de Compostela, Hospital Clinico, Santiago de Compostela, Galicia, Spain); Sergi Castellvi-Bel (Department of Gastroenterology, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, IDIBAPS, University of Barcelona, Barcelona, Catalonia, Spain); Manuel Teixeira (Department of Genetics, Portuguese Oncology Institute, Rua Dr, António Bernardino de Almeida, Porto, Portugal).

NECS collaborators include: Ute Hamann and Michael Gilbert.
The NSECG Group comprises: Ian Tomlinson (Oxford University); M Adams, A Al-Samarraie, S Anwar, R Athavale, S Awad, A Bali, A Barnes, G Cawdell, S Chan, K Chin, P Cornes, M Crawford, J Cullimore, S Ghaem-Maghami, R Gornall, J Green, M Hall, M Harvey, J Hawe, A Head, J Herod, M Hingorani, M Hocking, C Holland, T Hollingsworth,J Hollingworth, T Ind, R Irvine, C Irwin, M Katesmark, S Kehoe, G Kheng-Chew, K Lankester, A Linder, D Luesley, C BLynch,V McFarlane, R Naik, N Nicholas, D Nugent, S Oates, A Oladipo, A Papadopoulos, S Pearson, D Radstone, S Raju, A Rathmell, C Redman, M Rymer, P Sarhanis, G Sparrow, N Stuart, S Sundar, A Thompson, S Tinkler, S Trent, A Tristram, N Walji, R Woolas.

RENDOCAS investigators include: Annika Lindblom, Gerasimos Tzortzatos, Miriam Mints, Emma Tham, Ofra Castro, Kristina Gemzell-Danielsson.

SEARCH collaborators include: Helen Baker, Caroline Baynes, Don Conroy, Bridget Curzon, Patricia Harrington, Sue Irvine, Craig Luccarini, Rebecca Mayes, Hannah Munday, Barbara Perkins, Daisy Pharoah, Radka Platte, Anne Stafford and Judy West.

SECGS investigators include: Xiao Ou Shu, Wei Zheng, Jirong Long, Qiuyin Cai, Qi Dai, Hui

Cai, Ryan Delahanty and Chun Li (Vanderbilt University), Yong-Bing Xiang, Yutang Gao, WangHong Xu (Shanghai Cancer Institute), Wei Lu, Ying Zheng, and Kai Gu (Shanghai Institute of Preventive Medicine).

E. BCAC and OCAC Study Collaborators (for control samples):

The Australian Ovarian Cancer Study Group comprises: R Stuart-Harris; NSW- F Kirsten, J Rutovitz, P Clingan, A Glasgow, A Proietto, S Braye, G Otton, J Shannon, T Bonaventura, J Stewart, S Begbie, M Friedlander, D Bell, S Baron-Hay, A Ferrier (deceased), G Gard, D Nevell, N Pavlakis, S Valmadre, B Young, C Camaris, R Crouch, L Edwards, N Hacker, D Marsden, G Robertson, P Beale, J Beith, J Carter, C Dalrymple, R Houghton, P Russell, L Anderson, M Links, J Grygiel, J Hill, A Brand, K Byth, R Jaworski, P Harnett, R Sharma, G Wain; QLD- D Purdie, D Whiteman, B Ward, D Papadimos, A Crandon, M Cummings, K Horwood. A Obermair, L Perrin, D Wyld, J Nicklin; SA- M Davy, MK Oehler, C Hall, T Dodd, T Healy, K Pittman, D Henderson, J Miller, J Pierdes, A Achan; TAS- P Blomfield, D Challis, R McIntosh, A Parker; VIC- B Brown, R Rome, D Allen, P Grant, S Hyde, R Laurie M Robbie, D Healy, T Jobling, T Manolitsas, J McNealage, P Rogers, B Susil, E Sumithran, I Simpson, I Haviv, K Phillips, D Rischin, S Fox, D Johnson, S Lade, P Waring, M Loughrey, N O’Callaghan, B Murray, L Mileshkin, P Allan; V Billson, J Pyman, D Neesham, M Quinn, A Hamilton, C Underhill, R Bell, LF Ng, R Blum, V Ganju; WA- I Hammond, A McCartney (deceased), C Stewart, Y Leung, M Buck, N Zeps (WARTN); AOCS Management Group- DDL Bowtell, AC Green, G Chenevix-Trench, A deFazio, D Gertig, PM Webb.

BSUCH collaborator: Peter Bugert.
ESTHER collaborators: Volker Arndt, Heiko Müller, Christa Stegmaier.
GENICA Network collaborators: Wing-Yee Lo, Christina Justenhoven, Ute Hamann, Thomas Brüning, Beate Pesch, Yon-Dschun Ko, Sylvia Rabstein, Anne Lotz, Christina Baisch, Hans-Peter Fischer, Volker Harth.

F. Supplementary Acknowledgements

The authors thank the many individuals who participated in this study and the numerous institutions and their staff who have supported recruitment.

ANECS thanks members of the Molecular Cancer Epidemiology and Cancer Genetic laboratories at QIMR Berfhofer Medical Research Institute for technical assistance, and the ANECS research team for assistance with the collection of risk factor information and blood samples. ANECS also gratefully acknowledges the cooperation of the following institutions: NSW: John Hunter Hospital, Liverpool Hospital, Mater Misericordiae Hospital (Sydney), Mater Misericordiae Hospital (Newcastle), Newcastle Private Hospital, North Shore Private Hospital, Royal Hospital for Women, Royal Prince Alfred Hospital, Royal North Shore Hospital, Royal Prince Alfred Hospital, St George Hospital; Westmead Hospital, Westmead Private Hospital; Qld: Brisbane Private Hospital, Greenslopes Hospital, Mater Misericordiae Hospitals, Royal Brisbane and Women's Hospital, Wesley Hospital, Queensland Cancer Registry; SA: Adelaide Pathology Partners, Burnside Hospital, Calvary Hospital, Flinders Medical Centre, Queen Elizabeth Hospital, Royal Adelaide Hospital, South Australian Cancer Registry; Tas: Launceston Hospital, North West Regional Hospitals, Royal Hobart Hospital; Vic: Freemasons Hospital, Melbourne Pathology Services, Mercy Hospital for Women, Royal Women's Hospital, Victorian Cancer Registry; WA: King Edward Memorial Hospital, St John of God Hospitals Subiaco \& Murdoch, Western Australian

Cancer Registry.
SEARCH thanks the SEARCH research team for recruitment, and also acknowledges the assistance of the Eastern Cancer Registration and Information Centre for subject recruitment.

BECS thanks Reiner Strick, Silke Landrith and Sonja Oeser for their logistic support during the study.

CAHRES (formerly known as SASBAC) thanks Li Yuqing from the Genome Institute of Singapore for contributions to this study, and also acknowledges previous input to SASBAC resource creation by Anna Christensson, Boel Bissmarck, Kirsimari Aaltonen, Karl von Smitten, Nina Puolakka, Christer Halldén, Lim Siew Lan and Irene Chen, Lena U. Rosenberg, Mattias Hammarström, and Eija Flygare.

HJECS thanks Wen Zheng, Hermann Hertel, and Tjoung-Won Park-Simon at Hannover Medical School for their contribution to sample recruitment.

LES gratefully acknowledges Helena Soenen, Gilian Peuteman and Dominiek Smeets for their technical assistance.

MECS thanks Tom Sellers, Catherine Phelan, Andrew Berchuck, and Kimberly Kalli, Amanda von Bismarck, Luisa Freyer and Lisa Rogmann.

MoMaTEC thanks Britt Edvardsen, Ingjerd Bergo and Mari Kyllsø Halle for technical assistance and Inger Marie Aksnes and Tor Audun Hervig at the Blood bank, Haukeland University Hospital for assistance with control recruitment.

NECS thanks staff at the University of Newcastle and the Hunter Medical Research Institute.
NSECG thank Ella Barclay and Lynn Martin for their contribution, and acknowledge the invaluable help of the National Cancer Research Network with the collection of study participants.

QIMR Berghofer thanks Margie Wright, Lisa Bowdler, Sara Smith, Megan Campbell and Scott Gordon for control sample collection and data processing, Kerenaftali Klein for statistical advice and Brendan Ryan for assistance with the figures.

RENDOCAS thanks Berith Wejderot, Sigrid Sahlen, Tao Liu, Margareta Ström, Maria Karlsson, and Birgitta Byström for their contribution to the study.

SECGS thanks research staff and participants of the Shanghai Endometrial Cancer Study and Shanghai Breast Cancer Study for their contributions in the study.

BSUCH thanks the Medical Faculty, Mannheim, the Diemtmar Hopp Foundation and the German Cancer Research Center.

MCCS was made possible by the contribution of many people, including the original investigators and the diligent team who recruited the participants and who continue working on follow up. We would like to express our gratitude to the many thousands of Melbourne residents who continue to participate in the study.

The UKBGS thank Breakthrough Breast Cancer and the Institute of Cancer Research for support and funding, and the Study participants, Study staff, and the doctors, nurses and other health care
staff and data providers who have contributed to the Study. The ICR acknowledges NHS funding to the NIHR Biomedical Research Centre.

In addition, the iCOGS study would not have been possible without the contributions of: Andrew Berchuck (OCAC), Rosalind A. Eeles, Ali Amin Al Olama, Zsofia Kote-Jarai , Sara Benlloch (PRACTICAL), Georgia Chenevix-Trench, Antonis Antoniou, Lesley McGuffog, Fergus Couch and Ken Offit (CIMBA), Andrew Lee, and Ed Dicks, Craig Luccarini and the staff of the Centre for Cancer Genetic Epidemiology Laboratory (Cambridge), Javier Benitez, Anna Gonzalez-Neira and the staff of the CNIO genotyping unit, Jacques Simard and Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoissière and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, Stig E. Bojesen, Sune F. Nielsen, Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility.

H. Additional Acknowledgments of Funding to BCAC/OCAC control groups

The ESTHER study was funded by the Baden-Württemberg state Ministry of Science, Research and Arts (Stuttgart, Germany), the Federal Ministry of Education and Research (Berlin, Germany) and the Federal Ministry of Family Affairs, Senior Citizens, Women and Youth (Berlin, Germany).

The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany, as well as the Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany.

Financial support for the KARBAC study was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, as well as the Swedish Cancer Society.

The MARIE study was supported by the Deutsche Krebshilfe e.V. [70-2892-BR I], the Hamburg Cancer Society and the German Cancer Research Center.

MAY was supported by R01-CA122443, P50-CA136393, the Fred C. and Katherine B. Andersen Foundation, and the Mayo Foundation.

MCBCS recognizes funding from the Breast Cancer Research Foundation (BCRF), the David F. and Margaret T. Grohne Family Foundation, and the Ting Tsung and Wei Fong Chao Foundation

MCCS recruitment was funded by VicHealth and Cancer Council Victoria, and its follow-up has been continuously supported by infrastructure provided by Cancer Council Victoria.

UKBGS was funded by Breakthrough Breast Cancer and the Institute of Cancer Research, which acknowledges NHS funding to the NIHR Biomedical Research Centre.

Supplementary Table 1: Endometrial cancer case and control sample sets included in the analyses*

Study	Abbreviation	General Setting	Cases	Controls	Genotyping platform**
Stage 1 Sample Sets					
Australian National Endometrial Cancer Study	ANECS	Australia; population based case-control study	606		Illumina 610 K
QIMR Berghofer Medical Research Institute	QIMR	Australia; parents of participants in adolescent twin study		1,846	Illumina 610 K
Hunter Community Study	HCS	Australia; population-based cohort		1,237	Illumina 610 K
Study of Epidemiology and Risk Factors in Cancer Heredity	SEARCH	England; population based case-control study	681		Illumina 610 K
Wellcome Trust Case-Control Consortium	WTCCC	UK: sample from 1958 Birth Cohort and UK Blood Donors from NBS		5,190	Illumina 1.2M
TOTAL			1,287	8,273	
iCOGS Sample Sets**					
Australian National Endometrial Cancer Study ${ }^{\text {ºter }}$	ANECS	Australia; population-based case-control study	439		Custom Illumina Infinium iselect array
Newcastle Endometrial Cancer Study ${ }^{\text {mote }}$	NECS	Newcastle, Australia; hospital-based cases	182		Custom Illumina Infinium iselect array
Australian Breast Cancer Family Study	ABCFS	Melbourne/Sydney Australia; from electoral rolls		550	Custom Illumina Infinium iselect array
Australian Ovarian Cancer Study	AOCS	Australia; population-based, from electoral rolls		896	Custom Illumina Infinium iselect array
Mellbourne Collaborative Cohort Study	MCCS	Melbourne, Australia; random sample from initial cohort	.	510	Custom Illumina Infinium iselect array
Study of Epidemiology and Risk Factors in Cancer Heredity	SEARCH	England; population based case-control study	829	8,045	Custom Illumina Infinium iselect array
National Study of the Genetics of Endometrial Cancer British Breast Cancer Study	NSECG	UK; population based case-control study	797	1.395	Custom Illumina Infinium iselect array
	SBCS	Sheffield, UK; women attending Sheffield Mammography Screening, with no breast lesion		${ }^{1,348}$	Custom Illumina Infinium iselect array
	UKBGS	UK; women without breast lesions selected from BGS cohort		471	Custom Illumina Infinium iselect array
Mayo Endometrial Cancer Study	MECS	Mayo Clinic, USA. Hospital based case-control study.	236		Custom Illumina Infinium iselect array
Mayo Clinic Breast Cancer Study	MCBCS	Mayo Clinic, USA. Cancer-free women presenting for general medical examination		1,928	Custom Illumina Infinium iselect array
Mayo Clinic Ovarian Cancer Case-Control Study	MAY	Mayo Clinic, USA. Cancer-free women presenting for general medical examination	.	656	Custom Illumina Infinium iselect array
Leuven Endometrial Cancer Study	LES	Leuven, Belgium: hospital based case-control study	327		Custom Illumina Infinium iselect array
Leuven Multidisciiplinary Breast Centre	LMBC	Leuven, Belgium; blood donors.		1,387	Custom Illumina Infinium iselect array
Bavaria//Hannover-Jena Endometrial Cancer Study	BECSIHJECS	Germany; population-based/hospital-based case-control study	139		Custom Illumina Infinium iselect array
Bavarian Breast Cancer Cases and Controls	BBCC	Bavaria, Germany, healthy women >55yrs from newspaper advertisement		458	Custom Illumina Infinium iselect array
Breast Cancer Study of the University Clinic Heidelberg	BSUCH	Mannheim, Germany; female blood donors	.	953	Custom Illumina Infinium iselect array
ESTHER Breast Cancer Study	ESTHER	Saarland, Germany; random sample from routine health check-up		502	Custom Illumina Infinium iselect array
German Consortium for Hereditary Breast \& Ovarian Cancer	GC-HBOC	Augsburg, Germany; KORA study	.	139	Custom Illumina Infinium iselect array
Gene Environment Interaction and Breast Cancer in Germany	GENICA	Bonn area, Germany; random address sample		427	Custom Illumina Infinium iselect array
Mammary Carcinoma Risk Factor Investigation	MARIE	Hamburg/Rhein-Neckar-Karlsruhe, Germany; randomly drawn from population registries		1,777	Custom Illumina Infinium iselect array
Molecular Markers in Treatment of Endometrial Cancer Norwegian Breast Cancer Study	MoMaTEC	Norway; population based case-control study	637	183	Custom Illumina Infinium iselect array
	NBCS	Tromso/Bergen, Norway, attendees at Norwegian Breast Cancer Screening Program		70	Custom Illumina Infinium iselect array
Cancer Hormone Replacement Epidemiology in Sweden	CAHRES	Sweden, population based case-controls study	554	1,374	Custom Illumina Infinium iselect array
Registry of Endometrial Cancer in Sweden	RENDOCAS	Stockholm, Sweden. Hospital based study	262		Custom Illumina Infinium iselect array
Karolinska Breast Cancer Study	KARBAC	Stockholm, Sweden; blood donors		660	Custom Illumina Infinium iselect array
Karolinska Mammography Project for Risk Prediction of Breast Cancer	pKARMA	Helsingborg/Stockholm, Sweden; cancer-free participants in KARMA mammographic screening program	.	5,529	Custom Illumina Infinium iselect array
TOTAL			4,402	28,758	
Additional replication set					
National Study of the Genetics of Endometrial Cancer	NSECG	United Kingdom; population based case-control study	919		Illumina 660 K
Colorectal Tumour Gene Identification	CORGI	United Kingdon; cancer-free spouse/partner controls for colorectal cancer study		894	Illumina Hap550
TOTAL			919	894	
OVERALL META-ANALYSIS TOTAL			6,608 37,925		
Asian sample set used for cross-ethnic comparisons					Affymetrix 6.0
Shanghai Endometrial Cancer Genetics Study	SECGS	Shanghai, China; population based case-control studies	834	1,936	

Asian sample set used for cross-ethnic comparisons	SECGS	Shanghai, China; population based case-control studies
Shanghai Endometrial Cancer Genetics Study	*The number of cases and controls represents the maximum number of genotypes from cases and controls of reported Caucasian ethnicity, following exclusions	

**For the iCOGS sample sets, studies which are grouped together in the table were analysed as a single strata.

Supplementary Table 2: Minor allele frequencies, information scores and association analysis results Meta-analysis and heterogeneity P-values are also indicated.

SNP	Major/minor alleles	Build 37 position	ANECS MAF ${ }^{\text {a }}$	ANECS Info ${ }^{\text {b }}$	$\begin{array}{cc} \text { ANECS } & \text { OR } \\ (95 \% \mathrm{CI}) & \\ \hline \end{array}$	ANECS P-value	$\begin{aligned} & \text { SEARCH } \\ & \text { MAF }^{\text {a }} \end{aligned}$
rs11263763	A/G	36,103,565	0.470	0.955	0.81 (0.71,0.92)	9.34E-04	0.481
rs11651052	G/A	36,102,381	0.469	0.969	0.81 (0.71,0.92)	8.25E-04	0.480
rs8064454	C/A	36,101,586	0.470	0.974	0.81 (0.71,0.91)	6.99E-04	0.480
rs10908278	A/T	36,099,952	0.469	0.949	0.80 (0.71,0.91)	6.48E-04	0.479
rs11651755	T/C	36,099,840	0.475	0.969	0.81 (0.71,0.92)	8.24E-04	0.485
rs11263761	A/G	36,097,775	0.480	0.958	0.81 (0.71,0.92)	$1.13 \mathrm{E}-03$	0.491
rs4430796	A/G	36,098,040	0.473	G	0.81 (0.71,0.91)	6.59E-04	0.482
rs7405696	G/C	36,102,035	0.425	0.882	0.83 (0.72,0.94)	$4.75 \mathrm{E}-03$	0.417
rs11263762	G/A	36,101,926	0.425	0.887	0.83 (0.72,0.94)	4.68E-03	0.417
rs12453443	C/G	36,104,121	0.418	0.884	0.82 (0.72,0.94)	3.85E-03	0.411
rs757209	G/A	36,102,833	0.416	0.869	0.82 (0.72,0.94)	$4.55 \mathrm{E}-03$	0.407
rs2005705	G/A	36,096,300	0.442	0.974	0.81 (0.71,0.91)	7.69E-04	0.449
rs12601991	G/T	36,101,633	0.420	0.879	0.82 (0.72,0.94)	4.11E-03	0.414
rs9901746	G/A	36,103,149	0.423	0.875	0.82 (0.72,0.94)	4.01E-03	0.415
rs11658063	G/C	36,103,872	0.392	0.958	0.82 (0.72,0.94)	$3.24 \mathrm{E}-03$	0.408
rs11657964	G/A	36,100,767	0.390	0.992	0.82 (0.72,0.94)	$2.68 \mathrm{E}-03$	0.405
rs7501939	C/T	36,101,156	0.390	G	0.83 (0.73,0.94)	3.33E-03	0.405
rs4239217	A/G	36,098,987	0.391	G	0.82 (0.72,0.93)	$1.82 \mathrm{E}-03$	0.406

a.MAFs are for the controls set in each study.
b.SNPs genotyped in each study are indicated by 'G'.
for the top 18 SNPs in the four Caucasian and one Asian endometrial cancer datasets.

$\begin{aligned} & \text { SEARCH } \\ & \text { Info }^{\text {b }} \end{aligned}$	$\begin{gathered} \text { SEARCH } \\ \text { OR (95\% CI) } \end{gathered}$	SEARCH P value	NSECG MAF ${ }^{\text {a }}$	NSECG Info ${ }^{\text {b }}$	$\begin{gathered} \text { NSECG } \\ \text { OR (95\% CI) } \end{gathered}$	NSECG P-value	iCOGS $M A F^{\text {a }}$	$\begin{aligned} & \text { iCOGS } \\ & \text { Info }^{\text {b }} \end{aligned}$
0.953	0.83 (0.74,0.93)	1.96E-03	0.465	0.921	0.82 (0.71,0.94)	3.85E-03	0.467	0.958
0.968	0.83 (0.74,0.93)	$1.89 \mathrm{E}-03$	0.463	0.928	0.82 (0.72,0.94)	$5.32 \mathrm{E}-03$	0.469	G
0.974	0.83 (0.74,0.94)	$1.95 \mathrm{E}-03$	0.462	0.930	0.83 (0.72,0.95)	$5.64 \mathrm{E}-03$	0.470	G
0.950	0.83 (0.74,0.94)	$2.41 \mathrm{E}-03$	0.461	0.890	0.81 (0.70,0.93)	$2.34 \mathrm{E}-03$	0.471	0.964
0.970	0.83 (0.74,0.93)	$1.68 \mathrm{E}-03$	0.465	0.907	0.82 (0.72,0.94)	$4.94 \mathrm{E}-03$	0.478	G
0.957	0.83 (0.74,0.94)	$2.47 \mathrm{E}-03$	0.473	0.841	0.82 (0.71,0.95)	$7.43 \mathrm{E}-03$	0.485	0.933
G	0.83 (0.74,0.93)	$1.52 \mathrm{E}-03$	0.466	0.866	0.83 (0.72,0.95)	$7.78 \mathrm{E}-03$	0.479	0.953
0.880	0.82 (0.72,0.93)	$1.46 \mathrm{E}-03$	0.434	0.845	0.80 (0.69,0.92)	$2.07 \mathrm{E}-03$	0.432	G
0.885	0.82 (0.72,0.93)	$1.38 \mathrm{E}-03$	0.434	0.851	0.80 (0.70,0.93)	$2.39 \mathrm{E}-03$	0.432	G
0.881	0.83 (0.74,0.94)	$3.50 \mathrm{E}-03$	0.425	0.858	0.80 (0.69,0.92)	$1.59 \mathrm{E}-03$	0.426	0.956
0.869	0.83 (0.73,0.94)	3.08E-03	0.419	0.836	0.78 (0.67,0.90)	6.91E-04	0.422	0.957
0.974	0.83 (0.73,0.93)	$1.37 \mathrm{E}-03$	0.435	0.831	0.80 (0.69,0.93)	$2.58 \mathrm{E}-03$	0.447	G
0.878	0.82 (0.73,0.93)	$1.68 \mathrm{E}-03$	0.430	0.840	0.80 (0.70,0.93)	$2.42 \mathrm{E}-03$	0.420	G
0.874	0.84 (0.74,0.95)	$5.55 \mathrm{E}-03$	0.431	0.846	0.80 (0.70,0.93)	$2.53 \mathrm{E}-03$	0.430	0.959
0.956	0.84 (0.74,0.95)	$3.86 \mathrm{E}-03$	0.392	0.941	0.85 (0.74,0.98)	$2.46 \mathrm{E}-02$	0.395	0.958
0.991	0.83 (0.74,0.94)	$2.61 \mathrm{E}-03$	0.386	0.981	0.87 (0.76,0.99)	$3.80 \mathrm{E}-02$	0.396	G
G	0.84 (0.75,0.95)	$4.17 \mathrm{E}-03$	0.387	G	0.87 (0.76,0.99)	$3.71 \mathrm{E}-02$	0.396	G
G	0.82 (0.73,0.92)	$9.13 \mathrm{E}-04$	0.386	0.933	0.86 (0.75,0.99)	$3.40 \mathrm{E}-02$	0.398	G

$\begin{gathered} \text { iCOGS } \\ \text { OR }(95 \% \mathrm{Cl}) \\ \hline \end{gathered}$	iCOGS P-value	Caucasian (4-Study) meta-analysis				$\begin{gathered} \text { SECGS } \\ \text { MAF }^{\text {a }} \end{gathered}$
		$\begin{gathered} \text { 4-Study } \\ \text { OR (95\% CI) } \end{gathered}$	4-Study P-value	Heterogeneity Pvalue	12	
0.87 (0.83,0.92)	6.76E-08	0.86 (0.82,0.89)	8.41E-14	5.75E-01	0.00	0.267
0.87 (0.83,0.92)	8.73E-08	0.86 (0.82,0.89)	$1.31 \mathrm{E}-13$	5.53E-01	0.00	0.261
0.88 (0.83,0.92)	$1.55 \mathrm{E}-07$	0.86 (0.82,0.89)	$2.36 \mathrm{E}-13$	$5.14 \mathrm{E}-01$	0.00	0.260
0.88 (0.84,0.93)	7.00E-07	0.86 (0.83,0.90)	8.56E-13	$3.51 \mathrm{E}-01$	8.39	0.239
0.89 (0.84,0.93)	1.19E-06	0.86 (0.83,0.90)	2.30E-12	$3.79 \mathrm{E}-01$	2.80	0.268
0.88 (0.84,0.93)	1.40E-06	0.86 (0.83,0.90)	5.52E-12	$4.75 \mathrm{E}-01$	0.00	0.294
0.89 (0.85,0.94)	4.03E-06	0.87 (0.83,0.90)	$9.68 \mathrm{E}-12$	$3.41 \mathrm{E}-01$	10.47	0.275
0.90 (0.86,0.94)	1.59E-05	0.87 (0.84,0.91)	$1.06 \mathrm{E}-10$	$2.11 \mathrm{E}-01$	33.50	0.399
0.90 (0.86,0.95)	$2.53 \mathrm{E}-05$	0.88 (0.84,0.91)	1.90E-10	$2.00 \mathrm{E}-01$	35.43	0.398
0.90 (0.86,0.94)	$2.23 \mathrm{E}-05$	0.87 (0.84,0.91)	1.94E-10	$2.28 \mathrm{E}-01$	30.63	0.417
0.90 (0.86,0.95)	$2.99 \mathrm{E}-05$	0.87 (0.84,0.91)	$1.94 \mathrm{E}-10$	$1.56 \mathrm{E}-01$	42.63	0.410
0.91 (0.86,0.95)	$1.16 \mathrm{E}-04$	0.88 (0.84,0.91)	$4.13 \mathrm{E}-10$	$1.05 \mathrm{E}-01$	51.12	0.261
0.90 (0.86,0.95)	$4.56 \mathrm{E}-05$	0.88 (0.84,0.91)	4.20E-10	$1.77 \mathrm{E}-01$	39.16	0.401
0.90 (0.86,0.95)	3.60E-05	0.88 (0.84,0.91)	6.60E-10	$2.57 \mathrm{E}-01$	25.74	0.411
0.90 (0.85,0.94)	$3.24 \mathrm{E}-05$	0.88 (0.84,0.92)	$1.42 \mathrm{E}-09$	5.01E-01	0.00	0.262
0.90 (0.86,0.95)	7.01E-05	0.88 (0.85,0.92)	3.37E-09	$4.09 \mathrm{E}-01$	0.00	0.249
0.90 (0.86,0.95)	5.41E-05	$\mathbf{0 . 8 8} \mathbf{(0 . 8 5 , 0 . 9 2)}$	3.71E-09	$4.98 \mathrm{E}-01$	0.00	0.253
0.91 (0.87,0.96)	$2.37 \mathrm{E}-04$	$0.88(0.85,0.92)$	5.91E-09	2.15E-01	32.87	0.259

$\begin{aligned} & \text { SECGS } \\ & \text { Info }^{\text {b }} \end{aligned}$	$\begin{gathered} \text { SECGS } \\ \text { OR (95\% Cls) } \end{gathered}$	SECGS P-value	Caucasian/Asian (5-study) meta-analysis 5-study OR 5-study P. Heterogeneity P-			
G	0.96 (0.84,1.10)	5.71E-01	0.86 (0.83,0.90)	2.73E-13	3.28E-01	13.55
0.970	1.03 (0.90,1.18)	6.17E-01	0.87 (0.84,0.91)	$3.78 \mathrm{E}-12$	6.26E-02	55.26
0.969	1.04 (0.90,1.18)	6.17E-01	0.87 (0.84,0.91)	$6.31 \mathrm{E}-12$	$6.13 \mathrm{E}-02$	55.52
0.917	1.00 (0.87,1.15)	5.71E-01	0.87 (0.84,0.91)	$6.33 \mathrm{E}-12$	$1.26 \mathrm{E}-01$	44.44
G	0.96 (0.84,1.10)	5.27E-01	0.87 (0.84,0.91)	$5.25 \mathrm{E}-12$	$2.77 \mathrm{E}-01$	21.67
0.746	1.04 (0.90,1.21)	$5.95 \mathrm{E}-01$	0.88 (0.84,0.91)	$8.46 \mathrm{E}-11$	$8.68 \mathrm{E}-02$	50.82
0.855	1.05 (0.91,1.20)	$5.24 \mathrm{E}-01$	0.88 (0.85,0.92)	$2.00 \mathrm{E}-10$	$4.61 \mathrm{E}-02$	58.70
0.577	1.00 (0.85,1.17)	9.93E-01	0.88 (0.85,0.92)	$4.02 \mathrm{E}-10$	$1.30 \mathrm{E}-01$	43.78
0.583	0.99 (0.85,1.16)	$9.35 \mathrm{E}-01$	0.88 (0.85,0.92)	$6.15 \mathrm{E}-10$	$1.39 \mathrm{E}-01$	42.40
0.546	1.00 (0.85,1.18)	8.37E-01	0.88 (0.85,0.92)	$6.83 \mathrm{E}-10$	$1.48 \mathrm{E}-01$	41.01
0.559	1.01 (0.86,1.19)	$8.75 \mathrm{E}-01$	0.88 (0.85,0.92)	$9.01 \mathrm{E}-10$	8.29E-02	51.51
0.681	1.04 (0.89,1.22)	$6.23 \mathrm{E}-01$	0.89 (0.85,0.92)	$3.01 \mathrm{E}-09$	$3.64 \mathrm{E}-02$	60.97
0.579	1.00 (0.85,1.17)	9.93E-01	0.88 (0.85,0.92)	$1.50 \mathrm{E}-09$	$1.16 \mathrm{E}-01$	46.05
0.553	1.01 (0.86,1.19)	8.65E-01	0.89 (0.85,0.92)	$2.82 \mathrm{E}-09$	$1.41 \mathrm{E}-01$	42.05
G	1.00 (0.87,1.15)	$6.11 \mathrm{E}-01$	$0.89(0.85,0.92)$	7.38E-09	$2.34 \mathrm{E}-01$	28.09
0.972	1.04 (0.90,1.19)	6.08E-01	0.89 (0.86,0.93)	$3.63 \mathrm{E}-08$	$1.00 \mathrm{E}-01$	48.54
0.955	1.04 (0.90,1.19)	6.19E-01	0.89 (0.86,0.93)	$3.78 \mathrm{E}-08$	$1.29 \mathrm{E}-01$	43.94
0.861	1.04 (0.90,1.20)	$6.21 \mathrm{E}-01$	0.89 (0.86,0.93)	4.97E-08	$6.49 \mathrm{E}-02$	54.81

Supplementary Table 3: HNF1B region association results for four Caucasian datasets for all SNPs it

SNP	Bld 37 position	Alleles Major/Minor	iCOGS ctrls MAF	$\begin{aligned} & \text { iCOGS } \\ & \text { Info } \\ & \hline \end{aligned}$	All Histologies - P-values by stt		
					SEARCH GWAS P-value	ANECS GWAS P-value	NSECG GWAS P-value
rs11263763	36,103,565	A/G	0.467	0.958	$2.0 \mathrm{E}-03$	9.3E-04	3.9E-03
rs11651052	36,102,381	G/A	0.469	1.000	$1.9 \mathrm{E}-03$	8.3E-04	5.3E-03
rs8064454	36,101,586	C/A	0.470	1.000	$1.9 \mathrm{E}-03$	7.0E-04	5.6E-03
rs10908278	36,099,952	A/T	0.471	0.964	$2.4 \mathrm{E}-03$	6.5E-04	2.3E-03
rs11651755	36,099,840	T/C	0.478	1.000	$1.7 \mathrm{E}-03$	8.2E-04	4.9E-03
rs11263761	36,097,775	A/G	0.485	0.933	$2.5 \mathrm{E}-03$	1.1E-03	$7.4 \mathrm{E}-03$
rs4430796	36,098,040	A/G	0.479	0.953	$1.5 \mathrm{E}-03$	6.6E-04	7.8E-03
rs7405696	36,102,035	G/C	0.432	0.999	$1.5 \mathrm{E}-03$	4.7E-03	2.1E-03
rs12453443	36,104,121	C/G	0.426	0.956	3.5E-03	$3.9 \mathrm{E}-03$	1.6E-03
rs757209	36,102,833	G/A	0.422	0.957	3.1E-03	$4.6 \mathrm{E}-03$	6.9E-04
rs11263762	36,101,926	G/A	0.432	1.000	$1.4 \mathrm{E}-03$	4.7E-03	2.4E-03
rs12601991	36,101,633	G/T	0.420	1.000	$1.7 \mathrm{E}-03$	4.1E-03	2.4E-03
rs11658063	36,103,872	G/C	0.395	0.958	$3.9 \mathrm{E}-03$	3.2E-03	2.5E-02
rs9901746	36,103,149	G/A	0.430	0.959	5.5E-03	4.0E-03	2.5E-03
rs2005705	36,096,300	G/A	0.447	1.000	$1.4 \mathrm{E}-03$	7.7E-04	2.6E-03
rs4239217	36,098,987	A/G	0.398	1.000	9.1E-04	$1.8 \mathrm{E}-03$	3.4E-02
rs11657964	36,100,767	G/A	0.396	1.000	$2.6 \mathrm{E}-03$	$2.7 \mathrm{E}-03$	3.8E-02
rs7501939	36,101,156	C/T	0.396	1.000	$4.2 \mathrm{E}-03$	$3.3 \mathrm{E}-03$	3.7E-02
rs757211	36,096,478	C/T	0.451	0.939	$3.8 \mathrm{E}-04$	1.1E-02	1.2E-03
rs757210	36,096,515	C/T	0.372	1.000	$1.8 \mathrm{E}-03$	2.5E-03	$1.6 \mathrm{E}-02$
rs3760511	36,106,313	T/G	0.334	1.000	7.5E-02	6.5E-02	3.4E-03
rs7405776	36,093,022	G/A	0.377	1.000	$2.3 \mathrm{E}-03$	2.1E-03	2.0E-02
chr17:36092841:D	36,092,841	G/GT	0.404	0.909	$1.7 \mathrm{E}-03$	$2.6 \mathrm{E}-03$	6.4E-03
rs3744763	36,090,885	A/G	0.414	1.000	$6.3 \mathrm{E}-03$	5.6E-03	1.2E-01
rs9913260	36,105,897	G/A	0.253	0.859	$1.9 \mathrm{E}-01$	7.0E-02	1.1E-01
rs2176395	36,180,103	T/C	0.296	0.877	9.1E-02	$9.8 \mathrm{E}-02$	2.5E-01
rs2376366	36,174,765	G/T	0.243	0.971	4.5E-02	$3.4 \mathrm{E}-01$	6.5E-01
rs34443065	36,105,858	C/T	0.094	0.906	1.1E-01	$3.0 \mathrm{E}-02$	6.3E-01
rs7213769	36,115,166	C/G	0.375	0.997	7.5E-02	3.0E-01	5.9E-04
chr17:36174270:D	36,174,270	C/CT	0.297	0.853	$9.3 \mathrm{E}-02$	$1.5 \mathrm{E}-01$	7.6E-01
rs12451630	36,177,394	A/G	0.221	0.936	$3.6 \mathrm{E}-02$	4.6E-01	8.0E-01
rs8065607	36,168,538	G/A	0.222	0.955	$4.3 \mathrm{E}-02$	4.9E-01	7.6E-01
rs12940707	36,179,329	T/C	0.341	0.916	$1.9 \mathrm{E}-01$	$9.8 \mathrm{E}-02$	1.8E-01
rs6607301	36,172,882	T/C	0.286	0.987	1.3E-01	4.3E-01	$4.3 \mathrm{E}-01$
rs2138737	36,173,417	C/T	0.287	0.993	$1.5 \mathrm{E}-01$	4.1E-01	4.0E-01
rs4794765	36,173,729	G/A	0.285	0.985	$1.3 \mathrm{E}-01$	$4.3 \mathrm{E}-01$	4.2E-01
rs2138738	36,173,401	A/G	0.288	0.994	$1.6 \mathrm{E}-01$	3.9E-01	4.1E-01
rs4795227	36,173,786	G/A	0.287	1.000	$1.6 \mathrm{E}-01$	$3.9 \mathrm{E}-01$	4.0E-01
rs3942352	36,173,595	T/C	0.287	1.000	$1.5 \mathrm{E}-01$	$3.8 \mathrm{E}-01$	$4.2 \mathrm{E}-01$
rs80141083	36,096,421	T/C	0.081	0.859	1.2E-01	$2.9 \mathrm{E}-01$	5.1E-01
rs9899815	36,169,785	C/A	0.247	1.000	$5.8 \mathrm{E}-02$	$3.3 \mathrm{E}-01$	7.5E-01
rs4794766	36,180,298	A/C	0.353	0.840	$1.2 \mathrm{E}-01$	6.6E-02	1.0E-01
rs11263765	36,182,400	A/G	0.220	0.785	$1.3 \mathrm{E}-01$	3.0E-01	9.4E-01
rs2376365	36,174,795	C/A	0.247	0.968	5.6E-02	$3.3 \mathrm{E}-01$	7.2E-01

rs9906356	36,170,256	G/A	0.246	0.992	5.8E-02	3.3E-01	7.5E-01
rs1989668	36,170,543	T/C	0.246	0.992	5.8E-02	3.3E-01	7.5E-01
rs9903918	36,170,346	C/G	0.246	0.992	5.8E-02	3.3E-01	7.7E-01
rs4794764	36,169,244	C/T	0.246	0.988	5.7E-02	3.3E-01	7.6E-01
rs77520982	36,171,302	T/C	0.248	0.986	7.0E-02	3.1E-01	$7.3 \mathrm{E}-01$
rs4794763	36,168,995	G/A	0.246	0.986	5.7E-02	3.3E-01	$7.6 \mathrm{E}-01$
rs4794762	36,168,982	A/G	0.246	0.986	6.4E-02	3.2E-01	7.3E-01
rs8069816	36,168,567	A/T	0.245	0.984	5.9E-02	3.4E-01	7.5E-01
rs113656333	36,104,304	C/G	0.072	0.961	7.1E-01	3.7E-01	$1.2 \mathrm{E}-01$
rs111950175	36,104,276	C/G	0.072	0.962	7.0E-01	3.7E-01	$1.2 \mathrm{E}-01$
chr17:36107712:D	36,107,712	TC/T	0.073	0.984	5.6E-01	4.3E-01	$1.0 \mathrm{E}-01$
rs74714959	36,108,170	A/G	0.073	0.982	5.7E-01	$4.3 \mathrm{E}-01$	$1.0 \mathrm{E}-01$
rs2090457	36,182,019	T/C	0.225	0.779	1.3E-01	3.0E-01	9.5E-01
rs78094071	36,108,033	T/G	0.073	0.982	6.1E-01	4.2E-01	1.0E-01
rs2090458	36,182,025	T/C	0.225	0.779	1.3E-01	3.0E-01	9.5E-01
chr17:36171608:\|	36,171,608	GCCAGTTTT/G	0.348	0.978	3.1E-01	1.2E-01	$3.5 \mathrm{E}-01$
rs1113499	36,170,774	A/T	0.347	0.982	$3.0 \mathrm{E}-01$	1.2E-01	3.2E-01
rs7208626	36,170,856	A/T	0.347	0.982	$3.0 \mathrm{E}-01$	1.2E-01	3.2E-01
rs2376368	36,171,685	A/G	0.346	0.981	$3.0 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	3.2E-01
rs11651535	36,178,309	G/A	0.346	0.961	$3.0 \mathrm{E}-01$	1.0E-01	3.5E-01
rs12603546	36,174,176	T/C	0.347	0.981	$3.0 \mathrm{E}-01$	1.2E-01	3.1E-01
rs79147716	36,112,156	C/A	0.072	0.983	$6.9 \mathrm{E}-01$	4.7E-01	$1.0 \mathrm{E}-01$
rs12453164	36,174,287	A/G	0.358	0.952	2.9E-01	1.2E-01	$3.2 \mathrm{E}-01$
chr17:36111545:I	36,111,545	G/GA	0.074	0.959	6.5E-01	4.1E-01	$1.2 \mathrm{E}-01$
rs2138733	36,180,401	G/A	0.355	0.864	1.2E-01	2.1E-01	2.6E-01
rs1807882	36,167,650	A/G	0.280	0.915	$1.2 \mathrm{E}-01$	2.6E-02	4.6E-01
rs11871353	36,174,139	T/C	0.307	0.978	1.7E-01	7.8E-02	5.4E-01
rs17626459	36,111,755	A/C	0.074	0.961	$6.5 \mathrm{E}-01$	$4.2 \mathrm{E}-01$	$1.2 \mathrm{E}-01$
rs75979306	36,099,858	G/C	0.073	0.960	7.7E-01	4.1E-01	1.3E-01
rs3094521	36,032,423	C/A	0.111	1.000	$3.6 \mathrm{E}-02$	4.4E-01	4.1E-01
rs17705019	36,112,268	G/A	0.074	1.000	6.9E-01	4.7E-01	1.0E-01
rs1589078	36,181,619	C/T	0.262	0.789	$2.6 \mathrm{E}-02$	7.2E-01	7.7E-01
rs17626423	36,108,367	T/C	0.205	1.000	2.6E-01	7.1E-02	8.4E-01
rs1914365	36,180,608	C/T	0.274	0.862	9.6E-02	$9.3 \mathrm{E}-01$	4.1E-01
rs1914367	36,180,717	C/A	0.274	0.862	7.7E-02	9.9E-01	$4.2 \mathrm{E}-01$
rs112280299	36,097,629	A/G	0.074	0.942	9.0E-01	4.7E-01	1.5E-01
rs1807884	36,167,408	A/G	0.371	0.961	1.7E-01	2.1E-01	9.6E-01
rs35729843	36,115,088	G/A	0.094	1.000	5.4E-01	9.3E-01	4.0E-02
rs2376367	36,171,713	T/A	0.138	0.934	6.0E-01	$6.8 \mathrm{E}-01$	9.9E-01
rs7219786	36,167,017	A/G	0.269	1.000	$3.8 \mathrm{E}-02$	5.9E-01	7.0E-01
rs145588693	35,686,876	G/A	0.041	0.814	5.5E-01	4.4E-01	9.7E-01
rs17249662	35,674,740	T/C	0.048	0.889	2.0E-01	3.4E-01	9.1E-01
rs117800474	35,655,561	A/G	0.048	0.892	$1.9 \mathrm{E}-01$	3.2E-01	9.7E-01
rs6607297	36,162,392	G/C	0.330	0.978	$1.8 \mathrm{E}-01$	9.5E-02	6.6E-01
rs17848794	35,620,826	C/T	0.048	0.932	1.8E-01	2.8E-01	8.9E-01
rs8072847	36,166,278	T/C	0.323	0.978	1.1E-01	1.6E-01	9.6E-01
rs8072864	36,166,305	T/C	0.323	0.978	1.2E-01	1.7E-01	9.6E-01
rs4794761	36,166,082	A/G	0.326	0.979	1.0E-01	1.9E-01	9.7E-01
rs9899877	36,580,973	T/C	0.457	0.789	9.5E-01	9.0E-01	2.4E-03
rs17661075	36,022,938	G/A	0.105	0.946	2.6E-01	3.5E-01	3.0E-01

rs12603548	36,174,246	T/C	0.425	0.803	3.1E-01	2.9E-01	7.3E-01
rs189286631	35,905,334	T/A	0.126	0.813	2.1E-02	5.9E-01	7.8E-01
chr17:35694188:I	35,694,188	T/TA	0.035	0.706	6.0E-01	3.3E-01	8.5E-01
rs8073406	36,166,340	C/A	0.326	0.960	1.0E-01	1.8E-01	9.9E-01
rs117836847	35,671,024	T/C	0.028	0.719	4.1E-01	1.2E-01	9.5E-01
rs142020692	35,924,096	C/T	0.123	0.889	3.6E-02	4.3E-01	2.2E-01
rs6607299	36,165,352	C/T	0.327	1.000	1.2E-01	2.0E-01	9.9E-01
rs9906908	36,165,624	T/G	0.327	0.989	1.2E-01	2.0E-01	$1.0 \mathrm{E}+00$
rs8077499	36,165,420	T/A	0.327	0.991	1.2E-01	2.0E-01	9.9E-01
rs6607298	36,165,019	C/A	0.327	0.988	1.3E-01	2.0E-01	9.8E-01
rs1914366	36,180,692	A/G	0.357	0.849	1.7E-01	4.5E-01	1.7E-01
rs17138478	36,073,320	C/A	0.126	1.000	2.6E-02	3.2E-01	7.0E-01
rs4522453	36,164,400	A/G	0.326	0.983	1.3E-01	2.0E-01	$9.7 \mathrm{E}-01$
rs4617912	36,164,353	A/C	0.326	0.983	1.3E-01	2.0E-01	$9.7 \mathrm{E}-01$
rs4396579	36,164,308	G/A	0.326	0.983	$1.3 \mathrm{E}-01$	2.0E-01	9.6E-01
rs9892543	36,067,959	A/G	0.208	1.000	8.9E-01	4.4E-01	7.1E-01
rs72830455	36,022,605	A/G	0.109	0.944	$3.2 \mathrm{E}-01$	3.3E-01	$2.8 \mathrm{E}-01$
chr17:36536469:D	36,536,469	AT/A	0.124	0.752	7.4E-01	3.9E-01	9.6E-01
rs9906044	35,608,664	A/T	0.338	0.891	7.7E-01	8.3E-01	9.6E-01
rs150505510	36,026,902	G/C	0.015	0.718	6.4E-01	4.4E-01	4.1E-01
rs8081341	36,585,613	C/A	0.441	0.998	9.5E-01	8.5E-01	$6.4 \mathrm{E}-03$
rs3094519	36,037,542	G/A	0.235	1.000	1.1E-01	6.7E-01	2.9E-01
rs117018352	36,170,852	C/A	0.081	0.965	1.1E-02	7.1E-02	$6.8 \mathrm{E}-01$
rs7217787	36,185,038	T/C	0.135	1.000	9.2E-02	8.5E-02	5.2E-01
rs112055772	36,174,072	A/G	0.082	0.981	1.0E-02	7.6E-02	6.7E-01
rs6503608	36,581,699	C/T	0.431	0.898	9.5E-01	7.1E-01	1.1E-02
chr17:36161028:I	36,161,028	G/GGC	0.357	0.935	9.9E-01	1.8E-01	1.5E-01
rs7226169	36,581,416	G/A	0.417	0.860	8.3E-01	5.9E-01	9.9E-03
rs2287352	35,605,294	T/C	0.338	0.893	7.6E-01	7.8E-01	9.6E-01
rs12946491	36,161,525	T/C	0.281	0.975	1.3E-01	1.1E-01	9.4E-01
rs4795192	35,692,348	G/A	0.247	0.846	$4.8 \mathrm{E}-01$	2.6E-01	$6.4 \mathrm{E}-01$
rs12600497	36,536,470	T/A	0.132	0.700	5.5E-01	5.6E-01	5.6E-01
chr17:35869325:D	35,869,325	CTATA/C	0.078	0.874	$1.0 \mathrm{E}+00$	6.6E-02	8.5E-01
chr17:36161030:I	36,161,030	C/CGG	0.358	0.939	9.9E-01	1.8E-01	1.4E-01
rs9788984	36,031,850	T/C	0.494	1.000	8.4E-01	7.7E-01	$6.9 \mathrm{E}-02$
rs34915260	35,657,381	A/C	0.338	0.909	6.1E-01	8.6E-01	$9.8 \mathrm{E}-01$
rs62076702	35,855,919	C/T	0.031	0.809	7.1E-01	3.5E-01	$1.9 \mathrm{E}-01$
rs2018578	35,661,484	T/C	0.337	0.910	6.2E-01	8.5E-01	9.9E-01
rs17138476	36,075,605	C/T	0.168	0.920	1.6E-02	2.5E-01	8.0E-01
rs8076899	36,582,793	A/G	0.395	0.808	9.5E-01	6.6E-01	1.0E-02
chr17:36030088:I	36,030,088	A/AT	0.399	0.894	3.6E-01	6.9E-01	$2.8 \mathrm{E}-02$
rs8066577	35,670,772	T/C	0.338	0.909	5.8E-01	8.6E-01	$9.8 \mathrm{E}-01$
rs4510071	35,667,529	A/C	0.337	0.911	6.0E-01	8.6E-01	$9.8 \mathrm{E}-01$
rs13339672	36,059,302	T/C	0.029	1.000	2.5E-01	9.3E-01	$4.2 \mathrm{E}-01$
rs36034193	35,699,876	T/C	0.338	0.902	$5.8 \mathrm{E}-01$	8.7E-01	9.6E-01
rs7216136	35,699,672	C/T	0.340	0.890	5.9E-01	8.8E-01	9.6E-01
rs34196517	35,632,584	C/T	0.335	0.917	6.3E-01	7.4E-01	$9.8 \mathrm{E}-01$
rs1533494	36,173,994	C/T	0.083	1.000	$1.1 \mathrm{E}-02$	7.6E-02	$6.7 \mathrm{E}-01$
rs1807883	36,167,644	A/G	0.302	0.848	$1.8 \mathrm{E}-01$	2.5E-01	$4.6 \mathrm{E}-02$
rs77818296	36,158,794	A/C	0.045	0.973	9.4E-01	8.5E-01	1.1E-01

rs1960169	36,160,101	G/A	0.362	1.000	8.5E-01	1.5E-01	1.3E-01
rs58346455	36,146,628	C/T	0.049	0.961	7.9E-01	6.5E-01	7.3E-02
rs7211788	35,614,010	C/T	0.331	0.880	8.9E-01	7.2E-01	8.4E-01
rs1859212	36,032,844	G/A	0.462	0.984	8.9E-01	7.4E-01	1.2E-01
rs11654399	36,159,494	C/T	0.056	0.890	8.4E-01	9.0E-01	1.1E-01
rs118011780	36,160,158	C/T	0.045	0.980	9.4E-01	8.8E-01	1.1E-01
rs4794756	36,032,570	G/A	0.464	1.000	9.5E-01	7.9E-01	$1.5 \mathrm{E}-01$
rs62071185	35,709,155	T/G	0.341	0.857	$4.6 \mathrm{E}-01$	9.9E-01	9.9E-01
rs139887484	35,816,126	C/T	0.068	0.887	7.8E-01	9.1E-02	8.5E-01
rs12949301	35,659,510	C/A	0.334	0.907	7.7E-01	7.7E-01	9.5E-01
rs7214120	36,592,133	C/T	0.399	0.833	8.8E-01	7.6E-01	1.3E-02
chr17:35905333:D	35,905,333	AT/A	0.118	0.800	3.7E-02	7.2E-01	$2.4 \mathrm{E}-01$
rs113258584	35,855,692	G/A	0.071	0.923	9.2E-01	$9.6 \mathrm{E}-02$	9.9E-01
rs11078989	36,592,327	C/T	0.396	0.817	8.7E-01	7.8E-01	1.1E-02
rs11651534	36,592,353	C/T	0.396	0.817	8.7E-01	7.8E-01	1.1E-02
rs113175549	35,784,587	C/G	0.071	0.916	7.4E-01	1.1E-01	9.6E-01
rs34782765	35,852,827	C/G	0.072	0.924	8.8E-01	9.9E-02	$1.0 \mathrm{E}+00$
rs9912756	35,796,378	A/G	0.071	0.918	7.4E-01	1.1E-01	9.9E-01
rs111856553	35,785,028	T/G	0.072	0.917	7.2E-01	1.1E-01	9.8E-01
rs2302800	35,627,362	G/T	0.331	0.904	7.3E-01	6.7E-01	8.9E-01
chr17:35788841:D	35,788,841	CT/C	0.072	0.918	7.2E-01	1.1E-01	9.9E-01
rs9905670	35,790,092	C/T	0.072	0.918	7.2E-01	1.1E-01	9.9E-01
rs17695670	35,798,829	A/G	0.072	0.918	7.4E-01	1.1E-01	1.0E+00
rs77115124	35,803,815	G/A	0.071	0.918	7.4E-01	1.1E-01	$1.0 \mathrm{E}+00$
rs117386208	36,144,507	C/A	0.048	0.958	7.7E-01	6.6E-01	$7.4 \mathrm{E}-02$
rs80223386	35,788,255	G/A	0.070	0.921	7.4E-01	1.1E-01	9.9E-01
rs9910310	35,794,539	C/T	0.072	0.918	7.2E-01	1.1E-01	1.0E+00
rs9900363	35,602,576	A/T	0.351	0.846	$4.8 \mathrm{E}-01$	$6.9 \mathrm{E}-01$	9.4E-01
rs2269842	36,059,246	A/C	0.278	1.000	5.0E-01	$6.9 \mathrm{E}-01$	1.0E-01
chr17:35856525:I	35,856,525	A/AC	0.071	0.922	8.7E-01	1.0E-01	$1.0 \mathrm{E}+00$
rs4795199	35,816,841	T/C	0.071	0.918	7.7E-01	1.1E-01	9.9E-01
rs916894	36,084,261	A/G	0.175	0.922	7.9E-01	5.2E-01	3.7E-01
rs75709051	35,798,894	C/T	0.071	0.916	7.1E-01	1.1E-01	9.8E-01
chr17:36084292:D	36,084,292	ICAAATTTAGCT,	0.175	0.919	7.4E-01	5.4E-01	4.0E-01
rs9914919	35,842,924	T/C	0.071	0.920	8.6E-01	1.1E-01	9.9E-01
rs76528153	35,832,500	A/T	0.071	0.916	9.1E-01	1.1E-01	9.8E-01
rs9906065	35,839,246	A/G	0.071	0.920	8.6E-01	1.1E-01	9.9E-01
rs28373531	35,834,201	G/A	0.071	0.920	8.6E-01	1.1E-01	9.9E-01
rs9895640	35,828,434	T/C	0.071	0.919	8.5E-01	1.0E-01	9.7E-01
chr17:36030090:I	36,030,090	T/TA	0.398	0.918	2.6E-01	7.9E-01	2.4E-02
rs79527734	35,833,190	A/C	0.071	0.920	8.4E-01	1.1E-01	9.8E-01
rs112731800	35,832,230	C/T	0.071	0.920	8.4E-01	1.1E-01	9.8E-01
rs6607284	36,026,335	T/C	0.369	1.000	2.1E-01	9.6E-01	3.9E-02
rs1474054	36,163,150	A/G	0.287	1.000	1.5E-01	$9.8 \mathrm{E}-02$	9.1E-01
rs2269841	36,059,377	A/G	0.278	1.000	5.0E-01	$6.8 \mathrm{E}-01$	$9.6 \mathrm{E}-02$
rs9900825	36,152,099	G/A	0.266	1.000	7.5E-01	1.6E-01	6.2E-01
rs7225467	35,865,354	C/T	0.072	0.917	8.2E-01	2.0E-01	9.2E-01
chr17:36135461:D	36,135,461	GCTT/G	0.190	0.922	8.6E-01	6.7E-01	8.1E-01
rs17841462	36,119,537	A/C	0.031	1.000	6.6E-01	8.4E-01	2.9E-01
rs62075729	35,834,456	C/T	0.029	0.803	6.9E-01	2.8E-01	2.2E-01

rs78358316	36,162,124	A/G	0.045	0.978	8.5E-01	8.8E-01	1.2E-01
rs11868780	35,760,530	A/G	0.070	0.859	7.7E-01	9.1E-02	8.7E-01
rs9912022	36,118,609	A/G	0.030	0.981	5.9E-01	$8.3 \mathrm{E}-01$	3.2E-01
chr17:36059034:I	36,059,034	A/AG	0.157	0.980	5.4E-01	$4.6 \mathrm{E}-01$	6.0E-01
rs2269845	36,058,725	G/A	0.157	1.000	5.4E-01	4.6E-01	6.0E-01
rs9911288	36,118,286	A/G	0.031	1.000	5.9E-01	$8.3 \mathrm{E}-01$	3.2E-01
rs72830486	36,076,856	C/A	0.163	0.955	6.4E-01	$7.3 \mathrm{E}-01$	5.5E-01
rs11656397	36,156,703	T/C	0.236	0.977	8.9E-01	3.2E-01	9.3E-01
chr17:36059424:1	36,059,424	A/AG	0.280	0.982	5.11-01	6.7E-01	1.0E-01
rs117957474	35,859,248	G/A	0.048	0.826	6.11-01	2.4E-01	7.0E-01
rs6503620	36,592,802	A/G	0.435	0.757	8.3E-01	7.7E-01	$4.8 \mathrm{E}-02$
rs7218025	36,592,034	G/A	0.389	0.800	8.6E-01	6.3E-01	6.5E-03
rs1016991	36,058,153	A/T	0.156	0.982	5.5E-01	4.7E-01	6.0E-01
rs147617269	35,868,620	A/C	0.048	0.825	6.0E-01	2.4E-01	7.0E-01
rs7211602	36,026,401	C/A	0.427	1.000	1.3E-01	7.2E-01	3.1E-02
rs11652041	36,027,838	A/G	0.402	0.976	2.8E-01	$8.8 \mathrm{E}-01$	$3.0 \mathrm{E}-02$
rs8066151	36,083,304	T/C	0.437	0.953	1.9E-01	9.9E-01	4.0E-02
rs12951345	36,077,863	A/C	0.244	1.000	8.9E-01	5.1E-01	4.7E-01
rs66934382	36,567,537	T/G	0.162	0.736	6.8E-01	$4.2 \mathrm{E}-01$	7.7E-01
rs8070558	36,030,022	T/C	0.397	0.931	2.9E-01	7.9E-01	3.0E-02
rs2097759	36,079,453	A/C	0.169	0.978	6.2E-01	5.7E-01	5.8E-01
rs2269844	36,058,814	G/A	0.156	1.000	5.7E-01	5.1E-01	6.0E-01
rs2411154	36,056,556	T/C	0.157	0.955	6.0E-01	7.0E-01	5.4E-01
rs951814	36,183,515	G/A	0.130	0.956	1.5E-01	$1.7 \mathrm{E}-01$	5.9E-01
rs9914818	36,083,713	A/T	0.427	0.957	1.9E-01	6.6E-01	$3.8 \mathrm{E}-02$
rs17660636	35,966,490	A/G	0.357	0.779	5.1E-01	$1.8 \mathrm{E}-01$	$4.8 \mathrm{E}-01$
rs78743061	35,765,577	T/C	0.067	0.847	8.3E-01	$1.0 \mathrm{E}-01$	9.5E-01
rs17660494	35,946,926	G/C	0.356	0.774	5.6E-01	1.7E-01	4.8E-01
rs7215696	35,762,495	т/C	0.067	0.847	8.3E-01	$1.1 \mathrm{E}-01$	9.5E-01
rs28653303	35,770,028	C/T	0.068	0.848	8.2E-01	1.0E-01	9.2E-01
rs142654693	35,755,057	G/A	0.067	0.852	8.4E-01	1.0E-01	9.2E-01
rs4386174	36,515,665	A/T	0.152	0.823	2.9E-01	5.9E-01	4.3E-01
rs17661165	36,028,917	T/C	0.402	0.965	2.9E-01	8.7E-01	$2.8 \mathrm{E}-02$
rs80353573	35,774,998	C/T	0.068	0.842	8.4E-01	9.7E-02	9.2E-01
rs9892033	36,054,431	A/G	0.169	0.883	7.9E-01	$4.3 \mathrm{E}-01$	8.3E-01
rs17696979	35,875,487	T/G	0.071	0.927	7.5E-01	$1.3 \mathrm{E}-01$	$1.0 \mathrm{E}+00$
rs28526123	35,874,074	C/G	0.072	0.927	7.5E-01	$1.4 \mathrm{E}-01$	9.6E-01
rs35991504	36,122,425	T/G	0.107	0.954	9.11-01	9.9E-01	$1.8 \mathrm{E}-02$
rs3110651	36,075,868	G/C	0.167	0.978	6.7E-01	7.1E-01	6.6E-01
rs4239216	35,959,251	C/G	0.363	0.918	2.6E-01	6.5E-01	2.4E-01
rs4595843	36,206,306	C/T	0.058	0.731	8.7E-01	5.4E-01	8.2E-01
rs4795269	36,517,829	G/A	0.163	0.879	4.8E-01	$4.8 \mathrm{E}-01$	7.4E-01
rs2411155	36,056,474	G/A	0.155	0.965	5.8E-01	7.2E-01	5.4E-01
rs8069412	36,030,031	A/G	0.168	1.000	7.5E-01	5.4E-01	2.0E-01
rs113620991	35,961,406	G/A	0.165	0.860	3.0E-01	8.2E-01	2.8E-01
rs12953286	35,920,839	A/G	0.367	0.899	2.6E-01	6.6E-01	2.4E-01
rs1557812	36,034,365	G/A	0.214	1.000	2.4E-01	9.9E-01	4.7E-01
rs12949534	36,148,587	C/T	0.116	1.000	4.9E-01	1.0E-01	6.7E-02
rs12942520	35,947,226	T/G	0.364	0.918	2.4E-01	6.5E-01	2.5E-01
rs2688	36,046,931	T/G	0.388	1.000	7.3E-01	$1.3 \mathrm{E}-01$	9.4E-01

rs3094505	36,074,905	C/T	0.167	0.985	6.9E-01	7.1E-01	6.9E-01
rs11263757	36,076,011	G/A	0.167	0.975	6.6E-01	7.0E-01	6.7E-01
rs55771610	36,067,169	G/A	0.177	0.972	6.7E-01	$4.6 \mathrm{E}-01$	4.7E-01
rs56189897	36,053,791	A/C	0.053	0.879	7.0E-01	6.2E-01	3.5E-01
rs3094506	36,074,697	C/T	0.169	1.000	6.9E-01	7.1E-01	7.0E-01
rs3110643	36,073,492	T/C	0.183	1.000	7.5E-01	8.5E-01	8.8E-01
rs12051836	36,549,504	T/C	0.177	0.782	5.9E-01	3.3E-01	8.5E-01
rs3110623	35,902,225	C/G	0.364	0.909	2.4E-01	6.7E-01	2.4E-01
rs3110631	36,074,513	T/C	0.167	0.980	7.0E-01	7.1E-01	7.1E-01
rs4461121	36,515,717	T/C	0.160	0.894	5.1E-01	4.7E-01	7.8E-01
chr17:36196412:D	36,196,412	AG/A	0.061	0.759	4.6E-01	5.4E-01	5.9E-01
rs17138585	35,999,301	C/T	0.082	0.847	2.3E-02	2.1E-01	4.0E-01
rs2411153	36,075,815	C/G	0.428	0.935	2.0E-01	3.4E-01	3.5E-01
chr17:35935556:I	35,935,556	TA/T	0.356	0.914	2.6E-01	6.1E-01	2.2E-01
rs111453699	35,900,878	A/G	0.196	0.837	6.8E-01	$6.8 \mathrm{E}-01$	3.9E-01
rs4795218	36,078,510	G/A	0.234	1.000	9.6E-01	$5.4 \mathrm{E}-01$	4.3E-01
rs3110642	36,073,620	T/C	0.182	1.000	7.4E-01	7.8E-01	8.8E-01
rs4334342	36,516,801	G/A	0.161	0.896	5.1E-01	$4.6 \mathrm{E}-01$	7.8E-01
rs3110621	35,906,918	T/C	0.364	0.895	2.5E-01	6.3E-01	2.2E-01
rs9905004	36,061,282	G/A	0.048	1.000	1.9E-01	8.6E-01	2.4E-01
rs2689	36,047,101	T/A	0.482	0.999	5.2E-01	2.4E-01	7.0E-01
rs35344140	35,964,663	T/C	0.361	0.926	2.3E-01	6.8E-01	2.3E-01
rs12941190	36,147,788	A/T	0.116	0.972	4.1E-01	1.0E-01	5.3E-02
rs8075802	35,943,220	T/C	0.361	0.913	2.4E-01	6.8E-01	2.6E-01
rs9916047	36,145,491	G/T	0.116	0.965	4.0E-01	1.1E-01	4.7E-02
rs718960	36,077,279	C/T	0.235	1.000	9.7E-01	5.9E-01	4.2E-01
rs4795216	36,056,067	G/C	0.154	0.959	5.8E-01	7.4E-01	5.4E-01
chr17:35871858:I	35,871,858	T/TA	0.074	0.918	5.4E-01	1.9E-01	$1.0 \mathrm{E}+00$
chr17:36119133:D	36,119,133	AAAG/A	0.107	0.948	8.8E-01	8.7E-01	3.2E-02
rs8067696	36,122,952	A/G	0.108	0.961	9.2E-01	$9.6 \mathrm{E}-01$	2.2E-02
rs41377745	36,508,385	T/C	0.159	0.882	4.3E-01	4.9E-01	7.9E-01
rs4795215	36,055,614	G/C	0.153	0.953	5.9E-01	7.4E-01	5.3E-01
rs28667231	36,064,088	G/C	0.047	0.942	1.9E-01	8.0E-01	2.4E-01
rs12951822	36,195,956	A/C	0.061	0.765	4.8E-01	5.5E-01	6.0E-01
rs3110624	35,899,687	G/T	0.376	0.824	4.5E-01	2.1E-01	6.9E-01
rs1800929	36,047,275	T/C	0.107	0.946	8.7E-01	7.4E-01	$1.4 \mathrm{E}-01$
rs79830368	35,883,092	T/C	0.047	0.830	4.9E-01	3.3E-01	6.6E-01
rs3094503	36,030,408	A/C	0.195	0.999	9.0E-01	2.1E-01	3.7E-01
rs2411156	36,055,233	C/A	0.153	0.949	5.9E-01	7.5E-01	5.3E-01
rs763512	35,889,531	G/A	0.311	1.000	4.7E-01	7.7E-01	9.8E-01
rs78127715	35,884,265	A/T	0.072	0.929	6.5E-01	1.7E-01	8.8E-01
rs116966690	35,883,855	G/T	0.047	0.830	$4.8 \mathrm{E}-01$	$3.4 \mathrm{E}-01$	6.6E-01
chr17:36541256:I	36,541,256	ATTTC/A	0.137	0.717	6.4E-01	8.9E-01	2.0E-01
chr17:35654469:D	35,654,469	T/TAC	0.214	0.945	9.5E-01	1.9E-01	4.1E-01
rs718961	36,077,099	G/A	0.235	1.000	9.7E-01	6.0E-01	4.2E-01
chr17:35608781:D	35,608,781	C/CCT	0.209	0.955	8.8E-01	1.4E-01	4.4E-01
rs12939622	35,971,548	G/A	0.364	0.940	2.8E-01	6.5E-01	2.1E-01
rs12948642	36,062,428	G/C	0.048	0.949	1.9E-01	8.7E-01	2.4E-01
rs7405482	36,562,559	A/G	0.172	0.793	5.5E-01	4.7E-01	8.1E-01
rs17138469	36,080,165	G/C	0.191	0.999	8.0E-01	8.4E-01	$1.0 \mathrm{E}+00$

rs3110645	36,073,176	T/G	0.216	1.000	4.9E-01	9.5E-01	7.1E-01
chr17:36054504:D	36,054,504	TG/T	0.030	0.894	2.9E-01	8.6E-01	$3.4 \mathrm{E}-01$
rs1034686	35,899,141	A/T	0.409	0.811	2.6E-01	4.0E-01	$8.0 \mathrm{E}-01$
rs12452595	35,792,277	T/A	0.073	0.706	$1.8 \mathrm{E}-01$	1.7E-01	$1.8 \mathrm{E}-01$
rs4566225	36,547,059	G/C	0.171	0.804	5.6E-01	4.3E-01	8.6E-01
chr17:36562963:I	36,562,963	AT/A	0.172	0.792	5.3E-01	4.8E-01	8.2E-01
chr17:35611053:I	35,611,053	GGAA/G	0.208	0.957	8.4E-01	1.2E-01	$4.2 \mathrm{E}-01$
rs62073466	35,993,609	C/T	0.028	0.799	8.1E-01	1.7E-01	2.7E-01
rs9893570	35,953,981	C/G	0.375	0.860	5.4E-01	9.5E-01	$2.0 \mathrm{E}-01$
rs4795211	36,053,996	T/A	0.153	0.934	6.1E-01	7.9E-01	5.3E-01
rs117464500	35,972,667	T/C	0.070	0.781	6.6E-02	1.5E-01	$1.6 \mathrm{E}-01$
rs12946541	36,197,755	A/G	0.063	0.745	5.7E-01	7.0E-01	$4.9 \mathrm{E}-01$
rs144974318	36,163,063	A/G	0.027	0.853	6.8E-01	4.7E-01	$5.8 \mathrm{E}-03$
rs4239219	36,549,012	C/T	0.172	0.801	5.6E-01	4.3E-01	$8.7 \mathrm{E}-01$
rs8064722	36,547,196	т/C	0.172	0.802	5.6E-01	4.3E-01	8.7E-01
rs4795193	35,703,382	T/C	0.210	0.968	9.4E-01	2.7E-01	$3.4 \mathrm{E}-01$
rs3110628	35,891,384	G/C	0.408	0.814	2.1E-01	4.1E-01	$8.0 \mathrm{E}-01$
rs3890580	36,552,456	A/T	0.172	0.800	5.3E-01	4.4E-01	$8.4 \mathrm{E}-01$
rs34699575	36,219,606	A/T	0.049	0.736	9.8E-01	5.8E-01	$9.3 \mathrm{E}-01$
chr17:35935558:1	35,935,558	AT/A	0.379	0.841	$1.8 \mathrm{E}-01$	6.9E-01	3.5E-01
rs71375442	36,214,153	T/G	0.054	0.750	8.9E-01	5.8E-01	7.6E-01
rs17138637	35,890,964	T/C	0.073	0.936	5.5E-01	1.9E-01	$8.8 \mathrm{E}-01$
rs8070208	36,567,000	T/C	0.173	0.783	5.3E-01	5.8E-01	8.2E-01
rs9892460	35,975,176	A/G	0.367	0.940	3.0E-01	$6.3 \mathrm{E}-01$	$2.2 \mathrm{E}-01$
rs117988270	35,938,128	G/A	0.053	0.829	5.2E-01	3.1E-01	5.2E-01
rs4581748	36,506,666	T/C	0.149	0.837	5.2E-01	4.1E-01	7.4E-01
rs2680394	35,616,770	C/T	0.207	0.954	9.3E-01	1.3E-01	4.7E-01
rs12950369	36,208,731	A/C	0.039	0.704	4.7E-01	4.1E-01	$8.3 \mathrm{E}-01$
rs11649908	35,892,501	G/A	0.072	0.935	5.5E-01	1.9E-01	$8.6 \mathrm{E}-01$
rs7213843	36,177,869	A/G	0.187	0.940	5.2E-01	4.8E-02	$2.9 \mathrm{E}-01$
rs28515179	36,566,579	T/C	0.172	0.782	5.3E-01	5.8E-01	8.2E-01
rs2680392	35,610,981	C/T	0.209	0.962	9.2E-01	1.3E-01	4.6E-01
rs3110644	36,073,196	T/G	0.216	1.000	5.6E-01	9.7E-01	7.2E-01
chr17:36060118:I	36,060,118	G/GT	0.356	0.925	4.2E-01	9.6E-02	8.7E-01
rs4329955	36,439,266	C/T	0.041	0.724	6.1E-01	$6.8 \mathrm{E}-01$	$1.9 \mathrm{E}-01$
rs8066509	35,690,090	C/A	0.204	0.984	9.9E-01	2.1E-01	3.5E-01
rs12453794	36,218,279	T/C	0.053	0.752	9.3E-01	$6.0 \mathrm{E}-01$	$8.1 \mathrm{E}-01$
chr17:36121638:D	36,121,638	GTTTA/G	0.106	0.957	9.7E-01	9.9E-01	$3.2 \mathrm{E}-02$
rs11649743	36,074,979	G/A	0.200	1.000	9.2E-01	8.9E-01	6.8E-01
rs3748723	36,558,609	G/A	0.172	0.794	5.4E-01	5.6E-01	$8.2 \mathrm{E}-01$
rs11869216	35,708,223	T/C	0.208	0.971	9.7E-01	2.3E-01	$4.2 \mathrm{E}-01$
rs3110630	36,054,473	A/G	0.159	0.922	6.0E-01	7.9E-01	6.5E-01
rs4572453	35,662,676	G/C	0.207	0.985	9.6E-01	1.8E-01	$4.5 \mathrm{E}-01$
rs1045638	36,557,538	T/C	0.173	0.792	5.3E-01	5.7E-01	8.4E-01
rs3748725	36,558,137	A/G	0.172	0.790	5.2E-01	6.0E-01	7.5E-01
rs12947857	36,193,288	T/C	0.061	0.761	5.5E-01	6.7E-01	6.1E-01
rs6607277	35,884,583	A/G	0.408	0.810	2.0E-01	$4.3 \mathrm{E}-01$	$8.8 \mathrm{E}-01$
rs9907006	35,894,153	C/T	0.076	0.934	5.1E-01	1.6E-01	7.8E-01
rs12451795	36,434,197	т/C	0.041	0.720	7.2E-01	5.4E-01	$3.8 \mathrm{E}-01$
rs2248509	35,622,267	т/C	0.208	0.963	9.3E-01	1.3E-01	$4.7 \mathrm{E}-01$

rs2542655	35,622,031	C/T	0.208	0.963	9.3E-01	1.3E-01	4.7E-01
rs2158235	35,884,717	C/T	0.408	0.810	$1.9 \mathrm{E}-01$	$4.3 \mathrm{E}-01$	9.1E-01
rs140197701	36,436,624	A/C	0.041	0.724	6.9E-01	5.4E-01	3.7E-01
rs71384207	36,436,032	C/A	0.041	0.724	6.9E-01	5.4E-01	3.7E-01
rs191798704	36,433,674	C/T	0.041	0.720	7.3E-01	5.4E-01	3.8E-01
chr17:35705111:D	35,705,111	A/AT	0.205	0.984	9.3E-01	2.6E-01	4.0E-01
rs1001996	36,200,856	G/A	0.059	0.763	5.8E-01	$6.2 \mathrm{E}-01$	6.0E-01
rs9912390	36,046,395	G/C	0.033	0.915	1.4E-01	$6.2 \mathrm{E}-01$	6.0E-01
rs62073558	36,109,935	T/C	0.287	0.935	5.1E-01	1.7E-01	4.5E-01
rs12944771	36,120,076	G/T	0.018	0.959	7.5E-01	8.3E-01	8.4E-01
rs35972665	36,120,226	A/G	0.018	0.958	7.6E-01	8.2E-01	8.3E-01
rs2542666	35,642,592	C/T	0.207	0.981	9.8E-01	$1.3 \mathrm{E}-01$	$4.5 \mathrm{E}-01$
rs2680401	35,638,600	C/G	0.193	0.948	8.8E-01	9.9E-02	2.4E-01
rs7503020	36,504,459	G/T	0.150	0.828	5.4E-01	$4.8 \mathrm{E}-01$	7.6E-01
rs12946650	36,200,112	T/C	0.059	0.765	5.7E-01	$6.3 \mathrm{E}-01$	6.0E-01
rs1464257	35,644,076	T/C	0.207	0.980	9.2E-01	1.4E-01	4.2E-01
rs35287948	35,698,585	T/C	0.207	0.983	9.7E-01	2.0E-01	4.3E-01
rs12051720	36,109,424	T/G	0.288	0.942	5.1E-01	1.7E-01	4.8E-01
chr17:35695914:D	35,695,914	iGAGGGAAAAG(0.206	0.984	9.4E-01	2.1E-01	4.3E-01
rs11656221	35,725,385	A/G	0.213	0.905	8.4E-01	1.3E-01	3.3E-01
rs1464255	35,643,510	G/A	0.206	0.984	9.8E-01	1.4E-01	4.5E-01
rs75689291	36,205,038	A/C	0.052	0.724	9.2E-01	4.6E-01	7.0E-01
rs34743657	36,128,262	C/T	0.107	0.969	$1.0 \mathrm{E}+00$	9.9E-01	4.0E-02
rs4795188	35,663,375	C/T	0.208	0.986	9.9E-01	1.9E-01	$4.3 \mathrm{E}-01$
rs34614807	36,432,273	A/G	0.042	0.733	6.8E-01	5.4E-01	4.0E-01
rs3110625	35,898,782	C/T	0.422	0.791	1.2E-01	3.2E-01	7.8E-01
rs2542665	35,638,413	A/G	0.206	0.979	9.3E-01	1.4E-01	4.7E-01
rs12450384	36,429,820	G/A	0.042	0.732	6.8E-01	5.4E-01	4.1E-01
rs58654829	35,696,804	A/G	0.206	0.985	9.6E-01	2.1E-01	4.3E-01
rs2542652	35,601,304	T/C	0.206	0.961	9.7E-01	1.3E-01	4.0E-01
rs3094501	35,899,934	A/G	0.391	0.800	7.2E-01	2.1E-01	6.8E-01
rs1519091	35,608,889	A/G	0.189	0.969	8.6E-01	1.0E-01	2.9E-01
rs4795190	35,675,013	G/A	0.206	1.000	9.3E-01	1.9E-01	4.2E-01
rs2542664	35,638,125	A/C	0.206	0.978	9.4E-01	1.4E-01	4.7E-01
rs954673	35,721,930	C/T	0.209	0.914	9.2E-01	1.6E-01	4.1E-01
rs3110649	36,070,180	G/A	0.228	1.000	9.8E-01	3.3E-01	4.8E-01
rs2680402	35,601,000	C/T	0.205	0.957	9.9E-01	1.3E-01	4.1E-01
chr17:35755196:D	35,755,196	AAAAC/A	0.214	0.848	2.8E-01	8.8E-01	7.1E-01
rs3110647	36,034,423	G/A	0.432	1.000	4.9E-01	9.9E-01	5.5E-01
rs8071409	36,030,219	A/G	0.403	0.906	2.2E-01	9.5E-01	3.0E-02
rs35278082	36,198,146	G/C	0.059	0.773	5.5E-01	6.6E-01	5.9E-01
rs12948120	35,694,047	A/C	0.206	0.988	9.5E-01	2.0E-01	$4.3 \mathrm{E}-01$
rs11657596	35,902,889	C/T	0.099	0.786	7.0E-01	3.7E-01	4.8E-01
rs56125592	35,690,772	T/G	0.206	0.987	9.4E-01	1.9E-01	4.2E-01
rs4795212	36,054,243	C/G	0.161	0.912	9.0E-01	8.5E-01	8.4E-01
rs306862	36,224,201	C/T	0.212	0.706	3.2E-01	4.5E-01	6.1E-01
rs12951838	36,195,976	A/C	0.060	0.774	5.5E-01	6.5E-01	5.8E-01
rs12950795	36,195,978	C/T	0.060	0.774	5.5E-01	6.5E-01	5.8E-01
rs12940739	36,195,726	G/C	0.059	0.775	5.5E-01	6.6E-01	5.8E-01
rs34560333	36,430,297	G/T	0.042	0.728	6.9E-01	5.8E-01	4.1E-01

rs2252757	35,609,746	A/G	0.188	0.965	8.3E-01	9.6E-02	3.1E-01
rs2680393	35,612,158	T/C	0.184	0.951	9.6E-01	9.3E-02	3.2E-01
chr17:35755195:D	35,755,195	AAAAAC/A	0.214	0.849	2.9E-01	8.7E-01	7.2E-01
rs11263825	35,683,839	A/G	0.206	0.990	9.7E-01	$1.9 \mathrm{E}-01$	$4.3 \mathrm{E}-01$
rs4491579	36,019,049	A/T	0.251	0.775	3.1E-01	$9.7 \mathrm{E}-01$	$8.6 \mathrm{E}-01$
rs11263756	36,049,820	G/A	0.032	0.950	1.9E-01	6.4E-01	5.3E-01
rs7209835	36,133,614	C/A	0.247	1.000	9.6E-01	3.11-01	9.1E-01
chr17:36221769:D	36,221,769	TA/T	0.054	0.728	9.7E-01	6.1E-01	9.6E-01
rs7407025	36,080,810	A/G	0.246	1.000	1.7E-01	$4.4 \mathrm{E}-01$	8.6E-01
rs8066605	36,047,501	G/A	0.031	0.963	1.8E-01	6.2E-01	4.3E-01
rs3094510	36,053,769	G/A	0.082	0.924	9.0E-01	6.7E-01	3.7E-01
rs2542662	35,635,537	A/C	0.202	0.976	9.0E-01	$1.2 \mathrm{E}-01$	$4.1 \mathrm{E}-01$
rs1878941	35,627,330	C/T	0.200	0.968	9.2E-01	$1.2 \mathrm{E}-01$	$4.1 \mathrm{E}-01$
rs4795206	35,956,018	T/C	0.180	0.854	4.2E-01	9.2E-01	$4.8 \mathrm{E}-01$
rs2898655	36,053,105	C/T	0.082	0.920	9.0E-01	6.8E-01	3.6E-01
rs12948355	35,950,861	C/T	0.171	0.724	6.8E-01	$6.6 \mathrm{E}-01$	2.15-01
chr17:36178135:I	36,178,135	A/ACT	0.189	0.924	5.1E-01	9.5E-02	3.7E-01
rs12944773	36,136,832	T/C	0.296	0.931	5.1E-01	9.3E-01	5.5E-01
rs2245093	35,628,517	C/A	0.184	0.949	$9.8 \mathrm{E}-01$	9.5E-02	3.15-01
rs12452903	36,439,135	G/T	0.041	0.724	6.7E-01	7.5E-01	$3.8 \mathrm{E}-01$
rs12949161	36,245,490	G/A	0.054	0.709	9.3E-01	5.7E-01	9.1E-01
rs116864658	36,245,239	A/G	0.054	0.709	9.3E-01	5.7E-01	9.1E-01
rs2542651	35,599,682	C/T	0.186	0.970	9.0E-01	$9.0 \mathrm{E}-02$	2.5E-01
rs12952401	35,725,997	G/C	0.204	0.924	9.4E-01	1.4E-01	$4.3 \mathrm{E}-01$
rs118130438	35,962,041	C/T	0.175	0.888	4.0E-01	8.4E-01	4.1E-01
rs17622603	35,798,479	T/C	0.073	0.746	4.3E-01	5.7E-01	6.5E-01
rs56094706	35,671,954	C/T	0.214	0.966	9.3E-01	$2.6 \mathrm{E}-01$	5.7E-01
rs3110641	36,047,417	G/A	0.213	1.000	6.3E-01	6.6E-01	9.1E-01
rs7211305	35,693,085	G/T	0.202	0.955	9.3E-01	1.5E-01	3.1E-01
chr17:35968018:D	35,968,018	A/AC	0.201	0.900	1.2E-02	4.4E-01	4.11-01
rs11658433	36,082,907	A/C	0.220	1.000	7.4E-01	4.0E-01	6.7E-01
rs4794753	35,672,113	G/C	0.215	0.955	9.5E-01	1.7E-01	4.7E-01
rs12942424	35,719,603	A/G	0.205	0.956	9.3E-01	1.4E-01	$4.3 \mathrm{E}-01$
rs1473626	35,721,793	G/A	0.205	0.945	9.4E-01	1.4E-01	$4.3 \mathrm{E}-01$
rs11650464	35,675,511	G/T	0.190	0.974	9.9E-01	1.3E-01	2.9E-01
chr17:35696820:D	35,696,820	A/AAAAG	0.204	0.964	8.7E-01	$1.8 \mathrm{E}-01$	4.7E-01
rs9890585	36,183,891	A/G	0.164	1.000	5.8E-02	$5.3 \mathrm{E}-01$	$8.8 \mathrm{E}-01$
rs56040067	36,135,579	G/C	0.126	0.906	5.7E-01	$4.0 \mathrm{E}-01$	$1.5 \mathrm{E}-01$
rs56125911	35,688,160	C/T	0.238	0.849	8.6E-01	2.9E-01	4.3E-01
rs1464256	35,643,737	C/T	0.190	0.974	$9.8 \mathrm{E}-01$	9.7E-02	3.0E-01
rs2255527	35,635,272	C/T	0.191	0.974	9.0E-01	9.7E-02	3.2E-01
rs2542661	35,634,352	T/G	0.185	0.957	9.9E-01	$9.4 \mathrm{E}-02$	3.2E-01
rs76408803	35,705,112	A/T	0.208	0.958	8.3E-01	2.4E-01	4.4E-01
rs2542660	35,632,979	A/C	0.191	0.974	9.0E-01	$9.8 \mathrm{E}-02$	3.2E-01
rs2254914	35,639,975	T/C	0.191	0.973	8.9E-01	9.7E-02	3.1E-01
rs11657800	36,537,275	G/C	0.118	0.765	6.0E-01	7.9E-01	4.5E-01
rs7502022	35,667,144	T/C	0.185	0.959	9.8E-01	$1.2 \mathrm{E}-01$	3.2E-01
rs112165300	35,953,808	A/G	0.176	0.888	3.8E-01	8.6E-01	$4.3 \mathrm{E}-01$
rs2074429	36,061,297	T/C	0.240	1.000	8.9E-01	5.7E-01	5.5E-01
rs147303417	36,440,607	A/G	0.040	0.731	6.6E-01	8.0E-01	3.9E-01

rs181421823	36,426,516	G/A	0.041	0.718	7.4E-01	5.9E-01	4.7E-01
rs56116846	35,744,215	C/T	0.413	0.754	1.6E-01	$8.4 \mathrm{E}-01$	$8.2 \mathrm{E}-01$
rs28690443	35,638,535	G/A	0.473	0.738	1.0E-01	$1.8 \mathrm{E}-01$	9.1E-01
rs2074430	36,060,515	C/T	0.324	1.000	6.7E-02	$3.7 \mathrm{E}-01$	9.5E-01
rs7208053	35,669,769	A/G	0.189	0.968	8.8E-01	$1.2 \mathrm{E}-01$	3.3E-01
rs9893734	35,705,647	C/T	0.186	0.950	9.7E-01	$1.4 \mathrm{E}-01$	3.1E-01
rs140763152	36,140,900	G/A	0.025	0.895	7.1E-01	5.0E-01	1.3E-01
rs7215774	35,740,855	T/C	0.416	0.747	1.5E-01	7.4E-01	$8.8 \mathrm{E}-01$
rs117010082	36,165,626	T/C	0.017	0.786	6.9E-01	3.6E-01	$1.9 \mathrm{E}-01$
rs147646768	36,144,044	G/T	0.026	0.896	6.7E-01	$2.2 \mathrm{E}-01$	$1.0 \mathrm{E}-01$
rs8073434	35,713,644	A/G	0.186	0.952	9.1E-01	1.3E-01	3.1E-01
chr17:35958756:I	35,958,756	G/GT	0.176	0.888	3.7E-01	8.7E-01	4.4E-01
chr17:36060116:I	36,060,116	T/TG	0.337	0.923	3.7E-01	2.15-01	5.9E-01
rs1096038	35,692,201	T/C	0.189	0.962	8.7E-01	$1.2 \mathrm{E}-01$	3.1E-01
rs3110629	35,891,343	G/A	0.475	0.830	1.3E-01	2.3E-01	$8.8 \mathrm{E}-01$
rs7224009	35,712,981	C/T	0.187	0.952	9.1E-01	$1.3 \mathrm{E}-01$	3.2E-01
rs829166	35,688,373	G/T	0.189	0.961	9.3E-01	$1.2 \mathrm{E}-01$	2.9E-01
rs829167	35,697,427	T/A	0.187	0.955	8.6E-01	$1.2 \mathrm{E}-01$	3.3E-01
chr17:35668337:D	35,668,337	A/AAC	0.210	0.971	9.7E-01	1.7E-01	4.1E-01
rs829168	35,697,090	G/C	0.187	0.954	8.6E-01	$1.2 \mathrm{E}-01$	3.3E-01
rs12603012	36,536,649	C/T	0.109	0.774	4.8E-01	7.9E-01	$4.2 \mathrm{E}-01$
rs2677178	36,218,944	т/C	0.280	0.802	7.7E-01	6.6E-01	9.6E-01
rs9898064	35,780,672	C/T	0.274	0.860	4.6E-01	9.5E-01	$9.4 \mathrm{E}-01$
rs8077008	35,952,447	C/T	0.175	0.891	3.7E-01	8.6E-01	$4.3 \mathrm{E}-01$
rs17660331	35,912,428	A/G	0.181	0.874	3.5E-01	8.11-01	4.4E-01
rs4514720	36,441,093	G/A	0.041	0.748	6.1E-01	8.2E-01	$4.0 \mathrm{E}-01$
chr17:35647658:I	35,647,658	GGAA/G	0.237	0.871	9.9E-01	9.7E-02	6.7E-01
rs12936785	36,214,798	G/T	0.050	0.786	7.7E-01	6.5E-01	$7.8 \mathrm{E}-01$
rs141559293	36,045,798	A/G	0.023	0.818	8.8E-01	1.7E-01	5.5E-02
rs17138919	36,180,085	A/T	0.028	0.703	7.3E-01	9.0E-01	9.6E-01
rs2542663	35,637,786	T/C	0.189	0.969	8.8E-01	9.1E-02	3.5E-01
rs8074124	36,531,565	T/C	0.189	1.000	7.8E-01	$4.6 \mathrm{E}-01$	8.0E-01
rs712039	35,850,553	C/T	0.259	1.000	9.8E-02	$2.4 \mathrm{E}-01$	6.11-01
rs12952907	36,212,393	C/T	0.050	0.788	7.8E-01	6.6E-01	7.6E-01
rs4794758	36,080,428	C/T	0.275	1.000	7.5E-01	9.7E-01	$1.0 \mathrm{E}+00$
rs6607289	36,117,600	G/A	0.398	0.916	6.8E-01	5.5E-01	$1.8 \mathrm{E}-02$
rs7212022	35,686,864	G/A	0.197	0.939	$9.8 \mathrm{E}-01$	1.1E-01	2.2E-01
rs4316804	36,544,749	A/G	0.127	0.718	6.7E-01	7.7E-01	$4.8 \mathrm{E}-01$
rs142345977	36,135,379	C/T	0.127	0.907	5.8E-01	3.9E-01	$1.6 \mathrm{E}-01$
rs55788166	36,219,389	T/C	0.280	0.806	7.5E-01	6.6E-01	9.4E-01
rs12939410	36,210,933	G/A	0.050	0.789	7.8E-01	$6.7 \mathrm{E}-01$	7.3E-01
rs12941674	36,210,949	C/T	0.050	0.789	7.8E-01	6.7E-01	7.3E-01
rs12941283	36,210,252	T/C	0.050	0.790	7.9E-01	6.7E-01	7.1E-01
rs12950331	36,210,250	C/T	0.050	0.790	7.9E-01	6.7E-01	7.1E-01
rs111978120	36,143,580	T/C	0.365	0.923	8.6E-01	2.4E-01	9.3E-02
rs7501438	36,538,458	C/T	0.108	0.770	4.8E-01	8.11-01	4.2E-01
rs3094513	36,048,523	G/A	0.458	1.000	5.6E-01	$1.9 \mathrm{E}-01$	8.7E-01
rs182203470	36,166,339	G/A	0.037	0.946	8.1E-01	7.11-01	4.9E-01
rs2677175	36,215,920	G/A	0.279	0.803	7.7E-01	6.5E-01	$9.8 \mathrm{E}-01$
rs2946342	35,724,279	G/C	0.182	0.909	9.6E-01	7.6E-02	3.2E-01

rs4795208	35,970,749	T/C	0.188	0.977	$3.4 \mathrm{E}-02$	5.9E-01	3.8E-01
rs60447099	35,919,557	C/T	0.177	0.876	3.7E-01	8.1E-01	$4.4 \mathrm{E}-01$
rs59355476	36,538,313	T/G	0.108	0.771	4.8E-01	7.9E-01	4.2E-01
rs2074409	35,898,342	G/T	0.253	1.000	5.8E-02	2.9E-01	5.1E-01
rs73293825	35,944,387	A/G	0.178	0.883	3.2E-01	8.4E-01	4.4E-01
rs4635384	36,055,558	A/G	0.373	0.970	5.0E-01	1.1E-01	8.5E-01
rs6503550	36,536,056	A/G	0.189	1.000	7.9E-01	5.3E-01	7.7E-01
chr17:35954412:D	35,954,412	GTTA/G	0.178	0.870	3.7E-01	8.8E-01	$4.2 \mathrm{E}-01$
rs4359493	36,500,705	T/C	0.156	0.753	4.7E-01	6.1E-01	7.0E-01
rs57666318	35,919,511	G/A	0.177	0.876	3.6E-01	8.1E-01	$4.4 \mathrm{E}-01$
rs3110640	36,048,823	A/G	0.460	1.000	6.1E-01	1.9E-01	9.2E-01
rs2269838	35,838,091	C/T	0.171	0.848	5.0E-01	8.7E-01	$4.8 \mathrm{E}-01$
rs11652559	36,002,599	C/T	0.199	0.942	6.4E-01	8.8E-01	2.0E-01
rs34687448	35,681,768	G/A	0.251	0.845	6.0E-01	4.3E-01	4.7E-01
rs113885331	35,747,284	C/A	0.427	0.720	1.7E-01	$7.8 \mathrm{E}-01$	7.4E-01
chr17:35745437:D	35,745,437	TCA/T	0.235	0.897	2.2E-01	7.2E-01	9.4E-01
rs3813910	36,003,359	G/A	0.197	0.950	6.2E-01	8.5E-01	1.9E-01
chr17:36177067:D	36,177,067	TA/T	0.189	0.881	$3.8 \mathrm{E}-01$	1.5E-01	4.7E-01
rs1048701	35,910,735	C/T	0.455	0.829	$2.9 \mathrm{E}-01$	3.2E-01	7.9E-01
rs17705445	36,131,437	C/T	0.360	1.000	5.0E-01	6.4E-01	$8.9 \mathrm{E}-01$
rs75595889	36,167,273	A/T	0.037	0.949	8.2E-01	7.0E-01	5.0E-01
rs72832240	36,190,298	A/T	0.029	0.787	$2.4 \mathrm{E}-01$	$1.6 \mathrm{E}-01$	3.5E-01
rs8080313	35,952,983	A/G	0.182	1.000	1.9E-02	6.6E-01	4.3E-01
rs12602536	35,937,637	T/C	0.177	0.886	3.3E-01	8.6E-01	4.7E-01
rs7224568	36,210,152	T/C	0.276	0.815	9.0E-01	6.5E-01	9.9E-01
rs6607279	35,924,899	C/T	0.181	1.000	1.8E-02	6.4E-01	4.3E-01
rs12952037	36,136,904	T/C	0.128	0.900	6.4E-01	3.9E-01	$1.4 \mathrm{E}-01$
rs2049037	35,682,921	T/C	0.208	0.969	8.9E-01	1.8E-01	4.9E-01
rs59650365	35,946,814	T/A	0.178	0.882	3.3E-01	8.8E-01	5.1E-01
rs2680390	35,599,885	G/A	0.210	0.952	9.6E-01	1.3E-01	3.9E-01
chr17:36529905:D	36,529,905	G/GC	0.191	0.976	7.8E-01	5.2E-01	6.9E-01
rs4500789	35,721,414	T/A	0.183	0.918	9.6E-01	8.3E-02	3.7E-01
rs7223387	36,082,473	T/G	0.278	1.000	6.4E-01	9.2E-01	9.0E-01
rs1980181	36,220,662	G/T	0.162	0.720	2.9E-01	4.5E-01	5.2E-01
rs853217	35,855,555	A/G	0.380	0.839	1.3E-02	$4.8 \mathrm{E}-01$	9.5E-01
chr17:35871092:D	35,871,092	TATATATA/T	0.382	0.829	1.1E-02	5.3E-01	7.6E-01
rs11654048	35,936,594	T/C	0.455	0.830	3.6E-01	3.8E-01	7.2E-01
rs8075378	35,996,582	A/G	0.198	0.937	6.6E-01	8.5E-01	2.3E-01
rs8079983	35,891,544	A/G	0.288	0.798	6.5E-01	3.4E-01	6.9E-01
rs6607303	36,208,392	T/G	0.126	0.999	3.6E-01	9.4E-01	3.2E-01
chr17:35930470:I	35,930,470	AC/A	0.180	0.986	$1.8 \mathrm{E}-02$	6.5E-01	4.3E-01
rs11656817	36,056,899	A/G	0.072	0.998	3.8E-01	3.1E-01	7.4E-02
rs2522970	35,831,705	G/A	0.421	0.941	4.5E-01	7.3E-01	7.7E-01
rs35707017	35,754,910	C/G	0.238	0.912	2.7E-01	8.7E-01	9.6E-01
rs4622555	35,995,638	A/T	0.199	0.932	6.6E-01	8.5E-01	2.4E-01
rs143194100	36,182,985	G/A	0.036	0.895	2.2E-01	2.0E-01	5.0E-01
rs4262994	35,951,505	A/C	0.182	0.994	2.1E-02	6.4E-01	4.2E-01
rs35296298	35,752,052	G/T	0.239	0.917	2.7E-01	8.8E-01	$9.8 \mathrm{E}-01$
rs4795228	36,209,879	C/A	0.275	0.814	8.9E-01	6.6E-01	9.9E-01
rs2090603	35,762,803	C/T	0.237	0.910	2.6E-01	8.5E-01	9.5E-01

rs72834012	36,532,052	G/A	0.109	0.772	4.7E-01	7.9E-01	4.2E-01
rs34080163	36,151,146	G/A	0.116	0.975	5.6E-01	5.1E-01	$1.5 \mathrm{E}-01$
rs2074428	36,061,659	T/G	0.372	1.000	4.1E-01	3.2E-01	6.1E-01
rs56253237	35,929,283	G/A	0.454	0.830	3.7E-01	3.9E-01	7.3E-01
rs8079671	35,966,977	T/G	0.182	0.986	2.0E-02	6.2E-01	4.3E-01
rs12944821	35,956,391	G/C	0.181	0.743	7.3E-01	$6.2 \mathrm{E}-01$	$2.8 \mathrm{E}-01$
rs4795278	36,594,211	G/C	0.342	0.708	2.9E-01	7.7E-01	6.4E-01
rs12947529	35,986,659	C/T	0.178	0.739	9.3E-01	$6.5 \mathrm{E}-01$	$2.4 \mathrm{E}-01$
rs6503548	36,530,282	G/A	0.109	0.772	4.7E-01	7.9E-01	$4.2 \mathrm{E}-01$
rs7224979	35,953,632	A/G	0.183	1.000	1.7E-02	7.9E-01	4.1E-01
rs6607290	36,117,638	A/G	0.393	0.928	6.7E-01	5.1E-01	6.1E-02
rs3813912	36,003,063	C/T	0.174	1.000	4.5E-01	9.5E-01	3.1E-01
rs56085660	35,994,595	G/A	0.198	0.936	6.7E-01	8.3E-01	2.4E-01
rs62073462	35,929,466	C/T	0.454	0.829	3.7E-01	4.0E-01	7.3E-01
rs9897372	36,239,679	A/G	0.036	0.777	5.0E-02	8.8E-01	6.7E-01
rs12601864	35,958,676	G/A	0.181	0.741	7.2E-01	$6.1 \mathrm{E}-01$	$2.8 \mathrm{E}-01$
rs9892947	35,959,746	G/A	0.456	0.830	4.2E-01	4.1E-01	7.6E-01
chr17:36565865:I	36,565,865	C/CT	0.128	0.703	7.6E-01	5.3E-01	5.1E-01
rs2946344	35,701,430	G/A	0.190	0.942	8.8E-01	1.5E-01	3.0E-01
rs17576688	35,918,854	T/C	0.455	0.830	3.5E-01	$3.9 \mathrm{E}-01$	7.3E-01
rs12939217	35,751,577	C/T	0.237	0.920	3.0E-01	8.2E-01	9.7E-01
rs35199913	36,152,708	C/T	0.118	1.000	5.3E-01	5.0E-01	$1.4 \mathrm{E}-01$
rs8067120	35,783,565	C/T	0.240	0.931	3.3E-01	$9.8 \mathrm{E}-01$	9.9E-01
rs7220267	36,020,981	C/G	0.068	0.883	4.2E-01	$9.6 \mathrm{E}-01$	5.3E-01
rs3110648	36,071,034	T/G	0.189	1.000	7.6E-01	7.5E-01	5.9E-01
rs9898680	35,759,329	C/A	0.239	0.917	2.7E-01	$8.9 \mathrm{E}-01$	9.7E-01
rs12940155	35,950,133	C/A	0.183	0.977	1.9E-02	6.4E-01	$4.9 \mathrm{E}-01$
rs9913481	35,760,962	C/T	0.239	0.917	2.7E-01	8.9E-01	9.7E-01
chr17:35703342:I	35,703,342	GGGA/G	0.236	0.818	9.5E-01	7.4E-02	$2.8 \mathrm{E}-01$
rs8069122	36,211,659	C/A	0.275	0.811	8.9E-01	6.6E-01	$9.8 \mathrm{E}-01$
rs853199	35,850,225	C/T	0.397	0.748	5.0E-02	$4.8 \mathrm{E}-01$	5.1E-01
rs41524746	36,521,605	A/T	0.109	0.771	$4.5 \mathrm{E}-01$	7.9E-01	$4.2 \mathrm{E}-01$
rs11871581	35,764,460	A/G	0.238	0.914	2.6E-01	8.5E-01	$1.0 \mathrm{E}+00$
rs113468016	36,211,640	G/C	0.275	0.811	8.9E-01	6.6E-01	9.8E-01
rs2030285	35,765,164	T/C	0.239	0.918	2.7E-01	8.9E-01	9.7E-01
rs8081470	36,523,083	T/G	0.192	0.979	7.6E-01	5.1E-01	8.0E-01
rs12949459	35,901,374	T/C	0.180	0.749	7.7E-01	$6.2 \mathrm{E}-01$	$3.2 \mathrm{E}-01$
rs11263768	36,211,308	T/G	0.276	0.810	9.0E-01	$6.8 \mathrm{E}-01$	9.9E-01
rs3110622	35,904,597	A/G	0.180	0.984	1.8E-02	6.5E-01	4.5E-01
rs3935220	36,510,397	G/C	0.118	0.774	6.5E-01	7.3E-01	$4.2 \mathrm{E}-01$
rs58781505	35,875,629	T/C	0.365	0.812	1.3E-02	5.9E-01	$1.0 \mathrm{E}+00$
rs7225906	36,553,626	A/G	0.123	0.706	5.8E-01	7.3E-01	5.3E-01
rs34402473	36,173,120	C/T	0.253	0.758	7.5E-01	6.7E-01	$7.8 \mathrm{E}-01$
rs115453632	36,144,109	A/T	0.086	0.954	4.5E-01	$3.4 \mathrm{E}-01$	5.8E-02
rs7224513	35,988,672	T/C	0.198	0.924	6.2E-01	8.0E-01	2.7E-01
rs7225031	35,705,767	G/A	0.238	0.775	6.5E-01	9.4E-02	$4.6 \mathrm{E}-01$
chr17:36154739:I	36,154,739	T/TG	0.082	0.962	$4.3 \mathrm{E}-01$	2.7E-01	$4.3 \mathrm{E}-02$
rs7213933	36,155,074	A/T	0.185	0.998	1.6E-01	2.4E-01	2.0E-01
rs3748724	36,558,251	T/C	0.125	0.708	6.9E-01	6.9E-01	5.2E-01
rs7502205	36,565,449	T/C	0.128	0.704	7.6E-01	5.3E-01	5.2E-01

rs6503574	36,565,406	A/T	0.128	0.704	7.6E-01	5.3E-01	5.2E-01
chr17:36565867:I	36,565,867	T/TC	0.128	0.703	7.6E-01	5.3E-01	5.2E-01
rs56311693	36,190,732	C/T	0.030	0.748	1.7E-01	1.9E-01	$4.0 \mathrm{E}-01$
rs2285741	36,045,807	T/C	0.495	1.000	6.0E-01	4.6E-01	$4.2 \mathrm{E}-01$
rs11263767	36,211,027	T/C	0.273	0.804	8.9E-01	6.3E-01	9.7E-01
rs8075634	35,978,844	T/A	0.189	0.964	3.8E-02	6.5E-01	4.5E-01
rs7207076	35,883,586	G/C	0.468	0.823	2.7E-01	2.2E-01	6.8E-01
rs3094509	36,062,299	G/A	0.370	0.973	5.0E-01	3.4E-01	6.7E-01
rs4795198	35,785,823	A/T	0.239	0.936	3.3E-01	$9.6 \mathrm{E}-01$	9.9E-01
chr17:35972013:D	35,972,013	A/AC	0.213	0.893	3.2E-02	5.2E-01	6.2E-01
rs2158254	36,065,495	C/T	0.457	1.000	7.8E-01	$4.0 \mathrm{E}-01$	$3.3 \mathrm{E}-01$
rs12952508	35,998,683	T/A	0.178	0.742	8.3E-01	6.6E-01	2.3E-01
rs146112072	36,143,119	T/C	0.086	0.954	4.4E-01	3.4E-01	6.0E-02
rs4496209	35,768,255	T/C	0.239	0.922	2.9E-01	$9.1 \mathrm{E}-01$	9.3E-01
chr17:35971799:D	35,971,799	A/AG	0.197	0.934	4.2E-02	5.9E-01	$4.4 \mathrm{E}-01$
chr17:35900917:D	35,900,917	AGTAGAT/A	0.177	0.747	8.1E-01	6.0E-01	$2.9 \mathrm{E}-01$
rs853219	35,787,395	T/C	0.412	0.802	3.9E-02	3.2E-01	9.2E-01
rs4795196	35,767,971	C/T	0.239	0.923	3.0E-01	9.2E-01	9.3E-01
chr17:36211380:D	36,211,380	A/ACT	0.277	0.806	9.2E-01	6.5E-01	9.5E-01
rs7220609	35,991,146	T/C	0.195	0.933	6.9E-01	7.9E-01	2.3E-01
rs12939091	35,797,283	C/T	0.239	0.937	3.4E-01	7.3E-01	9.4E-01
rs7225630	35,991,339	T/A	0.178	0.742	8.4E-01	6.5E-01	2.3E-01
rs11871275	35,769,089	A/T	0.239	0.919	3.1E-01	$1.0 \mathrm{E}+00$	8.9E-01
rs954421	35,773,739	C/T	0.240	0.924	3.0E-01	$9.9 \mathrm{E}-01$	9.0E-01
rs12232470	36,000,489	T/C	0.193	0.950	5.7E-01	9.0E-01	2.4E-01
rs11868124	35,768,382	C/T	0.239	0.924	2.9E-01	$9.8 \mathrm{E}-01$	9.3E-01
chr17:35771941:D	35,771,941	CAATT/C	0.238	0.920	3.0E-01	$9.7 \mathrm{E}-01$	9.2E-01
rs11870876	35,932,917	T/C	0.182	0.743	8.3E-01	5.6E-01	3.0E-01
rs2459585	36,220,373	T/G	0.274	0.795	7.0E-01	7.1E-01	9.2E-01
rs12949259	36,115,579	G/A	0.126	0.906	7.1E-01	5.9E-01	1.3E-01
chr17:35773633:D	35,773,633	AT/A	0.239	0.925	2.9E-01	9.8E-01	9.3E-01
rs4074605	35,922,443	T/G	0.182	0.987	2.0E-02	6.6E-01	$4.3 \mathrm{E}-01$
rs8081104	35,982,314	C/T	0.196	0.916	5.3E-01	$9.2 \mathrm{E}-01$	3.1E-01
rs7207654	36,000,607	T/C	0.179	0.740	8.7E-01	6.6E-01	2.3E-01
chr17:35776026:D	35,776,026	CTT/C	0.238	0.922	3.0E-01	9.7E-01	9.3E-01
rs9908327	36,157,671	T/A	0.434	0.999	4.6E-01	5.6E-01	$8.7 \mathrm{E}-02$
rs12946695	35,773,063	A/T	0.240	0.920	2.9E-01	$9.8 \mathrm{E}-01$	9.2E-01
rs113794865	35,971,741	T/C	0.172	0.918	4.1E-01	8.8E-01	3.7E-01
chr17:35769873:D	35,769,873	AAAAC/A	0.237	0.913	3.3E-01	$9.9 \mathrm{E}-01$	9.2E-01
rs1983367	35,861,600	A/G	0.266	0.894	3.6E-01	6.5E-01	$9.7 \mathrm{E}-01$
rs12941226	35,775,994	A/G	0.238	0.920	3.0E-01	9.5E-01	9.2E-01
rs11650348	36,123,391	G/A	0.400	0.957	9.1E-01	8.8E-01	3.2E-01
rs12938179	36,139,387	T/C	0.482	0.981	7.1E-01	1.0E-01	8.0E-01
rs12602343	36,545,719	A/T	0.112	0.725	4.7E-01	8.4E-01	4.6E-01
rs72832237	36,184,949	G/A	0.038	0.909	1.7E-01	2.6E-01	5.7E-01
rs2074412	35,839,066	C/T	0.407	0.814	2.4E-02	2.9E-01	$8.3 \mathrm{E}-01$
rs12942247	35,776,717	C/T	0.238	0.923	2.7E-01	$1.0 \mathrm{E}+00$	9.0E-01
rs12602776	35,877,144	C/T	0.267	0.872	3.5E-01	7.6E-01	8.8E-01
rs9910105	36,035,786	G/A	0.433	0.908	1.1E-01	7.3E-01	7.7E-01
chr17:35662838:D	35,662,838	T/TG	0.217	0.936	8.9E-01	1.5E-01	6.2E-01

rs34623926	36,131,333	C/T	0.098	1.000	6.1E-01	6.0E-01	2.9E-02
rs11263747	35,742,069	T/C	0.250	0.885	2.0E-01	9.1E-01	9.7E-01
chr17:35833024:D	35,833,024	AT/A	0.397	0.786	4.7E-02	2.7E-01	$6.4 \mathrm{E}-01$
rs1008284	36,062,458	G/A	0.235	0.957	$1.0 \mathrm{E}+00$	5.5E-01	7.4E-01
rs111349348	35,985,120	T/C	0.451	0.822	$3.0 \mathrm{E}-01$	4.4E-01	6.6E-01
rs137927610	36,221,809	A/T	0.272	0.792	7.4E-01	6.9E-01	7.7E-01
rs9909907	35,743,296	G/A	0.247	0.878	2.3E-01	7.8E-01	$9.5 \mathrm{E}-01$
rs71375437	35,752,498	T/C	0.252	0.894	2.6E-01	$9.6 \mathrm{E}-01$	$1.0 \mathrm{E}+00$
rs4577132	35,936,282	C/T	0.181	0.742	8.5E-01	6.3E-01	$3.9 \mathrm{E}-01$
rs9890333	35,744,406	G/A	0.248	0.879	2.2E-01	7.9E-01	9.6E-01
rs7216445	35,984,410	C/T	0.195	0.925	6.2E-01	8.6E-01	2.9E-01
chr17:35930469:I	35,930,469	TA/T	0.188	0.937	2.0E-02	6.9E-01	5.6E-01
rs2680719	35,811,453	C/T	0.180	0.929	7.5E-02	9.9E-01	7.7E-01
rs7217260	36,548,239	G/C	0.113	0.710	4.7E-01	8.4E-01	$4.7 \mathrm{E}-01$
rs4795209	35,971,028	A/G	0.170	0.937	3.9E-01	8.8E-01	$3.9 \mathrm{E}-01$
rs862490	35,850,275	C/T	0.369	0.736	$6.0 \mathrm{E}-02$	2.5E-01	7.6E-01
rs73293897	36,000,295	A/G	0.171	0.981	4.2E-01	$9.3 \mathrm{E}-01$	3.4E-01
rs9889428	35,677,847	G/A	0.192	0.958	9.5E-01	1.4E-01	4.1E-01
rs11263751	35,859,760	C/T	0.262	0.888	3.7E-01	6.7E-01	8.2E-01
rs12936059	35,793,842	C/T	0.229	0.946	4.1E-01	8.4E-01	9.1E-01
chr17:36035616:I	36,035,616	C/CG	0.427	0.891	1.2E-01	6.5E-01	7.7E-01
rs2057702	35,789,967	T/A	0.240	0.947	3.6E-01	9.9E-01	$9.8 \mathrm{E}-01$
chr17:35789905:D	35,789,905	TA/T	0.240	0.947	3.6E-01	9.9E-01	9.8E-01
rs12453570	35,796,620	C/T	0.231	0.944	5.0E-01	9.6E-01	7.9E-01
rs853193	35,823,113	G/A	0.408	0.813	2.7E-02	3.1E-01	8.2E-01
rs35615029	35,791,024	T/A	0.240	0.947	3.5E-01	9.7E-01	$9.8 \mathrm{E}-01$
rs853205	35,824,396	C/T	0.408	0.813	2.7E-02	3.1E-01	8.2E-01
rs2522963	35,809,162	G/A	0.403	0.799	$4.3 \mathrm{E}-02$	2.9E-01	9.5E-01
rs56940879	35,977,854	G/A	0.171	0.943	4.2E-01	8.8E-01	$4.0 \mathrm{E}-01$
rs853202	35,805,391	G/A	0.412	0.793	3.7E-02	3.5E-01	9.0E-01
rs12936391	35,852,924	C/G	0.265	0.901	3.0E-01	6.7E-01	9.7E-01
rs12942673	35,793,246	T/A	0.240	0.948	3.6E-01	9.7E-01	$9.8 \mathrm{E}-01$
rs72832232	36,184,143	G/A	0.034	0.905	2.1E-01	2.0E-01	5.0E-01
rs72832234	36,184,397	A/G	0.034	0.906	2.1E-01	2.0E-01	5.0E-01
rs113063899	35,989,178	T/A	0.171	0.965	4.6E-01	9.7E-01	3.6E-01
rs2411157	35,784,397	G/T	0.407	0.804	3.1E-02	3.4E-01	9.7E-01
rs57962176	35,972,254	C/T	0.175	0.931	4.3E-01	9.5E-01	4.7E-01
rs115659944	36,184,494	G/C	0.034	0.907	2.1E-01	2.0E-01	5.0E-01
rs116734572	36,184,500	A/C	0.034	0.907	2.1E-01	2.0E-01	5.0E-01
rs11651621	35,999,118	G/A	0.168	1.000	$4.7 \mathrm{E}-02$	5.5E-01	6.1E-01
rs12452080	35,792,181	A/G	0.239	0.946	3.7E-01	9.4E-01	$1.0 \mathrm{E}+00$
rs2459586	36,220,929	C/T	0.271	0.797	7.9E-01	7.0E-01	9.3E-01
rs77292537	36,168,507	T/C	0.039	0.956	4.3E-01	7.8E-01	$1.9 \mathrm{E}-01$
rs8064552	36,035,301	T/C	0.434	0.907	8.8E-02	8.1E-01	7.9E-01
rs8075149	35,744,942	T/A	0.251	0.880	2.4E-01	9.2E-01	$9.1 \mathrm{E}-01$
rs7210540	36,188,882	T/C	0.048	0.969	8.9E-02	8.4E-01	$3.3 \mathrm{E}-01$
rs12952917	35,853,284	G/A	0.264	0.898	$3.0 \mathrm{E}-01$	6.7E-01	9.6E-01
rs2376364	36,230,367	C/T	0.195	0.712	7.2E-01	$6.3 \mathrm{E}-01$	$6.4 \mathrm{E}-01$
rs12936188	35,858,813	C/T	0.265	0.896	3.2E-01	6.5E-01	9.9E-01
rs2229295	36,047,276	G/T	0.150	0.936	1.9E-01	5.9E-01	$1.0 \mathrm{E}+00$

rs72832231	36,184,018	G/A	0.034	0.907	2.1E-01	1.9E-01	5.0E-01
rs12602906	35,872,008	C/T	0.255	0.725	1.8E-02	9.7E-01	8.0E-01
chr17:36183781:D	36,183,781	TC/T	0.033	0.907	1.9E-01	1.5E-01	4.7E-01
rs62075863	36,132,297	T/C	0.094	0.887	3.7E-01	6.4E-01	$8.6 \mathrm{E}-02$
rs12937732	35,867,791	C/T	0.263	0.893	3.3E-01	6.2E-01	$1.0 \mathrm{E}+00$
rs9913844	35,864,128	T/C	0.256	0.878	2.9E-01	7.0E-01	$9.6 \mathrm{E}-01$
rs3748726	36,557,089	T/C	0.113	0.701	4.7E-01	$7.9 \mathrm{E}-01$	$4.8 \mathrm{E}-01$
rs4074770	36,022,817	A/G	0.232	1.000	2.8E-01	$4.2 \mathrm{E}-01$	$1.6 \mathrm{E}-01$
rs76115558	36,189,725	T/C	0.046	0.905	8.4E-02	7.4E-01	2.9E-01
rs1963087	36,244,017	G/A	0.060	0.841	4.7E-01	5.9E-01	2.5E-01
rs12600340	36,515,591	C/T	0.110	0.766	4.1E-01	7.7E-01	$4.6 \mathrm{E}-01$
rs77591301	36,189,757	T/C	0.046	0.900	8.7E-02	7.4E-01	3.0E-01
rs72832235	36,184,644	G/A	0.034	0.910	2.0E-01	2.0E-01	5.0E-01
rs72832236	36,184,893	A/T	0.034	0.912	2.0E-01	2.0E-01	5.1E-01
rs7220682	36,188,471	C/T	0.049	1.000	9.1E-02	8.5E-01	3.2E-01
chr17:35778795:I	35,778,795	GC/G	0.409	0.795	$3.6 \mathrm{E}-02$	2.5E-01	9.0E-01
rs112336244	35,845,653	G/A	0.219	0.876	3.9E-01	7.0E-01	8.0E-01
rs4794754	35,859,371	C/T	0.264	0.897	3.2E-01	$6.3 \mathrm{E}-01$	$9.6 \mathrm{E}-01$
rs12946892	35,860,991	A/G	0.264	0.897	3.3E-01	$6.3 \mathrm{E}-01$	9.6E-01
rs11655384	35,983,947	C/T	0.457	0.835	3.5E-01	$4.7 \mathrm{E}-01$	7.0E-01
chr17:36121665:D	36,121,665	G/GC	0.396	0.965	6.4E-01	6.8E-01	$1.2 \mathrm{E}-01$
rs12936196	35,858,821	C/T	0.264	0.895	3.2E-01	6.1E-01	9.5E-01
rs7208085	35,796,289	T/A	0.235	0.958	4.1E-01	8.7E-01	9.9E-01
chr17:35804503:I	35,804,503	C/CA	0.239	0.955	3.5E-01	$9.6 \mathrm{E}-01$	9.7E-01
rs12602717	35,810,223	A/G	0.239	0.956	$3.8 \mathrm{E}-01$	9.4E-01	9.4E-01
rs1859211	36,051,372	T/C	0.129	1.000	6.8E-01	$6.5 \mathrm{E}-01$	$4.5 \mathrm{E}-01$
rs76451910	36,181,491	T/A	0.038	0.832	3.6E-01	8.4E-01	4.1E-01
rs149033010	36,170,681	T/C	0.039	0.962	4.4E-01	7.6E-01	$2.0 \mathrm{E}-01$
rs35204914	36,055,372	G/T	0.250	0.949	9.6E-02	$1.8 \mathrm{E}-01$	6.3E-01
rs2898657	35,804,065	C/G	0.240	0.955	3.6E-01	9.9E-01	9.9E-01
rs2889355	36,171,018	C/A	0.039	0.963	$4.4 \mathrm{E}-01$	7.6E-01	$2.0 \mathrm{E}-01$
rs2889354	36,171,024	T/C	0.039	0.963	$4.4 \mathrm{E}-01$	7.6E-01	2.0E-01
rs117977420	36,171,122	C/T	0.039	0.963	4.4E-01	7.6E-01	2.0E-01
rs117443964	36,171,178	C/T	0.039	0.963	4.4E-01	7.6E-01	$2.0 \mathrm{E}-01$
rs3764431	35,796,585	G/A	0.230	0.937	3.4E-01	7.7E-01	9.0E-01
rs118153244	36,171,508	G/A	0.039	0.963	4.3E-01	7.6E-01	$2.0 \mathrm{E}-01$
rs117138142	36,171,512	C/T	0.039	0.963	4.3E-01	7.6E-01	$2.0 \mathrm{E}-01$
rs117440435	36,171,579	A/T	0.039	0.964	4.3E-01	7.6E-01	$2.0 \mathrm{E}-01$
rs58679466	36,056,576	C/T	0.250	0.961	9.2E-02	1.7E-01	6.2E-01
chr17:36065302:I	36,065,302	T/TCC	0.303	0.969	$4.6 \mathrm{E}-01$	2.0E-01	$9.8 \mathrm{E}-01$
rs76795545	35,868,421	C/G	0.264	0.894	3.3E-01	6.0E-01	9.5E-01
rs12942235	36,026,526	G/A	0.032	0.928	5.6E-01	6.7E-01	$6.5 \mathrm{E}-01$
rs146703540	35,782,180	C/A	0.338	0.721	2.4E-01	3.1E-01	$9.8 \mathrm{E}-01$
rs34322877	36,189,672	A/G	0.053	0.831	2.6E-01	9.8E-01	$1.5 \mathrm{E}-01$
rs12943415	35,793,994	C/T	0.231	0.955	3.7E-01	8.6E-01	9.6E-01
rs3764430	35,796,529	C/T	0.233	0.963	4.1E-01	8.7E-01	$1.0 \mathrm{E}+00$
rs12936850	35,794,960	A/C	0.233	0.963	4.1E-01	8.7E-01	$1.0 \mathrm{E}+00$
rs28786493	35,795,284	G/A	0.233	0.963	4.1E-01	8.7E-01	$1.0 \mathrm{E}+00$
rs9910338	35,778,467	G/A	0.411	0.795	2.8E-02	3.1E-01	9.5E-01
rs2030315	35,808,594	G/T	0.408	0.809	4.2E-02	$3.3 \mathrm{E}-01$	$8.8 \mathrm{E}-01$

rs28856667	35,795,412	C/T	0.233	0.963	4.0E-01	8.4E-01	9.7E-01
rs35064669	36,131,296	G/C	0.096	0.977	6.1E-01	6.0E-01	2.9E-02
rs7225534	36,507,606	G/A	0.103	0.718	5.2E-01	$9.4 \mathrm{E}-01$	3.7E-01
rs9905265	36,469,412	G/C	0.117	0.854	9.9E-01	2.9E-01	7.2E-01
rs11651721	36,134,612	C/T	0.044	1.000	4.5E-01	2.0E-01	5.0E-01
rs11263754	36,026,022	T/A	0.032	0.927	5.1E-01	7.0E-01	5.9E-01
rs62075866	36,139,070	A/G	0.086	0.956	4.1E-01	3.0E-01	7.0E-02
rs11655957	35,819,237	C/T	0.414	0.811	3.5E-02	3.8E-01	8.11-01
rs4291958	36,506,677	G/T	0.102	0.717	5.2E-01	9.3E-01	3.7E-01
rs2680720	35,818,462	T/A	0.414	0.811	3.8E-02	3.8E-01	8.3E-01
rs6607291	36,123,862	G/A	0.385	0.988	4.9E-01	5.4E-01	7.8E-02
rs28798162	35,795,430	C/T	0.232	0.961	4.2E-01	8.2E-01	$9.8 \mathrm{E}-01$
rs2269843	36,058,980	T/C	0.251	1.000	1.0E-01	2.6E-01	5.9E-01
rs306860	36,224,975	G/T	0.283	0.809	7.8E-01	$9.5 \mathrm{E}-01$	9.3E-01
rs6607292	36,124,082	G/A	0.386	0.999	5.0E-01	5.3E-01	7.4E-02
chr17:36054454:D	36,054,454	C/CT	0.174	0.859	9.9E-01	5.5E-01	8.6E-01
rs72832229	36,181,948	G/A	0.036	0.859	2.1E-01	1.7E-01	4.6E-01
rs62076700	35,849,722	C/G	0.238	0.958	3.4E-01	9.3E-01	9.9E-01
rs4078225	36,505,284	G/C	0.105	0.721	6.2E-01	8.0E-01	3.9E-01
rs55693062	36,247,718	C/A	0.295	0.876	9.5E-01	6.6E-01	7.7E-01
rs1058166	36,046,991	T/C	0.056	1.000	3.2E-01	7.0E-01	1.8E-01
rs2107133	36,064,897	A/G	0.127	0.973	4.7E-02	4.7E-01	2.7E-01
rs12450181	36,019,329	T/A	0.225	0.903	4.2E-01	3.7E-01	2.3E-01
chr17:35760572:D	35,760,572	GCTGT/G	0.254	0.942	1.4E-01	2.7E-01	8.2E-01
rs9910344	35,778,477	C/A	0.411	0.796	3.1E-02	3.0E-01	9.5E-01
rs116554271	36,181,747	т/C	0.037	0.842	4.4E-01	8.1E-01	4.2E-01
rs7219057	35,990,862	G/C	0.171	0.961	4.4E-01	$9.4 \mathrm{E}-01$	3.3E-01
rs12936144	36,009,977	G/A	0.146	0.709	9.9E-01	8.7E-01	1.9E-01
rs71382481	36,024,611	C/T	0.229	0.973	3.3E-01	4.7E-01	1.4E-01
rs2898656	35,806,418	C/T	0.239	0.957	3.7E-01	9.8E-01	$1.0 \mathrm{E}+00$
rs11868673	35,877,662	T/A	0.257	0.999	1.0E-01	3.0E-01	8.9E-01
rs865484	35,784,732	C/T	0.408	0.804	3.8E-02	3.2E-01	9.1E-01
rs12449449	36,025,136	T/C	0.231	0.969	3.2E-01	$4.3 \mathrm{E}-01$	1.5E-01
rs2189301	36,063,685	G/A	0.129	1.000	5.6E-02	5.3E-01	3.0E-01
rs9890344	35,766,020	C/T	0.411	0.793	2.6E-02	3.6E-01	9.1E-01
rs74955322	36,181,797	A/G	0.037	0.843	4.4E-01	8.1E-01	4.11-01
rs9901749	35,814,478	A/G	0.240	0.962	3.7E-01	9.8E-01	9.9E-01
rs864356	35,785,091	G/A	0.410	0.806	3.8E-02	3.3E-01	9.2E-01
rs12450628	36,082,421	C/T	0.312	1.000	5.1E-01	7.9E-01	5.0E-01
rs139728467	36,176,425	C/T	0.039	0.969	4.7E-01	$7.5 \mathrm{E}-01$	2.4E-01
rs306861	36,224,607	G/A	0.272	0.786	6.8E-01	7.6E-01	9.4E-01
rs12941488	36,126,604	A/C	0.409	0.983	4.5E-01	6.5E-01	5.6E-02
rs9889491	36,138,717	G/C	0.155	0.944	2.5E-01	6.8E-01	4.0E-02
rs62073499	36,011,288	A/T	0.445	0.800	3.4E-01	4.4E-01	6.11-01
rs306808	36,238,509	T/C	0.270	0.849	7.9E-01	8.3E-01	$8.3 \mathrm{E}-01$
rs9898998	36,011,707	G/A	0.445	0.798	3.4E-01	4.3E-01	6.11-01
chr17:35868404:D	35,868,404	CAG/C	0.262	0.880	3.7E-01	6.4E-01	8.9E-01
rs7226252	35,794,912	C/G	0.189	0.966	8.9E-02	9.5E-01	7.9E-01
rs117936082	35,837,865	G/A	0.044	0.707	7.8E-01	7.5E-01	3.3E-01
rs116943005	36,158,975	C/A	0.026	0.902	2.1E-01	7.8E-02	2.6E-01

rs7503298	36,602,130	C/G	0.254	0.993	3.3E-01	3.8E-01	8.7E-01
rs67879888	35,795,312	A/G	0.189	0.966	8.9E-02	9.5E-01	7.9E-01
rs4306566	36,504,691	G/T	0.102	0.714	5.2E-01	7.9E-01	3.8E-01
rs7502100	36,598,626	T/C	0.377	0.924	2.1E-01	$4.5 \mathrm{E}-01$	6.2E-01
rs60084814	36,008,175	C/A	0.447	0.809	3.7E-01	4.7E-01	6.6E-01
rs76009609	36,136,634	T/G	0.101	0.950	4.3E-01	4.5E-01	6.11-02
rs78358658	36,174,990	C/T	0.039	0.973	4.3E-01	$7.5 \mathrm{E}-01$	2.11-01
rs2189303	36,060,105	G/A	0.244	1.000	6.3E-02	$1.5 \mathrm{E}-01$	6.11-01
rs8075176	36,249,249	G/A	0.255	0.881	5.9E-01	9.0E-01	9.5E-01
chr17:36058058:I	36,058,058	A/ATC	0.305	0.968	7.5E-01	2.4E-01	4.7E-01
rs72832263	36,249,030	A/G	0.284	0.900	9.2E-01	7.7E-01	7.11-01
rs9913768	35,827,986	G/C	0.240	0.967	3.9E-01	9.7E-01	$1.0 \mathrm{E}+00$
rs140227147	35,782,181	T/A	0.343	0.724	1.7E-01	3.2E-01	9.9E-01
rs17139125	36,159,903	C/T	0.027	0.893	2.2E-01	8.6E-02	2.7E-01
rs12603084	36,117,058	A/G	0.425	0.920	7.3E-01	$1.0 \mathrm{E}+00$	3.8E-01
rs7222069	36,067,309	G/A	0.016	0.800	5.0E-01	$1.4 \mathrm{E}-01$	1.2E-01
rs144012031	35,782,182	T/G	0.343	0.725	1.7E-01	3.2E-01	9.9E-01
rs149945509	36,155,431	G/C	0.026	0.921	2.15-01	7.5E-02	2.5E-01
rs11867983	35,826,182	G/A	0.239	0.969	3.9E-01	$9.4 \mathrm{E}-01$	9.6E-01
chr17:36186988:D	36,186,988	TTTTC/T	0.048	0.879	2.7E-01	9.7E-01	2.5E-01
chr17:36186993:D	36,186,993	TTTC/T	0.048	0.879	2.7E-01	9.7E-01	2.5E-01
chr17:35828838:D	35,828,838	AT/A	0.238	0.963	4.11-01	9.0E-01	9.6E-01
rs57763345	35,795,492	C/T	0.189	0.960	8.4E-02	8.9E-01	7.3E-01
rs2944737	36,246,528	A/G	0.329	0.786	8.5E-01	5.5E-01	9.0E-01
rs8182236	36,600,731	T/C	0.255	1.000	3.3E-01	3.9E-01	8.5E-01
rs117918797	36,154,336	G/A	0.026	0.919	2.15-01	$7.4 \mathrm{E}-02$	2.6E-01
rs9908903	35,970,312	A/G	0.222	0.919	3.6E-02	4.0E-01	5.2E-01
rs76964448	36,172,685	C/T	0.021	0.768	9.0E-01	3.5E-01	6.4E-01
rs306807	36,238,687	т/C	0.306	0.858	8.9E-01	8.6E-01	9.9E-01
rs28669894	35,832,867	G/A	0.237	0.957	4.11-01	9.9E-01	9.7E-01
rs8064288	35,961,918	G/A	0.192	0.916	2.9E-02	6.8E-01	4.0E-01
rs12942606	35,836,517	G/T	0.239	0.968	3.9E-01	9.3E-01	9.9E-01
rs117097259	36,153,661	A/G	0.026	0.917	2.11-01	7.3E-02	2.6E-01
rs79502673	36,151,110	T/C	0.027	0.910	2.3E-01	6.6E-02	2.1E-01
rs117335575	36,153,494	T/C	0.026	0.916	2.11-01	7.3E-02	2.6E-01
rs11652472	36,249,183	G/A	0.287	0.892	9.6E-01	$7.6 \mathrm{E}-01$	9.1E-01
rs1416	35,894,811	T/C	0.188	0.940	1.3E-02	7.2E-01	$4.8 \mathrm{E}-01$
rs9909336	35,824,181	C/G	0.239	0.968	3.9E-01	$9.3 \mathrm{E}-01$	$9.8 \mathrm{E}-01$
rs1016679	35,874,330	T/A	0.254	0.976	8.6E-02	3.4E-01	8.3E-01
rs4795221	36,121,669	G/T	0.390	0.989	5.3E-01	4.7E-01	$1.8 \mathrm{E}-01$
rs10908277	35,838,894	G/T	0.234	0.956	2.9E-01	8.1E-01	9.7E-01
rs11868171	35,816,330	G/A	0.233	0.980	4.11-01	$8.6 \mathrm{E}-01$	9.6E-01
rs11867675	35,989,614	T/A	0.242	0.830	6.8E-01	9.6E-01	3.9E-01
rs67499664	35,893,645	T/A	0.183	0.964	1.2E-02	7.3E-01	5.6E-01
rs4795197	35,778,762	C/T	0.428	0.741	3.5E-02	2.7E-01	8.3E-01
rs12945278	35,812,232	G/A	0.232	0.976	4.11-01	8.2E-01	9.6E-01
rs17138731	35,812,537	C/T	0.232	0.976	4.11-01	8.2E-01	9.6E-01
rs7217170	35,810,911	C/T	0.232	0.977	4.1E-01	8.3E-01	9.6E-01
rs17137970	35,771,826	C/T	0.183	0.975	7.3E-02	8.1E-01	7.9E-01
chr17:36242796:D	36,242,796	G/GGCAGC	0.287	0.884	9.7E-01	5.6E-01	$1.0 \mathrm{E}+00$

rs1616371	35,773,799	A/G	0.183	0.976	7.1E-02	8.1E-01	7.9E-01
rs12453296	35,815,693	C/T	0.233	0.980	4.2E-01	8.5E-01	$9.9 \mathrm{E}-01$
rs12950378	36,127,912	A/T	0.412	0.999	4.5E-01	6.9E-01	5.1E-02
chr17:36215404:D	36,215,404	A/AT	0.227	0.767	7.1E-01	8.8E-01	$8.5 \mathrm{E}-01$
rs9896461	35,780,735	C/G	0.226	0.839	6.0E-02	$7.8 \mathrm{E}-01$	$9.8 \mathrm{E}-01$
rs35716147	36,132,131	T/C	0.105	0.920	2.7E-01	5.4E-01	7.1E-02
rs7221878	36,191,133	T/C	0.049	0.900	8.4E-02	8.6E-01	3.1E-01
rs12938215	35,813,380	G/A	0.232	0.974	4.3E-01	8.0E-01	$9.7 \mathrm{E}-01$
rs67827039	36,029,661	G/A	0.032	0.922	6.4E-01	6.1E-01	5.9E-01
rs17139185	36,153,514	G/A	0.027	0.899	2.1E-01	6.5E-02	$2.5 \mathrm{E}-01$
rs62073501	36,013,650	G/A	0.155	0.875	6.6E-02	5.4E-01	7.0E-01
rs1963088	36,244,358	G/A	0.282	0.904	9.4E-01	7.4E-01	8.3E-01
rs853206	35,824,796	T/C	0.188	0.950	8.2E-02	$9.5 \mathrm{E}-01$	$6.7 \mathrm{E}-01$
rs8080173	36,222,571	A/G	0.069	0.806	3.4E-01	5.4E-01	2.0E-01
rs1829453	35,809,843	A/G	0.182	0.973	6.6E-02	8.2E-01	$8.0 \mathrm{E}-01$
rs4073336	36,157,849	C/A	0.029	0.866	1.7E-01	5.4E-02	1.9E-01
rs853227	35,797,529	C/T	0.188	0.964	7.8E-02	9.2E-01	7.2E-01
rs853231	35,814,383	G/A	0.415	0.809	6.4E-02	4.1E-01	9.0E-01
rs4795220	36,121,668	T/C	0.387	0.998	5.4E-01	5.0E-01	1.9E-01
chr17:35815442:I	35,815,442	G/GT	0.232	0.976	4.2E-01	7.9E-01	$9.7 \mathrm{E}-01$
chr17:35971798:D	35,971,798	A/AAG	0.254	0.768	2.0E-02	4.2E-01	8.0E-01
rs2456883	36,245,390	T/A	0.237	0.927	7.6E-01	7.5E-01	$8.8 \mathrm{E}-01$
rs4795201	35,818,109	C/A	0.233	0.985	4.4E-01	8.5E-01	$9.8 \mathrm{E}-01$
rs8068562	36,159,416	T/C	0.029	0.860	2.0E-01	5.8E-02	$2.2 \mathrm{E}-01$
rs4795229	36,213,336	T/G	0.151	0.741	3.3E-01	5.3E-01	4.4E-01
rs67904841	36,186,454	C/G	0.049	0.909	3.2E-01	$1.0 \mathrm{E}+00$	2.4E-01
rs9897879	35,818,592	T/C	0.231	0.984	4.4E-01	8.0E-01	$9.3 \mathrm{E}-01$
rs73295531	36,029,562	T/C	0.033	0.919	6.5E-01	5.7E-01	5.7E-01
rs62073420	36,594,647	G/A	0.254	0.734	1.4E-01	5.5E-01	9.8E-01
rs60118041	35,803,252	G/A	0.182	0.978	6.4E-02	8.1E-01	8.0E-01
chr17:36060223:I	36,060,223	TC/T	0.247	0.981	5.7E-02	2.1E-01	7.8E-01
rs2677176	36,218,390	G/C	0.152	0.742	3.6E-01	5.4E-01	$4.0 \mathrm{E}-01$
rs144767215	36,048,558	T/C	0.023	0.936	6.2E-01	9.5E-01	$1.4 \mathrm{E}-01$
chr17:36116801:I	36,116,801	A/AC	0.417	0.895	6.1E-01	9.9E-01	4.7E-01
rs4073337	36,158,067	G/C	0.029	0.865	$1.8 \mathrm{E}-01$	5.4E-02	$1.9 \mathrm{E}-01$
rs9907381	36,228,819	C/T	0.065	0.825	5.6E-01	5.8E-01	3.2E-01
rs11263750	35,816,826	T/C	0.232	0.987	4.4E-01	8.1E-01	$9.7 \mathrm{E}-01$
rs853230	35,811,959	A/T	0.412	0.805	5.4E-02	3.7E-01	$9.4 \mathrm{E}-01$
rs62075865	36,137,840	T/C	0.089	0.928	4.3E-01	3.5E-01	$9.1 \mathrm{E}-02$
rs11656503	35,772,021	G/T	0.182	0.983	6.4E-02	7.9E-01	7.2E-01
chr17:35822752:I	35,822,752	A/AT	0.232	0.983	4.5E-01	8.1E-01	$9.7 \mathrm{E}-01$
rs28699409	36,226,301	C/T	0.065	0.827	5.7E-01	6.0E-01	3.3E-01
rs35171747	36,190,630	C/T	0.048	0.865	4.2E-01	9.5E-01	2.3E-01
rs1914364	36,210,383	C/T	0.152	0.739	3.6E-01	5.2E-01	$4.4 \mathrm{E}-01$
rs28631493	36,227,747	G/T	0.066	0.824	5.7E-01	5.9E-01	3.2E-01
rs9913945	35,831,767	A/T	0.240	0.960	3.7E-01	8.6E-01	$9.5 \mathrm{E}-01$
chr17:35787814:I	35,787,814	C/CA	0.183	0.981	5.9E-02	7.9E-01	8.1E-01
rs11656885	36,249,489	T/G	0.280	0.913	9.0E-01	8.6E-01	7.3E-01
rs829162	35,764,018	A/G	0.183	0.976	6.5E-02	8.8E-01	7.6E-01
chr17:35901796:D	35,901,796	CT/C	0.140	0.902	2.2E-02	7.7E-01	5.9E-01

rs4332783	35,997,674	G/A	0.218	0.890	5.2E-01	9.7E-01	3.3E-01
rs36081240	35,785,054	G/A	0.181	0.988	5.5E-02	7.8E-01	7.6E-01
rs2661190	36,219,179	C/T	0.151	0.748	3.6E-01	5.4E-01	4.4E-01
rs853224	35,791,328	A/T	0.182	0.999	5.8E-02	7.9E-01	7.3E-01
rs829160	35,763,091	T/A	0.182	0.984	6.2E-02	8.5E-01	7.2E-01
rs829163	35,766,026	G/C	0.182	0.983	6.2E-02	8.5E-01	7.3E-01
rs10512474	36,223,325	A/G	0.070	0.803	4.1E-01	4.8E-01	2.1E-01
rs712038	35,762,557	G/A	0.182	0.983	6.1E-02	8.5E-01	7.2E-01
rs2522971	35,781,516	T/C	0.224	0.844	6.0E-02	7.8E-01	9.6E-01
rs11656455	35,771,885	G/A	0.181	0.982	6.2E-02	7.8E-01	7.2E-01
rs72832203	36,122,529	C/T	0.473	0.989	5.2E-01	5.0E-01	4.3E-01
rs17705177	36,123,526	T/A	0.472	0.984	5.3E-01	5.0E-01	4.3E-01
rs3953882	36,231,965	C/T	0.065	0.815	5.7E-01	5.9E-01	3.0E-01
rs8081410	36,022,278	G/A	0.290	1.000	5.9E-01	4.9E-01	9.4E-02
rs853222	35,790,022	G/T	0.181	0.987	5.6E-02	$7.8 \mathrm{E}-01$	7.3E-01
rs853201	35,804,187	C/A	0.183	0.945	7.7E-02	8.2E-01	6.4E-01
rs2456873	36,220,143	G/C	0.149	0.757	3.4E-01	5.2E-01	4.5E-01
rs829161	35,763,863	T/C	0.182	0.983	6.0E-02	8.5E-01	7.2E-01
rs1102920	35,760,940	A/G	0.182	0.983	5.9E-02	8.5E-01	7.2E-01
rs11872046	35,816,995	T/C	0.235	1.000	4.3E-01	8.0E-01	9.8E-01
rs853200	35,804,114	G/A	0.181	0.980	5.6E-02	7.8E-01	7.3E-01
rs111473843	36,229,759	G/A	0.067	0.806	5.5E-01	5.9E-01	3.2E-01
rs8077815	36,531,427	C/G	0.149	0.880	9.1E-01	7.5E-01	$1.0 \mathrm{E}+00$
rs1045013	35,878,893	G/A	0.180	0.964	2.3E-02	$8.8 \mathrm{E}-01$	8.6E-01
rs4794767	36,213,338	G/A	0.225	0.775	7.7E-01	8.5E-01	8.4E-01
rs34557151	36,059,747	G/C	0.300	0.999	7.5E-01	$2.6 \mathrm{E}-01$	3.6E-01
rs34105918	36,191,296	G/A	0.047	0.861	4.2E-01	9.3E-01	2.1E-01
rs2661113	36,233,151	A/C	0.302	0.857	9.6E-01	8.7E-01	8.1E-01
rs3110626	35,896,402	C/T	0.186	0.969	1.7E-02	7.0E-01	5.1E-01
chr17:36228435:D	36,228,435	A/AGC	0.313	0.720	7.0E-01	8.8E-01	9.4E-01
rs2946340	35,749,716	C/T	0.183	1.000	6.1E-02	8.5E-01	7.0E-01
chr17:36187168:D	36,187,168	TTTTC/T	0.100	0.838	6.6E-01	$9.7 \mathrm{E}-01$	6.0E-01
rs2677174	36,215,358	T/G	0.151	0.747	3.3E-01	$6.5 \mathrm{E}-01$	$4.2 \mathrm{E}-01$
rs9909606	36,213,010	T/C	0.151	0.744	3.5E-01	6.3E-01	4.2E-01
rs8182313	36,600,870	G/T	0.206	0.830	3.3E-01	3.9E-01	9.3E-01
rs12449654	36,056,076	G/C	0.329	0.998	6.8E-01	$1.8 \mathrm{E}-01$	5.7E-01
rs2661194	36,234,987	A/G	0.301	0.862	9.9E-01	8.4E-01	8.3E-01
chr17:35780097:I	35,780,097	C/CA	0.361	0.755	9.8E-01	4.9E-01	8.1E-01
rs11652399	35,869,781	G/T	0.180	0.968	3.0E-02	8.3E-01	8.0E-01
rs2944747	36,233,580	T/C	0.301	0.861	1.0E+00	8.6E-01	8.3E-01
rs1818317	36,234,316	T/C	0.301	0.862	9.9E-01	8.6E-01	8.3E-01
rs71382486	36,187,767	T/C	0.048	0.908	3.3E-01	9.8E-01	2.3E-01
rs2677177	36,218,693	C/T	0.225	0.782	7.7E-01	8.7E-01	8.5E-01
rs1051838	35,870,833	G/A	0.180	0.967	3.0E-02	8.3E-01	8.0E-01
rs118189301	35,893,512	A/C	0.112	0.703	8.8E-01	5.2E-01	7.6E-01
chr17:35816018:D	35,816,018	GA/G	0.190	0.939	$3.8 \mathrm{E}-02$	$9.5 \mathrm{E}-01$	6.5E-01
rs2074408	35,881,376	A/G	0.228	0.810	5.2E-01	7.1E-01	9.2E-01
rs2089484	36,231,118	A/C	0.301	0.860	1.0E+00	$8.6 \mathrm{E}-01$	8.3E-01
rs916895	36,084,227	C/T	0.110	1.000	$1.2 \mathrm{E}-01$	$6.2 \mathrm{E}-01$	4.4E-01
chr17:35895004:1	35,895,004	T/TA	0.191	0.953	1.6E-02	$6.9 \mathrm{E}-01$	5.9E-01

rs111548795	35,858,519	G/T	0.170	0.769	3.4E-01	3.9E-01	5.0E-01
rs4795270	36,531,941	A/G	0.148	0.872	9.3E-01	7.6E-01	$1.0 \mathrm{E}+00$
chr17:36052619:D	36,052,619	C/CATTT	0.092	0.923	7.8E-01	$8.9 \mathrm{E}-01$	$4.0 \mathrm{E}-01$
rs736424	35,789,362	т/C	0.187	0.969	6.9E-02	7.6E-01	$8.1 \mathrm{E}-01$
rs8069062	35,829,306	C/T	0.180	0.971	5.3E-02	7.7E-01	6.6E-01
rs58201617	35,865,451	G/T	0.181	0.967	4.0E-02	7.8E-01	7.1E-01
rs8080195	36,530,291	C/T	0.145	0.866	9.1E-01	7.6E-01	$1.0 \mathrm{E}+00$
rs7406059	36,141,982	т/C	0.065	1.000	4.6E-01	1.3E-01	$2.5 \mathrm{E}-01$
rs72828251	35,781,306	T/G	0.401	0.805	3.5E-01	$2.4 \mathrm{E}-01$	$9.4 \mathrm{E}-01$
rs9895081	36,142,824	C/T	0.067	0.968	4.3E-01	9.2E-02	2.6E-01
rs3110633	36,053,069	C/G	0.292	0.958	3.2E-01	7.0E-01	$7.2 \mathrm{E}-01$
rs1714987	35,743,010	C/G	0.189	0.964	5.2E-02	8.7E-01	$6.9 \mathrm{E}-01$
rs306810	36,237,114	A/G	0.301	0.864	9.8E-01	$8.8 \mathrm{E}-01$	$8.5 \mathrm{E}-01$
rs2203697	36,143,630	T/A	0.066	0.975	4.0E-01	8.7E-02	2.5E-01
rs34711199	35,858,039	C/T	0.181	0.967	4.2E-02	7.8E-01	7.2E-01
rs9909985	36,128,513	A/T	0.026	0.999	8.0E-01	6.7E-01	6.2E-01
rs306856	36,228,191	C/T	0.277	0.812	8.5E-01	$9.4 \mathrm{E}-01$	$9.9 \mathrm{E}-01$
chr17:36142359:D	36,142,359	AG/A	0.067	0.975	4.0E-01	8.7E-02	2.4E-01
rs12452659	36,056,192	T/G	0.328	0.990	6.8E-01	$1.8 \mathrm{E}-01$	5.7E-01
rs184256	36,240,037	C/T	0.262	0.862	5.5E-01	7.9E-01	8.1E-01
rs28539978	36,025,913	G/A	0.029	0.910	6.9E-01	6.11-01	$7.4 \mathrm{E}-01$
rs853223	35,791,149	T/C	0.179	0.981	4.0E-02	9.0E-01	$8.3 \mathrm{E}-01$
rs1714988	35,744,048	G/A	0.186	0.978	5.1E-02	8.4E-01	6.5E-01
rs865483	35,851,177	C/A	0.350	0.795	1.1E-01	3.0E-01	7.6E-01
rs2203696	36,143,304	T/G	0.067	0.970	4.2E-01	9.4E-02	$2.5 \mathrm{E}-01$
rs72832227	36,180,182	A/T	0.035	0.759	9.7E-01	1.3E-01	$8.5 \mathrm{E}-01$
rs28683795	36,137,914	T/A	0.066	0.940	5.OE-01	$9.2 \mathrm{E}-02$	$1.9 \mathrm{E}-01$
rs77263012	35,779,627	C/T	0.108	0.780	2.5E-01	8.0E-01	$3.8 \mathrm{E}-01$
rs8068600	36,524,254	C/G	0.145	0.864	8.8E-01	7.5E-01	9.9E-01
rs853196	35,848,659	A/T	0.181	0.974	4.5E-02	7.4E-01	6.7E-01
rs853197	35,848,716	T/C	0.181	0.974	4.5E-02	7.4E-01	6.7E-01
rs3094512	36,048,940	A/G	0.385	0.976	4.4E-01	$1.3 \mathrm{E}-01$	6.5E-01
rs72832261	36,248,820	G/A	0.304	0.866	7.8E-01	8.6E-01	7.15-01
rs2680721	35,844,422	C/A	0.359	0.791	1.1E-01	$3.3 \mathrm{E}-01$	$8.9 \mathrm{E}-01$
rs8077142	36,149,449	A/T	0.066	0.999	3.6E-01	$8.5 \mathrm{E}-02$	3.2E-01
rs853216	35,863,008	G/A	0.181	0.969	4.0E-02	7.6E-01	6.8E-01
rs853213	35,859,728	C/T	0.180	0.968	4.0E-02	7.5E-01	6.8E-01
rs3094499	35,891,336	A/G	0.187	0.965	1.7E-02	7.2E-01	5.4E-01
rs56725989	35,885,929	T/C	0.185	0.947	3.0E-02	7.0E-01	5.6E-01
rs866465	35,859,404	G/A	0.180	0.966	4.0E-02	7.5E-01	7.0E-01
rs9910109	36,526,456	A/T	0.156	0.836	9.5E-01	6.3E-01	$9.8 \mathrm{E}-01$
rs7208963	36,207,702	C/T	0.074	0.853	5.2E-01	$6.6 \mathrm{E}-01$	3.7E-01
rs76709542	36,168,853	G/A	0.059	0.961	5.6E-01	$1.8 \mathrm{E}-01$	6.7E-01
rs2008778	36,156,378	C/A	0.207	0.923	3.4E-01	$9.6 \mathrm{E}-01$	$1.4 \mathrm{E}-01$
chr17:36171036:D	36,171,036	TTAATTA/T	0.059	0.964	5.6E-01	1.7E-01	$6.8 \mathrm{E}-01$
rs6607275	35,833,208	C/T	0.361	0.775	1.2E-01	$2.6 \mathrm{E}-01$	8.8E-01
rs7209355	36,181,033	G/A	0.062	0.809	9.2E-01	$4.6 \mathrm{E}-02$	5.2E-01
rs12945602	35,750,175	G/C	0.337	0.759	1.0E-02	8.7E-01	7.0E-01
rs2940229	36,246,503	C/G	0.274	0.820	8.8E-01	8.4E-01	$9.2 \mathrm{E}-01$
rs853195	35,848,255	A/C	0.354	0.799	1.3E-01	$2.6 \mathrm{E}-01$	$8.1 \mathrm{E}-01$

rs60112577	35,833,209	G/A	0.176	0.945	4.7E-02	7.6E-01	5.8E-01
rs1016680	35,874,385	C/A	0.355	0.796	4.7E-02	$3.7 \mathrm{E}-01$	8.6E-01
chr17:36149874:I	36,149,874	T/TG	0.064	0.976	4.4E-01	1.2E-01	3.3E-01
rs12946766	35,886,089	G/A	0.404	0.818	8.5E-02	$6.0 \mathrm{E}-01$	9.5E-01
rs7215650	36,173,024	A/G	0.059	0.968	5.6E-01	$1.7 \mathrm{E}-01$	6.7E-01
chr17:36156796:D	36,156,796	G/GCCA	0.385	0.970	4.7E-01	$6.7 \mathrm{E}-01$	2.5E-01
rs853194	35,848,045	C/A	0.355	0.799	1.3E-01	2.4E-01	8.3E-01
rs9909036	36,188,263	A/G	0.133	0.952	2.3E-01	6.7E-01	8.0E-01
rs177701	36,225,112	C/T	0.159	0.793	5.3E-01	7.8E-01	5.9E-01
rs35551980	36,049,552	T/C	0.335	1.000	8.9E-01	7.1E-02	7.4E-01
chr17:35869270:D	35,869,270	CACACTCTA/C	0.360	0.705	6.6E-01	3.6E-01	7.4E-01
rs4794779	36,492,448	C/A	0.076	1.000	5.6E-01	8.3E-01	3.7E-01
rs878520	35,762,107	G/C	0.349	0.777	1.9E-01	2.9E-01	8.9E-01
rs4795267	36,491,365	C/G	0.076	0.972	5.6E-01	7.7E-01	3.8E-01
rs8075660	36,140,071	A/G	0.066	0.965	4.3E-01	9.0E-02	2.6E-01
rs56186148	35,768,827	T/A	0.350	0.778	2.0E-01	3.0E-01	8.8E-01
rs11653332	35,866,325	C/A	0.359	0.790	9.7E-02	2.9E-01	8.9E-01
rs6607293	36,124,299	G/T	0.024	0.965	7.6E-01	6.7E-01	6.0E-01
rs9896972	36,233,906	C/T	0.069	0.773	6.2E-01	7.7E-01	3.4E-01
rs853214	35,860,964	C/T	0.355	0.802	1.1E-01	2.7E-01	$9.3 \mathrm{E}-01$
rs2459583	36,220,055	A/T	0.219	0.794	7.7E-01	8.6E-01	$9.2 \mathrm{E}-01$
rs8064314	35,858,392	G/A	0.355	0.802	1.1E-01	2.7E-01	9.3E-01
rs9906140	35,857,151	A/G	0.355	0.802	1.1E-01	2.7E-01	9.3E-01
rs11870754	35,856,593	G/A	0.355	0.802	1.1E-01	2.7E-01	9.3E-01
rs853215	35,861,133	G/A	0.355	0.802	1.1E-01	2.7E-01	9.3E-01
rs12948622	35,885,952	C/T	0.214	0.777	9.0E-01	6.5E-01	6.0E-01
rs853233	35,842,517	G/A	0.358	0.788	1.2E-01	2.7E-01	9.5E-01
rs853232	35,841,181	G/A	0.185	0.961	7.0E-02	7.5E-01	7.2E-01
rs2522972	35,839,021	T/C	0.353	0.798	1.2E-01	2.9E-01	8.3E-01
rs864083	35,823,995	T/C	0.356	0.792	1.2E-01	2.4E-01	9.4E-01
rs12603185	35,868,304	C/T	0.355	0.801	1.1E-01	2.8E-01	9.4E-01
rs853198	35,849,342	C/A	0.353	0.799	1.3E-01	2.8E-01	8.4E-01
rs115368707	36,176,204	T/C	0.042	0.950	3.5E-01	8.3E-01	3.0E-01
rs3874962	36,224,277	G/A	0.067	0.816	6.0E-01	5.5E-01	3.1E-01
rs72828246	35,766,475	A/G	0.349	0.778	$1.9 \mathrm{E}-01$	2.9E-01	8.8E-01
rs853211	35,828,164	C/T	0.353	0.797	1.3E-01	2.9E-01	8.3E-01
rs7217375	35,829,668	C/T	0.354	0.795	1.3E-01	2.7E-01	8.2E-01
rs1112173	35,760,056	C/T	0.349	0.777	1.8E-01	2.9E-01	8.8E-01
rs1112174	35,759,965	A/T	0.349	0.777	1.8E-01	2.9E-01	8.8E-01
rs12941000	35,893,671	T/C	0.215	0.771	9.3E-01	7.0E-01	6.6E-01
rs1963086	36,243,923	G/A	0.234	0.934	8.9E-01	9.2E-01	7.9E-01
rs113593735	35,755,546	A/G	0.349	0.777	1.7E-01	3.0E-01	8.8E-01
rs79909076	36,178,656	T/A	0.042	0.939	3.7E-01	7.8E-01	2.9E-01
chr17:35875512:I	35,875,512	AAC/A	0.361	0.768	$1.3 \mathrm{E}-01$	3.6E-01	9.7E-01
rs2459574	36,246,310	C/T	0.238	0.933	9.2E-01	9.8E-01	8.8E-01
rs34444303	36,146,301	A/G	0.472	0.977	8.6E-01	$1.3 \mathrm{E}-01$	3.3E-01
rs7207034	36,219,767	C/G	0.068	0.829	5.0E-01	5.9E-01	3.1E-01
rs4426391	36,180,857	A/T	0.057	0.851	7.7E-01	3.9E-02	5.2E-01
rs6607294	36,124,578	C/G	0.024	0.970	7.6E-01	6.5E-01	5.9E-01
rs12939093	35,751,207	C/A	0.338	0.753	1.1E-02	8.2E-01	8.0E-01

rs17138631	35,892,399	T/C	0.215	0.772	9.3E-01	7.1E-01	6.5E-01
rs853234	35,843,050	T/C	0.353	0.798	1.3E-01	3.0E-01	8.11-01
chr17:36142701:I	36,142,701	G/GT	0.055	0.833	1.8E-01	4.9E-01	2.1E-01
rs853208	35,826,456	A/C	0.353	0.797	1.3E-01	2.9E-01	8.3E-01
rs4795203	35,828,972	C/T	0.353	0.797	1.3E-01	2.9E-01	8.3E-01
rs6607295	36,124,659	C/G	0.024	0.972	7.6E-01	6.5E-01	6.0E-01
rs12943119	35,898,081	G/A	0.215	0.772	9.3E-01	6.7E-01	6.7E-01
rs2107104	35,835,031	A/G	0.354	0.796	1.2E-01	2.8E-01	8.7E-01
rs8070034	35,891,953	T/G	0.215	0.773	9.3E-01	7.1E-01	6.4E-01
rs12939852	35,892,635	C/T	0.215	0.772	9.1E-01	7.6E-01	6.2E-01
rs2522968	35,830,300	A/G	0.353	0.797	1.3E-01	2.9E-01	$8.6 \mathrm{E}-01$
rs79925212	35,833,481	T/A	0.353	0.798	1.3E-01	2.9E-01	$8.3 \mathrm{E}-01$
rs853192	35,821,931	C/G	0.353	0.797	1.3E-01	2.9E-01	8.4E-01
rs853191	35,821,758	T/A	0.353	0.797	1.3E-01	2.9E-01	8.4E-01
rs8077061	36,125,319	G/A	0.025	0.955	7.8E-01	6.6E-01	5.9E-01
rs11653037	36,179,647	A/C	0.058	1.000	7.2E-01	8.0E-02	5.11-01
rs11263758	36,084,003	C/T	0.279	1.000	5.4E-01	8.3E-01	2.15-01
rs112224829	36,175,825	G/A	0.067	0.944	5.4E-01	8.9E-02	2.7E-01
rs11655586	36,151,291	A/C	0.076	0.950	6.2E-01	1.4E-01	6.11-01
rs4545872	35,897,332	C/T	0.214	0.773	9.4E-01	6.8E-01	6.7E-01
rs6503544	36,518,751	т/C	0.149	0.858	9.9E-01	6.7E-01	9.2E-01
rs9892035	36,005,128	C/G	0.377	0.814	5.8E-01	8.5E-01	$1.0 \mathrm{E}+00$
rs12603260	35,884,975	C/T	0.214	0.776	8.7E-01	6.1E-01	5.9E-01
rs17138653	35,885,269	т/C	0.215	0.778	8.9E-01	6.7E-01	$5.8 \mathrm{E}-01$
rs8065395	35,892,028	C/G	0.215	0.772	9.1E-01	7.6E-01	6.2E-01
MERGED_DEL_2_8848	35,755,597	CATTGGCCTGA	0.346	0.773	2.0E-01	2.8E-01	8.7E-01
rs2940228	36,246,459	A/G	0.287	0.784	9.9E-01	7.4E-01	$8.8 \mathrm{E}-01$
rs4795200	35,817,105	G/A	0.353	0.797	1.4E-01	2.9E-01	$8.4 \mathrm{E}-01$
rs138436675	36,132,329	C/A	0.068	0.923	5.2E-01	1.4E-01	$3.8 \mathrm{E}-01$
rs7212656	36,169,057	C/T	0.059	0.952	5.9E-01	$1.8 \mathrm{E}-01$	7.0E-01
rs72828253	35,783,416	A/G	0.350	0.784	1.9E-01	3.0E-01	$8.9 \mathrm{E}-01$
rs7501983	35,783,812	A/G	0.350	0.784	1.9E-01	3.0E-01	8.9E-01
rs1045000	35,896,123	T/C	0.215	0.772	9.5E-01	7.8E-01	6.5E-01
rs8080584	36,180,571	G/A	0.057	0.871	8.2E-01	3.9E-02	5.2E-01
rs306802	36,249,855	G/A	0.227	0.975	$9.8 \mathrm{E}-01$	$9.2 \mathrm{E}-01$	7.7E-01
chr17:35766563:D	35,766,563	CA/C	0.349	0.774	1.4E-01	3.0E-01	8.7E-01
rs117037866	36,011,715	G/A	0.010	0.801	8.1E-01	8.0E-01	5.7E-01
rs8077234	36,125,444	G/A	0.025	1.000	7.6E-01	6.2E-01	5.5E-01
rs3874961	36,224,026	G/A	0.066	0.811	5.9E-01	5.5E-01	3.1E-01
rs306801	36,249,430	G/A	0.223	1.000	9.6E-01	9.5E-01	8.11-01
rs9909680	36,135,628	A/T	0.071	0.928	4.4E-01	1.5E-01	3.2E-01
rs853226	35,791,834	C/T	0.149	0.902	5.4E-02	7.2E-01	4.9E-01
rs3094508	36,062,935	T/C	0.398	1.000	4.4E-01	7.3E-01	$8.3 \mathrm{E}-01$
rs12949458	35,885,926	A/G	0.214	0.771	8.6E-01	6.7E-01	6.11-01
rs2522966	35,816,616	T/C	0.352	0.794	1.5E-01	2.9E-01	$8.6 \mathrm{E}-01$
rs2680718	35,816,451	C/T	0.352	0.794	1.5E-01	2.9E-01	8.6E-01
rs2522965	35,816,318	G/C	0.352	0.794	1.5E-01	2.9E-01	8.6E-01
rs7214181	36,186,865	C/T	0.132	0.963	2.2E-01	7.0E-01	8.11-01
chr17:36210511:1	36,210,511	СССтTССTT/С	0.244	0.720	9.3E-01	6.9E-01	9.1E-01
rs62076707	35,882,855	т/C	0.175	0.904	4.0E-02	8.2E-01	2.3E-01

rs8082476	36,180,706	A/G	0.057	0.858	8.6E-01	3.6E-02	5.2E-01
rs2107105	35,835,080	T/C	0.351	0.794	1.4E-01	2.8E-01	$8.9 \mathrm{E}-01$
rs306859	36,226,155	A/G	0.155	0.808	4.7E-01	9.7E-01	4.7E-01
rs8079492	36,120,871	T/C	0.492	0.984	4.5E-01	5.0E-01	3.7E-01
rs2459575	36,245,768	A/G	0.225	0.975	9.2E-01	9.7E-01	$8.3 \mathrm{E}-01$
rs853228	35,799,889	T/G	0.348	0.782	1.8E-01	3.1E-01	9.0E-01
rs55681647	36,128,233	C/T	0.462	0.980	4.7E-01	6.5E-01	3.2E-01
rs113037219	36,167,609	C/T	0.043	0.872	3.3E-01	2.6E-01	5.2E-02
rs853203	35,807,445	C/G	0.365	0.746	1.9E-01	3.3E-01	$9.2 \mathrm{E}-01$
rs9891906	36,185,998	C/T	0.131	0.975	2.3E-01	7.2E-01	7.5E-01
rs11263755	36,045,521	A/G	0.173	1.000	3.7E-01	5.8E-01	4.7E-01
rs7219104	36,121,042	A/C	0.492	0.985	4.5E-01	5.1E-01	3.7E-01
rs9890468	36,186,106	G/C	0.131	0.974	2.3E-01	7.2E-01	7.5E-01
rs8082276	36,129,156	C/T	0.024	0.963	8.2E-01	7.0E-01	6.0E-01
rs8064370	36,129,167	A/G	0.024	0.963	8.2E-01	7.0E-01	6.0E-01
rs853225	35,791,505	C/A	0.348	0.783	1.8E-01	3.0E-01	9.0E-01
rs853220	35,787,666	T/C	0.348	0.783	1.8E-01	3.0E-01	$9.0 \mathrm{E}-01$
rs66954791	36,049,786	A/G	0.169	0.844	7.5E-01	3.0E-01	5.3E-02
rs9898782	36,127,086	G/A	0.024	0.973	8.0E-01	6.5E-01	6.0E-01
rs8082139	36,129,106	C/T	0.024	0.966	8.2E-01	6.9E-01	6.0E-01
rs12946864	36,139,313	т/C	0.470	1.000	8.4E-01	1.4E-01	3.6E-01
rs3094515	36,043,653	C/T	0.365	1.000	7.1E-01	8.2E-01	$5.0 \mathrm{E}-01$
rs8076711	35,866,283	A/G	0.399	0.754	1.6E-01	2.0E-01	$7.9 \mathrm{E}-01$
rs739740	35,887,392	C/T	0.216	0.773	8.9E-01	6.3E-01	$6.2 \mathrm{E}-01$
rs12945069	36,139,413	G/A	0.474	0.951	6.6E-01	2.7E-01	$2.6 \mathrm{E}-01$
rs306850	36,229,983	T/C	0.177	0.859	6.3E-01	6.7E-01	$4.0 \mathrm{E}-01$
rs10962	36,046,451	G/C	0.231	0.902	6.4E-01	1.1E-01	$9.3 \mathrm{E}-01$
rs306849	36,230,082	G/A	0.175	0.865	6.1E-01	6.6E-01	$3.8 \mathrm{E}-01$
rs148361058	36,182,849	G/A	0.019	0.752	5.7E-02	3.1E-01	$8.4 \mathrm{E}-01$
rs2944738	36,246,419	G/A	0.269	0.824	7.7E-01	8.3E-01	$9.8 \mathrm{E}-01$
rs76483039	36,133,656	G/A	0.069	0.931	4.6E-01	1.3E-01	$3.3 \mathrm{E}-01$
rs4794759	36,122,386	C/A	0.492	1.000	4.8E-01	5.3E-01	$4.0 \mathrm{E}-01$
rs1964698	36,243,630	A/C	0.226	0.966	9.3E-01	9.6E-01	$8.3 \mathrm{E}-01$
rs8069318	36,130,337	C/A	0.024	0.809	8.3E-01	6.4E-01	7.8E-01
rs7213333	36,067,868	T/C	0.302	0.973	6.4E-01	7.7E-01	$5.6 \mathrm{E}-01$
rs2138740	36,140,825	C/A	0.471	0.992	8.2E-01	1.4E-01	$3.5 \mathrm{E}-01$
rs2456864	36,241,996	T/C	0.226	0.961	9.5E-01	9.6E-01	8.1E-01
rs1963085	36,243,668	A/T	0.226	0.966	9.4E-01	9.6E-01	$8.3 \mathrm{E}-01$
chr17:35874000:D	35,874,000	A/AAAAC	0.360	0.780	9.4E-02	3.8E-01	$9.0 \mathrm{E}-01$
rs4794760	36,129,493	C/G	0.468	0.994	4.7E-01	6.5E-01	3.0E-01
chr17:35873399:D	35,873,399	T/TA	0.363	0.790	5.5E-02	$4.2 \mathrm{E}-01$	$9.1 \mathrm{E}-01$
rs12945081	36,139,423	A/G	0.470	0.991	8.4E-01	1.4E-01	$3.6 \mathrm{E}-01$
rs4795223	36,122,227	T/C	0.492	0.992	5.0E-01	5.3E-01	$4.1 \mathrm{E}-01$
rs9903940	35,987,417	A/G	0.393	0.795	7.2E-01	8.5E-01	$9.2 \mathrm{E}-01$
chr17:36122039:I	36,122,039	A/AAAC	0.383	0.802	2.3E-01	8.4E-01	$5.0 \mathrm{E}-01$
rs9908105	36,121,733	A/G	0.493	0.989	4.9E-01	5.7E-01	$4.0 \mathrm{E}-01$
rs2522964	35,809,215	C/T	0.354	0.787	1.9E-01	2.9E-01	9.0E-01
rs2138739	36,140,519	A/C	0.470	1.000	8.0E-01	1.4E-01	3.5E-01
rs11654480	36,159,666	C/T	0.074	0.962	6.8E-01	7.6E-02	$5.8 \mathrm{E}-01$
rs9916121	36,122,807	A/G	0.492	0.990	4.8E-01	5.3E-01	$4.0 \mathrm{E}-01$

rs1063215	35,874,936	G/A	0.354	0.797	8.4E-02	3.3E-01	9.6E-01
rs2285740	36,068,728	T/C	0.327	1.000	5.8E-01	8.3E-01	6.6E-01
rs860468	35,793,286	C/G	0.350	0.779	2.0E-01	3.3E-01	7.9E-01
rs306851	36,229,923	C/T	0.175	0.862	6.2E-01	7.1E-01	$3.7 \mathrm{E}-01$
chr17:36124199:I	36,124,199	A/AT	0.486	0.978	4.9E-01	5.5E-01	$3.8 \mathrm{E}-01$
rs2677184	36,233,930	A/G	0.281	0.768	6.8E-01	$9.5 \mathrm{E}-01$	8.6E-01
rs4795224	36,129,442	T/G	0.467	1.000	4.8E-01	6.6E-01	$3.1 \mathrm{E}-01$
chr17:36177017:I	36,177,017	T/TG	0.101	0.950	2.5E-01	2.7E-01	$2.9 \mathrm{E}-01$
rs4795213	36,055,231	G/A	0.474	0.959	2.9E-01	1.7E-01	7.9E-01
rs75795127	36,153,411	G/C	0.074	0.969	6.0E-01	8.8E-02	5.7E-01
rs112271315	36,072,974	G/A	0.027	0.910	6.4E-01	8.6E-01	$1.8 \mathrm{E}-01$
rs2677185	36,234,106	A/G	0.175	0.866	6.3E-01	7.1E-01	$3.8 \mathrm{E}-01$
rs34911173	36,188,006	C/T	0.083	0.967	2.3E-02	5.9E-01	$2.3 \mathrm{E}-01$
chr17:35868894:I	35,868,894	CT/C	0.352	0.785	1.1E-01	2.8E-01	9.8E-01
rs11263766	36,206,951	G/A	0.242	0.715	9.5E-01	9.9E-01	8.0E-01
rs11650255	36,156,125	C/T	0.075	1.000	6.4E-01	7.9E-02	5.6E-01
rs853229	35,800,919	G/A	0.352	0.791	1.8E-01	$3.0 \mathrm{E}-01$	9.1E-01
rs4795222	36,121,681	G/A	0.492	0.987	4.7E-01	5.7E-01	$4.3 \mathrm{E}-01$
rs9907363	36,187,371	T/A	0.084	0.997	3.1E-02	6.1E-01	$2.4 \mathrm{E}-01$
rs75813075	36,157,527	C/T	0.074	0.974	6.5E-01	7.7E-02	5.7E-01
rs12450163	36,243,179	G/A	0.238	0.915	$9.8 \mathrm{E}-01$	7.1E-01	9.9E-01
rs11650253	36,156,819	G/A	0.074	0.977	6.4E-01	7.7E-02	5.6E-01
rs9902483	36,124,142	A/G	0.491	0.983	5.1E-01	5.5E-01	$3.8 \mathrm{E}-01$
rs9899480	36,185,665	C/T	0.131	1.000	1.5E-01	9.9E-01	6.6E-01
rs112679482	36,177,117	C/T	0.103	0.948	2.1E-01	$2.8 \mathrm{E}-01$	$2.8 \mathrm{E}-01$
rs12938438	36,059,385	C/G	0.322	0.998	6.4E-01	$2.4 \mathrm{E}-01$	$5.4 \mathrm{E}-01$
rs12945446	36,249,019	G/T	0.233	0.951	9.8E-01	9.8E-01	8.7E-01
rs1016678	35,874,192	G/A	0.356	0.797	9.7E-02	3.3E-01	$1.0 \mathrm{E}+00$
rs12453685	35,981,927	C/T	0.375	0.812	5.4E-01	$8.1 \mathrm{E}-01$	$9.1 \mathrm{E}-01$
rs2940227	36,246,433	A/T	0.277	0.803	8.2E-01	7.4E-01	$9.4 \mathrm{E}-01$
rs10512475	36,155,755	C/G	0.074	0.979	6.3E-01	8.0E-02	5.7E-01
rs7216639	36,212,459	C/A	0.073	0.835	4.4E-01	6.1E-01	4.2E-01
chr17:35875511:I	35,875,511	CAA/C	0.352	0.794	7.6E-02	4.1E-01	$9.5 \mathrm{E}-01$
rs6607306	36,213,829	C/G	0.074	0.834	4.3E-01	6.0E-01	$4.2 \mathrm{E}-01$
chr17:35875510:I	35,875,510	TCA/T	0.351	0.793	6.6E-02	$4.1 \mathrm{E}-01$	9.9E-01
chr17:35846458:I	35,846,458	TCC/T	0.394	0.705	1.4E-01	$4.1 \mathrm{E}-01$	$7.8 \mathrm{E}-01$
rs75595339	36,128,772	G/T	0.022	0.939	9.7E-01	$6.7 \mathrm{E}-01$	$6.3 \mathrm{E}-01$
rs114336474	36,129,175	C/T	0.022	0.933	9.7E-01	$6.8 \mathrm{E}-01$	$6.3 \mathrm{E}-01$
rs12450625	36,243,138	C/T	0.232	0.940	9.9E-01	8.4E-01	$9.5 \mathrm{E}-01$
rs2008765	36,156,517	T/C	0.378	1.000	5.5E-01	7.4E-01	$2.3 \mathrm{E}-01$

a. Results are presented for all SNPs analysed across the HNF1B region regardless of information score or minor
ncluded in the analysis ${ }^{\text {a }}$ for all histologies combined, and endometrioid and non-endometrioid subtyp

ady iCOGS Fine-mapping P-value	All Histologies				Endometrioid histology			
	Combined analysis OR (95\% CI)	P -value	P(het)	12	Combined analysis OR (95\% CI)	P-value	P(het)	12
$6.8 \mathrm{E}-08$	0.86 (0.82,0.89)	$8.4 \mathrm{E}-14$	5.7E-01	0.0\%	0.86 (0.82,0.89)	4.1E-12	3.7E-01	4.2\%
8.7E-08	0.86 (0.82,0.89)	1.3E-13	5.5E-01	0.0\%	0.86 (0.82,0.90)	8.6E-12	3.4E-01	10.7\%
$1.6 \mathrm{E}-07$	0.86 (0.82,0.89)	$2.4 \mathrm{E}-13$	5.1E-01	0.0\%	0.86 (0.82,0.90)	1.4E-11	3.2E-01	14.6\%
7.0E-07	0.86 (0.83,0.90)	8.6E-13	3.5E-01	8.4\%	0.86 (0.83,0.90)	6.4E-11	$1.9 \mathrm{E}-01$	37.4\%
1.2E-06	0.86 (0.83,0.90)	2.3E-12	3.8E-01	2.8\%	0.87 (0.83,0.91)	1.3E-10	1.8E-01	38.0\%
1.4E-06	0.86 (0.83,0.90)	5.5E-12	4.7E-01	0.0\%	0.87 (0.83,0.91)	2.1E-10	2.7E-01	22.8\%
4.0E-06	0.87 (0.83,0.90)	9.7E-12	3.4E-01	10.5\%	0.87 (0.83,0.91)	2.7E-10	$1.9 \mathrm{E}-01$	37.8\%
$1.6 \mathrm{E}-05$	0.87 (0.84,0.91)	$1.1 \mathrm{E}-10$	2.1E-01	33.5\%	0.87 (0.84,0.91)	1.1E-09	2.1E-01	34.5\%
2.2E-05	0.87 (0.84,0.91)	1.9E-10	2.3E-01	30.6\%	0.87 (0.83,0.91)	1.4E-09	2.4E-01	28.2\%
3.0E-05	0.87 (0.84,0.91)	$1.9 \mathrm{E}-10$	1.6E-01	42.6\%	0.87 (0.83,0.91)	$1.8 \mathrm{E}-09$	1.5E-01	43.0\%
$2.5 \mathrm{E}-05$	0.88 (0.84,0.91)	1.9E-10	2.0E-01	35.4\%	0.88 (0.84,0.91)	2.2E-09	$1.8 \mathrm{E}-01$	37.9\%
4.6E-05	0.88 (0.84,0.91)	4.2E-10	1.8E-01	39.2\%	0.88 (0.84,0.92)	$4.8 \mathrm{E}-09$	1.6E-01	41.9\%
3.2E-05	0.88 (0.84,0.92)	1.4E-09	5.0E-01	0.0\%	0.87 (0.84, 0.91)	5.3E-09	$3.9 \mathrm{E}-01$	0.1\%
$3.6 \mathrm{E}-05$	0.88 (0.84,0.91)	6.6E-10	2.6E-01	25.7\%	0.88 (0.84,0.92)	5.5E-09	2.4E-01	29.3\%
1.2E-04	0.88 (0.84,0.91)	$4.1 \mathrm{E}-10$	1.1E-01	51.1\%	0.88 (0.84,0.92)	8.3E-09	3.6E-02	64.8\%
$2.4 \mathrm{E}-04$	0.88 (0.85,0.92)	5.9E-09	2.2E-01	32.9\%	0.88 (0.84,0.92)	$1.0 \mathrm{E}-08$	1.9E-01	36.8\%
7.0E-05	0.88 (0.85,0.92)	$3.4 \mathrm{E}-09$	4.1E-01	0.0\%	0.88 (0.84,0.92)	$1.2 \mathrm{E}-08$	3.3E-01	12.1\%
5.4E-05	0.88 (0.85,0.92)	3.7E-09	5.0E-01	0.0\%	0.88 (0.84,0.92)	1.4E-08	4.0E-01	0.0\%
5.0E-03	0.89 (0.86,0.93)	$1.4 \mathrm{E}-07$	2.1E-02	69.3\%	0.89 (0.85,0.93)	5.7E-07	1.4E-02	71.9\%
5.1E-03	0.90 (0.86,0.94)	$4.0 \mathrm{E}-07$	9.1E-02	53.6\%	0.89 (0.85,0.93)	7.0E-07	5.4E-02	60.7\%
$1.9 \mathrm{E}-03$	0.90 (0.87,0.94)	$2.8 \mathrm{E}-06$	4.0E-01	0.0\%	0.90 (0.86,0.94)	1.5E-06	5.8E-01	0.0\%
$7.8 \mathrm{E}-03$	0.90 (0.86,0.94)	9.9E-07	7.3E-02	56.8\%	0.90 (0.86,0.94)	2.5E-06	$3.8 \mathrm{E}-02$	64.5\%
$2.4 \mathrm{E}-02$	0.90 (0.86,0.94)	2.9E-06	2.6E-02	67.6\%	0.90 (0.86,0.94)	7.9E-06	1.3E-02	72.0\%
$5.5 \mathrm{E}-02$	0.92 (0.89,0.96)	$1.0 \mathrm{E}-04$	1.1E-01	49.6\%	0.92 (0.88,0.96)	$9.6 \mathrm{E}-05$	1.1E-01	50.4\%
8.2E-03	0.91 (0.86,0.96)	$2.4 \mathrm{E}-04$	8.0E-01	0.0\%	0.91 (0.86,0.96)	4.5E-04	7.7E-01	0.0\%
$1.6 \mathrm{E}-02$	0.92 (0.88,0.97)	5.2E-04	9.1E-01	0.0\%	0.93 (0.88,0.97)	$2.8 \mathrm{E}-03$	8.4E-01	0.0\%
5.2E-03	0.92 (0.88,0.96)	$6.1 \mathrm{E}-04$	7.9E-01	0.0\%	0.93 (0.88,0.97)	$3.2 \mathrm{E}-03$	6.3E-01	0.0\%
$1.5 \mathrm{E}-02$	0.88 (0.82,0.95)	6.2E-04	5.6E-01	0.0\%	0.90 (0.83,0.97)	6.6E-03	4.3E-01	0.0\%
7.1E-02	1.08 (1.03,1.12)	$7.6 \mathrm{E}-04$	4.7E-02	62.2\%	1.09 (1.04,1.14)	3.1E-04	7.1E-02	57.3\%
7.0E-03	0.92 (0.88,0.97)	8.0E-04	8.3E-01	0.0\%	0.93 (0.88,0.98)	3.7E-03	7.4E-01	0.0\%
$5.0 \mathrm{E}-03$	0.92 (0.87,0.97)	8.6E-04	6.6E-01	0.0\%	0.92 (0.88,0.97)	$3.6 \mathrm{E}-03$	5.1E-01	0.0\%
$4.8 \mathrm{E}-03$	0.92 (0.87,0.97)	8.9E-04	7.0E-01	0.0\%	0.92 (0.88,0.97)	$3.6 \mathrm{E}-03$	5.4E-01	0.0\%
$2.0 \mathrm{E}-02$	0.93 (0.89,0.97)	9.0E-04	9.0E-01	0.0\%	0.93 (0.89,0.98)	3.0E-03	9.1E-01	0.0\%
5.3E-03	0.93 (0.89,0.97)	$9.3 \mathrm{E}-04$	9.7E-01	0.0\%	0.93 (0.89,0.98)	2.7E-03	9.0E-01	0.0\%
5.6E-03	0.93 (0.89,0.97)	9.6E-04	9.8E-01	0.0\%	0.93 (0.89,0.98)	$2.8 \mathrm{E}-03$	9.4E-01	0.0\%
$5.6 \mathrm{E}-03$	0.93 (0.89,0.97)	9.6E-04	$9.7 \mathrm{E}-01$	0.0\%	0.93 (0.89,0.98)	$2.9 \mathrm{E}-03$	9.0E-01	0.0\%
$6.0 \mathrm{E}-03$	0.93 (0.89,0.97)	1.0E-03	9.9E-01	0.0\%	0.93 (0.89,0.98)	3.0E-03	$9.4 \mathrm{E}-01$	0.0\%
$6.4 \mathrm{E}-03$	0.93 (0.89,0.97)	$1.1 \mathrm{E}-03$	9.9E-01	0.0\%	0.93 (0.89,0.98)	$3.1 \mathrm{E}-03$	$9.4 \mathrm{E}-01$	0.0\%
$6.4 \mathrm{E}-03$	0.93 (0.89,0.97)	1.1E-03	$9.8 \mathrm{E}-01$	0.0\%	0.93 (0.89,0.98)	3.1E-03	9.4E-01	0.0\%
$1.0 \mathrm{E}-02$	0.88 (0.82,0.95)	$1.2 \mathrm{E}-03$	9.5E-01	0.0\%	0.89 (0.82,0.97)	5.4E-03	9.3E-01	0.0\%
$8.5 \mathrm{E}-03$	0.93 (0.88,0.97)	$1.3 \mathrm{E}-03$	7.9E-01	0.0\%	0.93 (0.89,0.98)	5.2E-03	6.3E-01	0.0\%
6.0E-02	0.93 (0.89,0.97)	1.3E-03	6.5E-01	0.0\%	0.93 (0.89,0.98)	$4.0 \mathrm{E}-03$	7.1E-01	0.0\%
$3.1 \mathrm{E}-03$	0.92 (0.87,0.97)	$1.3 \mathrm{E}-03$	6.6E-01	0.0\%	0.92 (0.87,0.97)	2.0E-03	4.8E-01	0.0\%
$1.0 \mathrm{E}-02$	0.93 (0.88,0.97)	$1.4 \mathrm{E}-03$	8.0E-01	0.0\%	0.93 (0.89,0.98)	$5.8 \mathrm{E}-03$	6.3E-01	0.0\%

$9.8 \mathrm{E}-03$
9.9E-03
$9.8 \mathrm{E}-03$
$1.0 \mathrm{E}-02$
$1.0 \mathrm{E}-02$
$1.0 \mathrm{E}-02$
$1.1 \mathrm{E}-02$
$1.1 \mathrm{E}-02$
5.9E-03
6.3E-03
8.2E-03
8.5E-03
6.9E-03
8.4E-03 6.9E-03
2.1E-02
2.3E-02
2.3E-02
2.4E-02
2.6E-02
2.6E-02
$1.1 \mathrm{E}-02$
3.3E-02
$1.3 \mathrm{E}-02$
5.2E-02
8.4E-02
4.4E-02
1.4E-02
$1.2 \mathrm{E}-02$
5.1E-02
$1.6 \mathrm{E}-02$
1.4E-02
5.1E-02
3.0E-02
3.0E-02
$1.8 \mathrm{E}-02$
4.0E-02
3.3E-02
2.1E-03
3.7E-02
$1.6 \mathrm{E}-02$
4.9E-02
5.1E-02
$1.1 \mathrm{E}-01$
6.2E-02
9.9E-02
1.0E-01
9.9E-02
9.0E-02
$1.1 \mathrm{E}-01$

0.93 (0.88,0.97)	1.5E-03	7.9E-01	0.0\%
0.93 (0.88,0.97)	1.5E-03	7.9E-01	0.0\%
0.93 (0.88,0.97)	$1.5 \mathrm{E}-03$	7.8E-01	0.0\%
0.93 (0.88,0.97)	$1.5 \mathrm{E}-03$	7.8E-01	0.0\%
0.93 (0.88,0.97)	$1.5 \mathrm{E}-03$	8.3	0.0\%
0.93 (0.88,0.97)	1.6E-03	7.8E-01	0\%
0.93 (0.88,0.97)	1.6E-03	8.2	0.0\%
0.93 (0.88,0.97)	$1.6 \mathrm{E}-03$	7.9E-01	0.0\%
1.14 (1.05,1.24)	$1.9 \mathrm{E}-03$	8.1E-01	0.0\%
1.14 (1.05,1.24)	$1.9 \mathrm{E}-03$	8.	0.0\%
1.14 (1.05,1.23)	$1.9 \mathrm{E}-03$	8.4E-01	0.0\%
1.14 (1.05,1.23)	$2.0 \mathrm{E}-03$	8.	0.0\%
0.92 (0.87,0.97)	2.1E-03	7.8E-01	0.0
1.14 (1.05,1.23)	2.1E-03	8.2E-01	0.0\%
0.92 (0.87,0.97)	2.1	7.	0.0\%
0.94 (0.90,0.98)	$2.4 \mathrm{E}-03$	9.5E-01	0.0\%
0.94 (0.90,0.98)	2.4	9.5	0.0\%
0.94 (0.90,0.98)	$2.4 \mathrm{E}-03$	9.5E-01	.0\%
0.94 (0.90,0.98)	$2.6 \mathrm{E}-03$	9.5E-01	0\%
0.94 (0.90,0.98)	$2.6 \mathrm{E}-03$	9.2E-01	0.0\%
0.94 (0.90,0.98)	$2.6 \mathrm{E}-03$	$9.4 \mathrm{E}-01$.0\%
1.13 (1.04,1.23)	$3.4 \mathrm{E}-03$	8.0	0.0\%
0.94 (0.90,0.98)	$3.4 \mathrm{E}-03$	9.3E-01	0.0\%
1.13 (1.04,1.23)	$3.5 \mathrm{E}-03$	8.5E-01	. $\%$
0.94 (0.90,0.98)	$3.6 \mathrm{E}-03$	9.2E-01	0.0\%
0.93 (0.89,0.98)	$3.7 \mathrm{E}-03$	5.1E-01	.0\%
0.94 (0.90,0.98)	$3.9 \mathrm{E}-03$	8.0	.0\%
1.13 (1.04,1.22)	3.9E-03	8.5E-01	0.0\%
1.13 (1.04,1.22)	$4.2 \mathrm{E}-03$	7.9E-01	.0\%
0.91 (0.86,0.97)	$4.4 \mathrm{E}-03$	6.5E-01	.0\%
1.13 (1.04,1.22)	$4.6 \mathrm{E}-03$	8.0E-01	0.0\%
0.93 (0.89,0.98)	5.0E-03	3.5E-01	8.1
0.94 (0.89,0.98)	7.6E-03	7.2E-01	.0\%
0.94 (0.90,0.98)	8.5E-03	7.6E	0.0\%
0.94 (0.90,0.98)	8.6E-03	6.8E-01	0.0\%
1.11 (1.03,1.21)	8.9E-03	7.4E-0	0.0\%
0.95 (0.91,0.99)	$9.5 \mathrm{E}-03$	8.1E-01	0.0\%
1.10 (1.02,1.19)	9.6E-03	5.1E-01	0.0\%
0.92 (0.87,0.98)	1.1E-02	3.4	.6
0.94 (0.90,0.99)	1.3E-02	4.2E-01	0.0\%
0.88 (0.79,0.97)	1.3E-02	8.6E-01	0.0\%
0.89 (0.81,0.98)	$1.4 \mathrm{E}-02$	9.2E-01	.0\%
0.89 (0.81,0.98)	$1.4 \mathrm{E}-02$	8.9E-01	0.0\%
1.06 (1.01,1.10)	$1.4 \mathrm{E}-02$	7.4E-01	0.0\%
0.89 (0.81,0.98)	1.5E-02	8.8E-01	0.0\%
0.95 (0.91,0.99)	$1.8 \mathrm{E}-02$	$6.8 \mathrm{E}-01$	0.0\%
0.95 (0.91,0.99)	$1.8 \mathrm{E}-02$	6.9E-01	0.0\%
0.95 (0.91,0.99)	$1.8 \mathrm{E}-02$	6.8E-01	0.0\%
0.95 (0.91,0.99)	$1.9 \mathrm{E}-02$	8.7E-02	54.2\%
0.93 (0.87,0.99)	$1.9 \mathrm{E}-02$	9.5E-01	0.0\%

0.93 (0.89,0.98)	5.8E-03	6.3E-01	0.0\%
0.93 (0.89,0.98)	5.8E-03	6.3E-01	0.0\%
0.93 (0.89,0.98)	5.8E-03	6.3E-01	0.0\%
0.93 (0.89,0.98)	5.8E-03	6.2E-01	0.0\%
0.93 (0.89,0.98)	5.9E-03	6.9E-01	0.0\%
0.93 (0.89,0.98)	5.9E-03	6.2E-01	0.0\%
0.93 (0.89,0.98)	6.0E-03	6.6E-01	0.0\%
0.93 (0.89,0.98)	6.1E-03	6.3E-01	0.0\%
1.12 (1.02,1.22)	1.2E-02	8.8E-01	0.0\%
1.12 (1.02,1.22)	$1.3 \mathrm{E}-02$	8.8E-01	0.0\%
1.12 (1.02,1.22)	1.2E-02	8.9E-01	0.0\%
1.12 (1.02,1.22)	1.3E-02	8.9E-01	0.0\%
0.92 (0.87,0.97)	3.1E-03	6.2E-01	0.0\%
1.12 (1.02,1.22)	1.3E-02	8.8E-01	0.0\%
0.92 (0.87,0.97)	3.1E-03	6.2E-01	0.0\%
0.94 (0.90,0.98)	6.0E-03	9.3E-01	0.0\%
0.94 (0.90,0.98)	6.2E-03	9.3E-01	0.0\%
0.94 (0.90,0.98)	6.2E-03	9.3E-01	0.0\%
0.94 (0.90,0.98)	6.6E-03	9.3E-01	0.0\%
0.94 (0.90,0.98)	6.0E-03	9.1E-01	0.0\%
0.94 (0.90,0.98)	6.9E-03	9.3E-01	0.0\%
1.11 (1.02,1.21)	2.1E-02	8.8E-01	0.0\%
0.94 (0.90,0.98)	8.7E-03	9.2E-01	0.0\%
1.11 (1.02,1.21)	1.9E-02	9.0E-01	0.0\%
0.94 (0.90,0.99)	1.3E-02	8.9E-01	0.0\%
0.94 (0.89,0.98)	9.3E-03	4.5E-01	0.0\%
0.94 (0.90,0.99)	1.2E-02	7.0E-01	0.0\%
1.11 (1.02,1.21)	2.1E-02	9.0E-01	0.0\%
1.10 (1.01,1.20)	3.2E-02	8.6E-01	0.0\%
0.92 (0.86,0.99)	1.7E-02	5.8E-01	0.0\%
1.11 (1.01,1.21)	2.3E-02	8.8E-01	0.0\%
0.94 (0.89,0.99)	$1.5 \mathrm{E}-02$	3.1E-01	16.5\%
0.95 (0.90,1.00)	4.7E-02	6.0E-01	0.0\%
0.95 (0.90,1.00)	3.2E-02	7.2E-01	0.0\%
0.95 (0.90,1.00)	3.2E-02	6.5E-01	0.0\%
1.09 (1.00,1.18)	6.2E-02	8.1E-01	0.0\%
0.95 (0.91,0.99)	2.5E-02	7.1E-01	0.0\%
1.09 (1.01,1.18)	2.5E-02	3.4E-01	10.5\%
0.94 (0.88,1.00)	5.5E-02	3.3E-01	12.2\%
0.95 (0.91,1.00)	4.7E-02	3.2E-01	14.1\%
0.87 (0.78,0.98)	$1.8 \mathrm{E}-02$	9.6E-01	0.0\%
0.88 (0.80,0.97)	1.4E-02	9.8E-01	0.0\%
0.88 (0.80,0.98)	1.4E-02	9.6E-01	0.0\%
1.05 (1.00,1.09)	5.4E-02	6.1E-01	0.0\%
0.88 (0.80,0.97)	1.4E-02	9.5E-01	0.0\%
0.96 (0.91,1.00)	5.7E-02	5.4E-01	0.0\%
0.96 (0.91,1.00)	5.9E-02	5.5E-01	0.0\%
0.96 (0.91,1.00)	6.4E-02	5.4E-01	0.0\%
0.95 (0.91,1.00)	3.8E-02	9.3E-02	53.3\%
0.92 (0.86,0.99)	2.5E-02	9.1E-01	0.0\%

6.2E-02	0.95 (0.91,0.99)	2.0E-02	9.6E-01	0.0\%	0.95 (0.91,1.00)	3.7E-02	8.9E-01	0.0\%
1.1E-01	1.09 (1.01,1.16)	2.0E-02	4.6E-01	0.0\%	1.09 (1.01,1.17)	2.7E-02	4.7E-01	0.0\%
1.3E-02	0.86 (0.76,0.98)	2.1E-02	5.0E-01	0.0\%	0.87 (0.76,0.99)	3.2E-02	5.9E-01	0.0\%
1.2E-01	0.95 (0.91,0.99)	2.2E-02	6.6E-01	0.0\%	0.96 (0.91,1.00)	6.5E-02	5.3E-01	0.0\%
$1.6 \mathrm{E}-02$	0.85 (0.74,0.98)	2.2E-02	2.7E-01	24.1\%	0.86 (0.74,1.00)	4.3E-02	3.5E-01	8.7\%
$2.5 \mathrm{E}-01$	1.08 (1.01,1.15)	2.4E-02	4.7E-01	0.0\%	1.08 (1.01,1.16)	$3.6 \mathrm{E}-02$	$4.4 \mathrm{E}-01$	0.0\%
1.2E-01	0.95 (0.91,0.99)	2.7E-02	6.9E-01	0.0\%	0.96 (0.92,1.00)	8.0E-02	5.7E-01	0.0\%
1.3E-01	0.95 (0.91,0.99)	2.7E-02	6.9E-01	0.0\%	0.96 (0.92,1.01)	8.2E-02	5.6E-01	0.0\%
1.3E-01	0.95 (0.91,0.99)	2.7E-02	6.9E-01	0.0\%	0.96 (0.92,1.01)	8.3E-02	5.6E-01	0.0\%
$1.3 \mathrm{E}-01$	0.95 (0.91,0.99)	2.9E-02	6.9E-01	0.0\%	0.96 (0.92,1.01)	8.5E-02	5.6E-01	0.0\%
2.2E-01	0.95 (0.91,1.00)	2.9E-02	7.8E-01	0.0\%	0.96 (0.92,1.01)	9.4E-02	8.1E-01	0.0\%
1.6E-01	0.94 (0.88,0.99)	3.0E-02	3.1E-01	15.8\%	0.94 (0.88,1.00)	3.9E-02	3.8E-01	2.4\%
1.3E-01	0.95 (0.91,1.00)	3.1E-02	6.9E-01	0.0\%	0.96 (0.92,1.01)	8.9E-02	5.6E-01	0.0\%
1.3E-01	0.95 (0.91,1.00)	3.1E-02	6.9E-01	0.0\%	0.96 (0.92,1.01)	8.9E-02	5.6E-01	0.0\%
$1.3 \mathrm{E}-01$	0.95 (0.91,1.00)	3.1E-02	6.9E-01	0.0\%	0.96 (0.92,1.01)	9.0E-02	5.6E-01	0.0\%
$2.8 \mathrm{E}-02$	0.95 (0.90,1.00)	3.3E-02	8.0E-01	0.0\%	0.96 (0.91,1.01)	$1.2 \mathrm{E}-01$	9.0E-01	0.0\%
$1.9 \mathrm{E}-01$	0.93 (0.88,1.00)	$3.8 \mathrm{E}-02$	9.1E-01	0.0\%	0.93 (0.87,1.00)	4.7E-02	8.6E-01	0.0\%
$2.1 \mathrm{E}-02$	0.93 (0.87,1.00)	$3.8 \mathrm{E}-02$	5.7E-01	0.0\%	0.93 (0.87,1.00)	$4.2 \mathrm{E}-02$	$4.4 \mathrm{E}-01$	0.0\%
7.0E-03	0.95 (0.91,1.00)	$4.2 \mathrm{E}-02$	3.6E-01	6.9\%	0.96 (0.91,1.00)	6.4E-02	4.7E-01	0.0\%
1.1E-01	0.82 (0.68,0.99)	$4.2 \mathrm{E}-02$	9.9E-01	0.0\%	0.84 (0.69,1.03)	9.7E-02	9.7E-01	0.0\%
1.6E-01	0.96 (0.92,1.00)	4.3E-02	1.5E-01	43.7\%	0.96 (0.92,1.00)	7.1E-02	1.7E-01	39.7\%
2.1E-01	0.95 (0.91,1.00)	4.4E-02	7.0E-01	0.0\%	0.95 (0.91,1.00)	7.3E-02	7.6E-01	0.0\%
5.1E-01	1.08 (1.00,1.17)	4.4E-02	1.2E-01	48.1\%	1.09 (1.01,1.19)	3.1E-02	1.5E-01	43.0\%
4.0E-01	1.06 (1.00,1.13)	4.5E-02	4.3E-01	0.0\%	1.08 (1.01,1.15)	1.9E-02	5.9E-01	0.0\%
5.2E-01	1.08 (1.00,1.17)	4.6E-02	1.2E-01	48.1\%	1.09 (1.01,1.19)	3.2E-02	1.5E-01	42.9\%
2.0E-01	0.96 (0.92,1.00)	4.6E-02	2.3E-01	29.8\%	0.96 (0.92,1.01)	1.1E-01	$2.1 \mathrm{E}-01$	33.8\%
$1.8 \mathrm{E}-02$	0.96 (0.92,1.00)	4.7E-02	1.3E-01	46.8\%	0.96 (0.92,1.01)	1.0E-01	$2.3 \mathrm{E}-01$	31.2\%
$1.9 \mathrm{E}-01$	0.96 (0.92,1.00)	$4.9 \mathrm{E}-02$	1.9E-01	36.8\%	0.96 (0.92,1.01)	$1.2 \mathrm{E}-01$	1.7E-01	40.5\%
8.2E-03	0.96 (0.91,1.00)	4.9E-02	3.5E-01	7.9\%	0.96 (0.91,1.00)	7.3E-02	4.6E-01	0.0\%
$2.5 \mathrm{E}-01$	1.05 (1.00,1.09)	$4.9 \mathrm{E}-02$	5.2E-01	0.0\%	1.03 (0.99,1.08)	1.8E-01	3.9E-01	1.1\%
$1.6 \mathrm{E}-02$	0.95 (0.90,1.00)	$4.9 \mathrm{E}-02$	$2.8 \mathrm{E}-01$	22.2\%	0.94 (0.89,1.00)	$3.6 \mathrm{E}-02$	$2.4 \mathrm{E}-01$	29.3\%
2.7E-02	0.94 (0.87,1.00)	$4.9 \mathrm{E}-02$	5.5E-01	0.0\%	0.94 (0.87,1.01)	7.5E-02	5.2E-01	0.0\%
1.2E-01	0.92 (0.85,1.00)	5.1E-02	5.4E-01	0.0\%	0.94 (0.86,1.02)	$1.6 \mathrm{E}-01$	5.0E-01	0.0\%
$1.9 \mathrm{E}-02$	0.96 (0.92,1.00)	5.1E-02	1.3E-01	46.5\%	0.96 (0.92,1.01)	$1.1 \mathrm{E}-01$	2.2E-01	31.3\%
9.1E-02	1.04 (1.00,1.08)	5.3E-02	4.7E-01	0.0\%	1.05 (1.00,1.10)	3.0E-02	5.9E-01	0.0\%
9.4E-03	0.96 (0.92,1.00)	5.5E-02	3.4E-01	10.3\%	0.96 (0.91,1.01)	8.5E-02	$4.4 \mathrm{E}-01$	0.0\%
4.7E-02	1.15 (1.00,1.33)	5.6E-02	4.0E-01	0.0\%	1.16 (0.99,1.35)	6.3E-02	$3.8 \mathrm{E}-01$	2.9\%
$1.0 \mathrm{E}-02$	0.96 (0.92,1.00)	5.7E-02	3.5E-01	8.3\%	0.96 (0.91,1.01)	8.6E-02	4.5E-01	0.0\%
$4.8 \mathrm{E}-01$	0.95 (0.90,1.00)	5.9E-02	$2.3 \mathrm{E}-01$	29.8\%	0.94 (0.89,1.00)	4.1E-02	$2.8 \mathrm{E}-01$	21.7\%
$2.4 \mathrm{E}-01$	0.96 (0.92,1.00)	5.9E-02	2.1E-01	34.2\%	0.96 (0.92,1.01)	$1.2 \mathrm{E}-01$	$1.8 \mathrm{E}-01$	38.9\%
2.1E-01	0.96 (0.92,1.00)	6.0E-02	2.8E-01	21.6\%	0.95 (0.91,1.00)	3.0E-02	$2.8 \mathrm{E}-01$	22.5\%
1.1E-02	0.96 (0.92,1.00)	6.0E-02	3.5E-01	8.6\%	0.96 (0.91,1.01)	9.0E-02	$4.4 \mathrm{E}-01$	0.0\%
1.1E-02	0.96 (0.92,1.00)	6.1E-02	3.6E-01	6.5\%	0.96 (0.91,1.01)	9.1E-02	4.5E-01	0.0\%
4.1E-03	0.90 (0.80,1.01)	6.1E-02	7.2E-02	57.1\%	0.91 (0.80,1.03)	1.3E-01	1.2E-01	47.9\%
1.2E-02	0.96 (0.92,1.00)	6.2E-02	3.6E-01	5.6\%	0.96 (0.91,1.01)	9.4E-02	4.6E-01	0.0\%
1.2E-02	0.96 (0.92,1.00)	6.3E-02	$3.8 \mathrm{E}-01$	3.4\%	0.96 (0.92,1.01)	$1.0 \mathrm{E}-01$	$4.8 \mathrm{E}-01$	0.0\%
$9.8 \mathrm{E}-03$	0.96 (0.92,1.00)	6.3E-02	3.2E-01	15.0\%	0.96 (0.92,1.01)	9.3E-02	4.1E-01	0.0\%
6.2E-01	1.07 (1.00,1.16)	6.3E-02	1.0E-01	51.2\%	1.09 (1.00,1.18)	$4.2 \mathrm{E}-02$	$1.4 \mathrm{E}-01$	46.0\%
6.2E-01	0.96 (0.91,1.00)	6.4E-02	2.7E-01	23.5\%	0.97 (0.92,1.02)	$1.9 \mathrm{E}-01$	$2.9 \mathrm{E}-01$	19.9\%
1.0E-01	1.10 (0.99,1.22)	6.5E-02	6.2E-01	0.0\%	1.11 (1.00,1.24)	5.3E-02	7.3E-01	0.0\%

3.4E-02	0.96 (0.92,1.00)	6.5E-02	1.4E-01	45.7\%	0.97 (0.92,1.01)	1.3E-01	2.3E-01	30.7\%
1.2E-01	1.10 (0.99,1.21)	6.6E-02	4.9E-01	0.0\%	1.10 (0.99,1.23)	6.9E-02	$6.4 \mathrm{E}-01$	0.0\%
1.2E-02	0.96 (0.92,1.00)	6.6E-02	3.8E-01	3.3\%	0.96 (0.91,1.01)	$9.4 \mathrm{E}-02$	5.2E-01	0.0\%
9.0E-02	1.04 (1.00,1.08)	$6.9 \mathrm{E}-02$	5.5E-01	0.0\%	1.05 (1.00,1.09)	3.9E-02	5.8E-01	0.0\%
9.6E-02	1.09 (0.99,1.20)	$6.9 \mathrm{E}-02$	5.6E-01	0.0\%	1.10 (1.00,1.22)	6.2E-02	6.5E-01	0.0\%
1.1E-01	1.10 (0.99,1.22)	7.0E-02	6.2E-01	0.0\%	1.11 (1.00,1.24)	5.8E-02	7.3E-01	0.0\%
8.2E-02	1.04 (1.00,1.08)	7.0E-02	5.9E-01	0.0\%	1.05 (1.00,1.09)	4.3E-02	6.0E-01	0.0\%
1.2E-02	0.96 (0.92,1.00)	7.4E-02	3.1E-01	15.9\%	0.96 (0.92,1.01)	1.1E-01	4.1E-01	0.0\%
9.6E-02	0.93 (0.85,1.01)	7.4E-02	4.4E-01	0.0\%	0.94 (0.86,1.03)	2.1E-01	5.1E-01	0.0\%
$1.6 \mathrm{E}-02$	0.96 (0.92,1.00)	7.4E-02	4.3E-01	0.0\%	0.96 (0.92,1.01)	1.1E-01	5.6E-01	0.0\%
3.0E-01	0.96 (0.92,1.00)	7.4E-02	2.4E-01	28.2\%	0.97 (0.92,1.02)	1.9E-01	1.9E-01	37.4\%
4.2E-01	1.07 (0.99,1.15)	7.5E-02	3.7E-01	3.8\%	1.07 (0.99,1.16)	7.7E-02	3.7E-01	5.5\%
1.3E-01	0.93 (0.86,1.01)	7.5E-02	5.6E-01	0.0\%	0.95 (0.87,1.03)	$2.3 \mathrm{E}-01$	5.7E-01	0.0\%
3.1E-01	0.96 (0.92,1.00)	7.5E-02	2.2E-01	32.0\%	0.97 (0.92,1.02)	$1.9 \mathrm{E}-01$	1.7E-01	40.4\%
3.1E-01	0.96 (0.92,1.00)	7.5E-02	2.2E-01	31.9\%	0.97 (0.92,1.02)	$1.9 \mathrm{E}-01$	1.7E-01	40.3\%
1.0E-01	0.93 (0.86,1.01)	7.5E-02	5.1E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	5.5E-01	0.0\%
1.2E-01	0.93 (0.86,1.01)	7.6E-02	5.4E-01	0.0\%	0.95 (0.87,1.03)	2.3E-01	5.6E-01	0.0\%
1.0E-01	0.93 (0.86,1.01)	7.7E-02	5.1E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	5.6E-01	0.0\%
$1.0 \mathrm{E}-01$	0.93 (0.86,1.01)	7.7E-02	5.0E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	5.5E-01	0.0\%
$1.3 \mathrm{E}-02$	0.96 (0.92,1.00)	7.7E-02	3.4E-01	11.4\%	0.96 (0.92,1.01)	1.1E-01	4.6E-01	0.0\%
$1.0 \mathrm{E}-01$	0.93 (0.86,1.01)	7.7E-02	5.0E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	5.5E-01	0.0\%
$1.0 \mathrm{E}-01$	0.93 (0.86,1.01)	7.8E-02	5.0E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	5.5E-01	0.0\%
$1.0 \mathrm{E}-01$	0.93 (0.86,1.01)	7.8E-02	5.1E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	5.5E-01	0.0\%
$1.0 \mathrm{E}-01$	0.93 (0.86,1.01)	$7.8 \mathrm{E}-02$	5.1E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	5.6E-01	0.0\%
1.4E-01	1.09 (0.99,1.21)	7.8E-02	4.9E-01	0.0\%	1.10 (0.99,1.22)	7.9E-02	6.4E-01	0.0\%
$1.1 \mathrm{E}-01$	0.93 (0.86,1.01)	7.8E-02	5.0E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	$5.4 \mathrm{E}-01$	0.0\%
$1.0 \mathrm{E}-01$	0.93 (0.86,1.01)	7.8E-02	5.0E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	5.5E-01	0.0\%
$1.0 \mathrm{E}-02$	0.96 (0.92,1.00)	7.9E-02	2.5E-01	27.1\%	0.96 (0.91,1.01)	1.1E-01	3.1E-01	15.7\%
8.2E-03	0.96 (0.92,1.00)	8.0E-02	6.5E-02	58.5\%	0.96 (0.91,1.01)	9.0E-02	7.0E-02	57.5\%
1.3E-01	0.93 (0.86,1.01)	8.0E-02	5.5E-01	0.0\%	0.95 (0.87,1.03)	2.4E-01	5.7E-01	0.0\%
1.1E-01	0.93 (0.86,1.01)	8.0E-02	5.2E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	5.6E-01	0.0\%
1.5E-01	1.05 (0.99,1.11)	8.0E-02	9.7E-01	0.0\%	1.05 (0.99,1.12)	9.7E-02	9.3E-01	0.0\%
1.1E-01	0.93 (0.86,1.01)	8.0E-02	5.0E-01	0.0\%	0.95 (0.87,1.03)	2.2E-01	5.4E-01	0.0\%
1.5E-01	1.05 (0.99,1.11)	8.2E-02	9.8E-01	0.0\%	1.05 (0.99,1.12)	9.8E-02	9.5E-01	0.0\%
1.2E-01	0.93 (0.86,1.01)	8.2E-02	5.6E-01	0.0\%	0.95 (0.87,1.03)	2.3E-01	5.9E-01	0.0\%
$1.3 \mathrm{E}-01$	0.93 (0.86,1.01)	8.2E-02	5.7E-01	0.0\%	0.95 (0.87,1.03)	$2.3 \mathrm{E}-01$	5.9E-01	0.0\%
1.2E-01	0.93 (0.86,1.01)	8.2E-02	5.6E-01	0.0\%	0.95 (0.87,1.03)	2.3E-01	5.9E-01	0.0\%
1.2E-01	0.93 (0.86,1.01)	8.3E-02	5.6E-01	0.0\%	0.95 (0.87,1.03)	2.3E-01	5.9E-01	0.0\%
$1.3 \mathrm{E}-01$	0.93 (0.86,1.01)	8.3E-02	5.4E-01	0.0\%	0.95 (0.87,1.03)	2.3E-01	5.7E-01	0.0\%
3.8E-01	0.96 (0.92,1.01)	8.4E-02	2.4E-01	29.4\%	0.96 (0.91,1.00)	$4.5 \mathrm{E}-02$	$2.7 \mathrm{E}-01$	22.9\%
1.2E-01	0.93 (0.86,1.01)	8.4E-02	5.5E-01	0.0\%	0.95 (0.87,1.03)	$2.3 \mathrm{E}-01$	5.8E-01	0.0\%
1.2E-01	0.93 (0.86,1.01)	8.4E-02	5.5E-01	0.0\%	0.95 (0.87,1.03)	2.3E-01	5.8E-01	0.0\%
4.4E-01	1.04 (1.00,1.08)	8.5E-02	3.2E-01	13.6\%	1.04 (1.00,1.09)	$6.4 \mathrm{E}-02$	4.1E-01	0.0\%
$3.8 \mathrm{E}-01$	1.04 (0.99,1.09)	8.5E-02	4.7E-01	0.0\%	1.03 (0.98,1.08)	$2.5 \mathrm{E}-01$	3.3E-01	12.0\%
9.0E-03	0.96 (0.92,1.01)	8.5E-02	6.3E-02	58.8\%	0.96 (0.91,1.01)	9.5E-02	6.8E-02	57.9\%
6.5E-02	1.04 (0.99,1.09)	8.7E-02	4.2E-01	0.0\%	1.03 (0.98,1.08)	2.2E-01	5.0E-01	0.0\%
1.1E-01	0.93 (0.86,1.01)	8.8E-02	6.9E-01	0.0\%	0.95 (0.87,1.04)	2.6E-01	7.3E-01	0.0\%
2.5E-02	1.05 (0.99,1.10)	9.1E-02	5.0E-01	0.0\%	1.03 (0.97,1.09)	3.2E-01	7.1E-01	0.0\%
$1.7 \mathrm{E}-01$	0.91 (0.81,1.02)	9.2E-02	9.4E-01	0.0\%	0.93 (0.82,1.05)	$2.3 \mathrm{E}-01$	9.6E-01	0.0\%
$6.8 \mathrm{E}-02$	1.14 (0.98,1.32)	$9.3 \mathrm{E}-02$	3.5E-01	9.3\%	1.14 (0.97,1.34)	1.1E-01	3.3E-01	12.3\%

1.3E-01	1.09 (0.99,1.21)	9.5E-02	5.9E-01	0.0\%	1.10 (0.99,1.23)	8.1E-02	7.0E-01	0.0\%
1.3E-01	0.93 (0.86,1.01)	9.5E-02	4.5E-01	0.0\%	0.94 (0.86,1.03)	$2.0 \mathrm{E}-01$	5.1E-01	0.0\%
$1.8 \mathrm{E}-01$	0.91 (0.81,1.02)	9.5E-02	9.5E-01	0.0\%	0.93 (0.82,1.05)	$2.4 \mathrm{E}-01$	9.6E-01	0.0\%
9.9E-02	1.05 (0.99,1.11)	$9.7 \mathrm{E}-02$	7.7E-01	0.0\%	1.04 (0.98,1.11)	$1.7 \mathrm{E}-01$	6.6E-01	0.0\%
9.9E-02	1.05 (0.99,1.11)	9.7E-02	7.7E-01	0.0\%	1.04 (0.98,1.11)	1.7E-01	6.6E-01	0.0\%
1.9E-01	0.91 (0.81,1.02)	9.7E-02	9.5E-01	0.0\%	0.93 (0.82,1.05)	$2.4 \mathrm{E}-01$	9.6E-01	0.0\%
1.5E-01	1.05 (0.99,1.11)	9.8E-02	$1.0 \mathrm{E}+00$	0.0\%	1.05 (0.99,1.12)	1.0E-01	9.9E-01	0.0\%
1.2E-01	1.04 (0.99,1.09)	$9.8 \mathrm{E}-02$	9.0E-01	0.0\%	1.03 (0.98,1.08)	$2.9 \mathrm{E}-01$	9.2E-01	0.0\%
1.2E-02	0.96 (0.92,1.01)	1.0E-01	7.3E-02	57.0\%	0.96 (0.91,1.01)	1.1E-01	8.3E-02	55.0\%
1.2E-01	0.92 (0.83,1.02)	1.0E-01	6.6E-01	0.0\%	0.92 (0.83,1.03)	1.6E-01	6.6E-01	0.0\%
$2.3 \mathrm{E}-01$	0.96 (0.92,1.01)	1.0E-01	4.3E-01	0.0\%	0.98 (0.93,1.03)	$3.5 \mathrm{E}-01$	3.6E-01	6.6\%
2.9E-01	0.96 (0.92,1.01)	1.0E-01	1.1E-01	50.6\%	0.97 (0.93,1.02)	$2.6 \mathrm{E}-01$	8.8E-02	54.2\%
1.0E-01	1.05 (0.99,1.11)	1.0E-01	7.7E-01	0.0\%	1.04 (0.98,1.11)	1.7E-01	6.6E-01	0.0\%
1.2E-01	0.92 (0.83,1.02)	1.0E-01	6.6E-01	0.0\%	0.92 (0.83,1.03)	$1.7 \mathrm{E}-01$	6.6E-01	0.0\%
$6.4 \mathrm{E}-01$	1.03 (0.99,1.08)	1.1E-01	2.0E-01	34.8\%	1.04 (0.99,1.08)	1.1E-01	$2.5 \mathrm{E}-01$	26.6\%
4.6E-01	1.03 (0.99,1.08)	1.1E-01	2.7E-01	22.8\%	1.04 (1.00,1.09)	6.0E-02	3.3E-01	12.2\%
4.5E-01	1.04 (0.99,1.08)	1.1E-01	$2.8 \mathrm{E}-01$	22.6\%	1.04 (1.00,1.09)	7.6E-02	$2.4 \mathrm{E}-01$	28.2\%
4.9E-02	0.96 (0.92,1.01)	1.1E-01	5.2E-01	0.0\%	0.96 (0.91,1.01)	1.1E-01	4.2E-01	0.0\%
8.9E-02	0.95 (0.90,1.01)	1.1E-01	$7.4 \mathrm{E}-01$	0.0\%	0.96 (0.90,1.02)	2.1E-01	7.9E-01	0.0\%
4.2E-01	1.03 (0.99,1.08)	1.1E-01	$2.7 \mathrm{E}-01$	23.5\%	1.04 (1.00,1.09)	$6.4 \mathrm{E}-02$	$3.2 \mathrm{E}-01$	15.3\%
$1.9 \mathrm{E}-01$	1.05 (0.99,1.11)	1.1E-01	$1.0 \mathrm{E}+00$	0.0\%	1.05 (0.99,1.11)	1.1E-01	$1.0 \mathrm{E}+00$	0.0\%
1.0E-01	1.05 (0.99,1.11)	1.1E-01	7.9E-01	0.0\%	1.04 (0.98,1.11)	$1.8 \mathrm{E}-01$	6.7E-01	0.0\%
7.5E-02	0.95 (0.90,1.01)	1.1E-01	7.1E-01	0.0\%	0.96 (0.90,1.02)	1.9E-01	5.7E-01	0.0\%
5.5E-01	1.05 (0.99,1.12)	1.1E-01	5.7E-01	0.0\%	1.06 (0.99,1.13)	8.2E-02	6.6E-01	0.0\%
5.7E-01	1.03 (0.99,1.08)	1.1E-01	2.6E-01	25.4\%	1.04 (1.00,1.09)	8.0E-02	2.2E-01	31.7\%
$4.2 \mathrm{E}-01$	1.04 (0.99,1.09)	1.1E-01	8.3E-01	0.0\%	1.04 (0.99,1.09)	$1.5 \mathrm{E}-01$	$8.4 \mathrm{E}-01$	0.0\%
1.7E-01	0.93 (0.86,1.02)	1.2E-01	5.2E-01	0.0\%	0.95 (0.87,1.04)	$2.6 \mathrm{E}-01$	5.5E-01	0.0\%
4.1E-01	1.04 (0.99,1.09)	$1.2 \mathrm{E}-01$	8.3E-01	0.0\%	1.04 (0.99,1.09)	1.4E-01	8.4E-01	0.0\%
1.7E-01	0.93 (0.86,1.02)	$1.2 \mathrm{E}-01$	5.4E-01	0.0\%	0.95 (0.87,1.04)	$2.6 \mathrm{E}-01$	5.7E-01	0.0\%
1.7E-01	0.94 (0.86,1.02)	$1.2 \mathrm{E}-01$	5.1E-01	0.0\%	0.95 (0.87,1.04)	$2.6 \mathrm{E}-01$	5.5E-01	0.0\%
$1.7 \mathrm{E}-01$	0.93 (0.86,1.02)	1.2E-01	5.3E-01	0.0\%	0.95 (0.87,1.04)	$2.6 \mathrm{E}-01$	5.6E-01	0.0\%
$6.8 \mathrm{E}-02$	0.95 (0.90,1.01)	1.2E-01	4.0E-01	0.0\%	0.96 (0.90,1.02)	2.2E-01	$4.4 \mathrm{E}-01$	0.0\%
$4.9 \mathrm{E}-01$	1.03 (0.99,1.08)	1.2E-01	2.6E-01	25.2\%	1.04 (1.00,1.09)	6.8E-02	3.1E-01	15.4\%
1.8E-01	0.94 (0.86,1.02)	1.2E-01	5.1E-01	0.0\%	0.95 (0.87,1.04)	$2.6 \mathrm{E}-01$	5.4E-01	0.0\%
1.3E-01	0.96 (0.90,1.01)	1.2E-01	8.8E-01	0.0\%	0.96 (0.90,1.02)	1.6E-01	8.2E-01	0.0\%
$1.7 \mathrm{E}-01$	0.94 (0.87,1.02)	$1.2 \mathrm{E}-01$	5.6E-01	0.0\%	0.96 (0.88,1.04)	$3.3 \mathrm{E}-01$	5.8E-01	0.0\%
1.6E-01	0.94 (0.87,1.02)	1.3E-01	5.7E-01	0.0\%	0.96 (0.88,1.05)	$3.4 \mathrm{E}-01$	6.1E-01	0.0\%
$3.5 \mathrm{E}-01$	1.05 (0.98,1.13)	1.3E-01	$2.5 \mathrm{E}-01$	27.1\%	1.06 (0.98,1.13)	$1.3 \mathrm{E}-01$	$1.4 \mathrm{E}-01$	45.4\%
$1.8 \mathrm{E}-01$	1.04 (0.99,1.10)	1.3E-01	$1.0 \mathrm{E}+00$	0.0\%	1.05 (0.99,1.11)	$1.4 \mathrm{E}-01$	$1.0 \mathrm{E}+00$	0.0\%
4.7E-01	1.03 (0.99,1.08)	1.3E-01	7.8E-01	0.0\%	1.03 (0.99,1.08)	$1.8 \mathrm{E}-01$	9.0E-01	0.0\%
1.1E-01	0.93 (0.85,1.02)	$1.3 \mathrm{E}-01$	8.5E-01	0.0\%	0.95 (0.86,1.06)	3.7E-01	9.9E-01	0.0\%
8.9E-02	0.96 (0.91,1.01)	1.4E-01	6.2E-01	0.0\%	0.96 (0.91,1.02)	$2.3 \mathrm{E}-01$	6.6E-01	0.0\%
$9.8 \mathrm{E}-02$	0.96 (0.90,1.01)	1.4E-01	7.4E-01	0.0\%	0.96 (0.90,1.02)	2.1E-01	6.0E-01	0.0\%
3.4E-01	1.04 (0.99,1.10)	1.4E-01	8.5E-01	0.0\%	1.05 (0.99,1.11)	8.2E-02	8.1E-01	0.0\%
7.8E-02	0.96 (0.91,1.01)	1.4E-01	3.7E-01	5.0\%	0.96 (0.91,1.02)	2.1E-01	4.0E-01	0.0\%
$4.8 \mathrm{E}-01$	1.03 (0.99,1.08)	1.4E-01	7.7E-01	0.0\%	1.03 (0.99,1.08)	$1.9 \mathrm{E}-01$	8.9E-01	0.0\%
3.0E-01	0.96 (0.92,1.01)	1.4E-01	8.6E-01	0.0\%	0.97 (0.92,1.02)	1.8E-01	8.4E-01	0.0\%
$4.2 \mathrm{E}-01$	1.05 (0.99,1.12)	1.4E-01	1.8E-01	38.2\%	1.05 (0.98,1.12)	1.5E-01	2.1E-01	33.2\%
4.9E-01	1.03 (0.99,1.08)	1.4E-01	7.6E-01	0.0\%	1.03 (0.99,1.08)	$1.8 \mathrm{E}-01$	8.9E-01	0.0\%
$1.9 \mathrm{E}-01$	1.03 (0.99,1.07)	1.4E-01	5.7E-01	0.0\%	1.03 (0.99,1.07)	$2.0 \mathrm{E}-01$	$5.4 \mathrm{E}-01$	0.0\%

$1.8 \mathrm{E}-01$	1.04 (0.99,1.10)	1.4E-01	$1.0 \mathrm{E}+00$	0.0\%	1.04 (0.98,1.11)	1.6E-01	$1.0 \mathrm{E}+00$	0.0\%
1.9E-01	0.96 (0.91,1.01)	1.4E-01	1.0E+00	0.0\%	0.96 (0.90,1.02)	1.5E-01	$1.0 \mathrm{E}+00$	0.0\%
3.0E-01	0.96 (0.91,1.01)	$1.4 \mathrm{E}-01$	$9.8 \mathrm{E}-01$	0.0\%	0.97 (0.92,1.03)	2.9E-01	8.8E-01	0.0\%
$4.7 \mathrm{E}-02$	0.93 (0.85,1.02)	1.4E-01	3.7E-01	4.9\%	0.95 (0.85,1.05)	2.7E-01	6.4E-01	0.0\%
1.9E-01	1.04 (0.99,1.10)	1.4E-01	$1.0 \mathrm{E}+00$	0.0\%	1.04 (0.98,1.11)	1.5E-01	$1.0 \mathrm{E}+00$	0.0\%
1.1E-01	1.04 (0.99,1.10)	1.5E-01	8.9E-01	0.0\%	1.03 (0.98,1.09)	2.7E-01	9.5E-01	0.0\%
9.3E-02	1.04 (0.99,1.10)	1.5E-01	5.7E-01	0.0\%	1.03 (0.97,1.09)	3.1E-01	6.7E-01	0.0\%
5.2E-01	0.97 (0.93,1.01)	1.5E-01	7.4E-01	0.0\%	0.97 (0.93,1.02)	2.0E-01	8.7E-01	0.0\%
1.9E-01	1.04 (0.99,1.10)	1.5E-01	1.0E+00	0.0\%	1.04 (0.98,1.11)	1.7E-01	$1.0 \mathrm{E}+00$	0.0\%
1.0E-01	0.96 (0.91,1.01)	1.5E-01	6.5E-01	0.0\%	0.97 (0.91,1.02)	2.4E-01	6.9E-01	0.0\%
$1.7 \mathrm{E}-01$	0.93 (0.85,1.02)	1.5E-01	7.9E-01	0.0\%	0.96 (0.87,1.05)	3.6E-01	9.3E-01	0.0\%
9.4E-01	1.06 (0.98,1.15)	1.5E-01	$1.7 \mathrm{E}-01$	40.5\%	1.05 (0.97,1.15)	2.5E-01	$1.2 \mathrm{E}-01$	48.1\%
2.4E-01	0.97 (0.93,1.01)	1.5E-01	4.4E-01	0.0\%	0.97 (0.93,1.01)	1.7E-01	4.3E-01	0.0\%
5.6E-01	1.03 (0.99,1.08)	1.5E-01	7.2E-01	0.0\%	1.03 (0.98,1.08)	2.0E-01	8.6E-01	0.0\%
$1.5 \mathrm{E}-01$	0.96 (0.91,1.01)	1.5E-01	7.8E-01	0.0\%	0.96 (0.91,1.02)	1.7E-01	7.7E-01	0.0\%
8.5E-02	0.97 (0.92,1.01)	1.5E-01	$5.9 \mathrm{E}-01$	0.0\%	0.97 (0.92,1.02)	2.0E-01	5.3E-01	0.0\%
1.2E-01	1.04 (0.99,1.09)	1.5E-01	9.1E-01	0.0\%	1.03 (0.98,1.09)	2.7E-01	9.6E-01	0.0\%
1.1E-01	0.96 (0.91,1.02)	1.5E-01	6.5E-01	0.0\%	0.97 (0.91,1.02)	2.5E-01	6.9E-01	0.0\%
5.7E-01	0.97 (0.93,1.01)	1.5E-01	7.2E-01	0.0\%	0.97 (0.93,1.01)	1.9E-01	8.7E-01	0.0\%
1.5E-02	0.94 (0.85,1.03)	$1.6 \mathrm{E}-01$	$6.7 \mathrm{E}-02$	58.1\%	0.94 (0.86,1.04)	$2.6 \mathrm{E}-01$	$1.0 \mathrm{E}-01$	51.9\%
$1.7 \mathrm{E}-01$	1.03 (0.99,1.07)	1.6E-01	6.0E-01	0.0\%	1.03 (0.98,1.07)	2.2E-01	6.0E-01	0.0\%
5.6E-01	1.03 (0.99,1.08)	1.6E-01	7.0E-01	0.0\%	1.03 (0.98,1.08)	2.1E-01	8.4E-01	0.0\%
$4.5 \mathrm{E}-01$	1.05 (0.98,1.11)	$1.6 \mathrm{E}-01$	$1.4 \mathrm{E}-01$	45.7\%	1.05 (0.98,1.12)	$1.6 \mathrm{E}-01$	1.6E-01	42.2\%
5.3E-01	1.03 (0.99,1.08)	1.6E-01	7.5E-01	0.0\%	1.03 (0.98,1.08)	2.1E-01	8.7E-01	0.0\%
4.6E-01	1.05 (0.98,1.11)	1.6E-01	$1.2 \mathrm{E}-01$	47.7\%	1.05 (0.98,1.12)	1.6E-01	1.5E-01	43.7\%
7.7E-02	0.97 (0.92,1.01)	$1.6 \mathrm{E}-01$	5.5E-01	0.0\%	0.97 (0.92,1.02)	2.1E-01	5.1E-01	0.0\%
1.2E-01	0.96 (0.91,1.02)	$1.6 \mathrm{E}-01$	7.4E-01	0.0\%	0.96 (0.90,1.02)	2.3E-01	6.0E-01	0.0\%
$1.6 \mathrm{E}-01$	0.94 (0.87,1.02)	$1.6 \mathrm{E}-01$	5.3E-01	0.0\%	0.97 (0.89,1.05)	4.4E-01	5.8E-01	0.0\%
3.5E-01	1.05 (0.98,1.12)	$1.6 \mathrm{E}-01$	3.2E-01	15.0\%	1.05 (0.98,1.13)	1.7E-01	$1.8 \mathrm{E}-01$	39.4\%
$4.0 \mathrm{E}-01$	1.05 (0.98,1.12)	1.6E-01	$2.7 \mathrm{E}-01$	24.1\%	1.05 (0.98,1.13)	1.7E-01	$1.5 \mathrm{E}-01$	44.0\%
$1.0 \mathrm{E}-01$	0.96 (0.91,1.02)	1.7E-01	$5.8 \mathrm{E}-01$	0.0\%	0.97 (0.91,1.03)	2.7E-01	6.2E-01	0.0\%
1.2E-01	0.96 (0.91,1.02)	1.7E-01	7.5E-01	0.0\%	0.96 (0.90,1.02)	2.3E-01	6.0E-01	0.0\%
$1.6 \mathrm{E}-02$	0.94 (0.85,1.03)	1.7E-01	7.0E-02	57.6\%	0.94 (0.85,1.05)	2.7E-01	1.0E-01	51.5\%
1.9E-01	0.94 (0.85,1.03)	1.7E-01	8.0E-01	0.0\%	0.96 (0.87,1.06)	4.0E-01	9.4E-01	0.0\%
$5.0 \mathrm{E}-01$	0.97 (0.93,1.01)	1.7E-01	8.4E-01	0.0\%	0.97 (0.93,1.02)	2.0E-01	8.3E-01	0.0\%
2.2E-02	1.05 (0.98,1.12)	1.7E-01	$1.3 \mathrm{E}-01$	47.6\%	1.05 (0.98,1.12)	2.1E-01	2.1E-01	34.4\%
1.8E-01	0.93 (0.84,1.03)	1.7E-01	6.6E-01	0.0\%	0.94 (0.84,1.05)	2.5E-01	6.4E-01	0.0\%
3.7E-01	0.96 (0.92,1.02)	1.7E-01	7.2E-01	0.0\%	0.96 (0.91,1.02)	1.9E-01	6.6E-01	0.0\%
1.3E-01	0.96 (0.91,1.02)	1.7E-01	7.5E-01	0.0\%	0.96 (0.90,1.02)	$2.3 \mathrm{E}-01$	6.0E-01	0.0\%
6.6E-02	1.03 (0.99,1.08)	1.7E-01	5.5E-01	0.0\%	1.03 (0.98,1.07)	2.8E-01	6.2E-01	0.0\%
2.2E-01	0.95 (0.87,1.02)	1.7E-01	6.0E-01	0.0\%	0.97 (0.89,1.05)	$4.2 \mathrm{E}-01$	5.9E-01	0.0\%
1.8E-01	0.93 (0.84,1.03)	1.7E-01	$6.5 \mathrm{E}-01$	0.0\%	0.94 (0.84,1.05)	2.6E-01	6.3E-01	0.0\%
$1.6 \mathrm{E}-01$	1.05 (0.98,1.12)	1.8E-01	5.5E-01	0.0\%	1.04 (0.97,1.12)	$2.3 \mathrm{E}-01$	5.3E-01	0.0\%
6.2E-02	0.97 (0.92,1.02)	$1.8 \mathrm{E}-01$	$2.6 \mathrm{E}-01$	26.1\%	0.96 (0.91,1.02)	$1.9 \mathrm{E}-01$	2.2E-01	32.5\%
8.9E-02	0.97 (0.92,1.02)	1.8E-01	5.7E-01	0.0\%	0.97 (0.92,1.02)	2.3E-01	5.1E-01	0.0\%
5.5E-02	0.97 (0.92,1.02)	$1.8 \mathrm{E}-01$	2.0E-01	35.6\%	0.96 (0.91,1.02)	$1.8 \mathrm{E}-01$	1.7E-01	40.7\%
6.0E-01	1.03 (0.99,1.07)	$1.8 \mathrm{E}-01$	7.1E-01	0.0\%	1.03 (0.98,1.08)	2.1E-01	8.7E-01	0.0\%
1.7E-02	0.94 (0.85,1.03)	1.9E-01	6.9E-02	57.8\%	0.94 (0.85,1.04)	2.7E-01	9.6E-02	52.7\%
1.4E-01	1.04 (0.98,1.10)	1.9E-01	6.9E-01	0.0\%	1.03 (0.97,1.09)	3.4E-01	7.6E-01	0.0\%
1.7E-01	0.97 (0.92,1.02)	1.9E-01	9.6E-01	0.0\%	0.96 (0.91,1.02)	1.8E-01	9.3E-01	0.0\%

2.4E-01	1.03 (0.98,1.09)	$1.9 \mathrm{E}-01$	9.6E-01	0.0\%	1.03 (0.98,1.08)	3.0E-01	9.6E-01	0.0\%
3.0E-02	0.92 (0.82,1.04)	$1.9 \mathrm{E}-01$	1.6E-01	41.7\%	0.93 (0.82,1.06)	$2.9 \mathrm{E}-01$	2.7E-01	24.2\%
5.1E-01	0.97 (0.93,1.01)	$1.9 \mathrm{E}-01$	8.6E-01	0.0\%	0.97 (0.93,1.02)	2.6E-01	8.3E-01	0.0\%
9.7E-01	1.06 (0.97,1.16)	$1.9 \mathrm{E}-01$	3.0E-01	17.7\%	1.05 (0.96,1.16)	$3.0 \mathrm{E}-01$	2.5E-01	27.0\%
1.4E-01	1.04 (0.98,1.10)	$1.9 \mathrm{E}-01$	6.9E-01	0.0\%	1.03 (0.97,1.09)	$3.6 \mathrm{E}-01$	7.6E-01	0.0\%
1.4E-01	1.04 (0.98,1.10)	$1.9 \mathrm{E}-01$	6.8E-01	0.0\%	1.03 (0.97,1.09)	$3.5 \mathrm{E}-01$	7.5E-01	0.0\%
6.2E-02	0.97 (0.92,1.02)	$1.9 \mathrm{E}-01$	1.8E-01	39.0\%	0.97 (0.92,1.02)	$2.2 \mathrm{E}-01$	1.6E-01	42.3\%
1.3E-01	1.11 (0.95,1.29)	2.0E-01	2.8E-01	21.3\%	1.11 (0.94,1.31)	2.1E-01	2.6E-01	24.6\%
4.2E-01	1.03 (0.99,1.07)	2.0E-01	8.1E-01	0.0\%	1.03 (0.98,1.07)	2.7E-01	9.5E-01	0.0\%
1.4E-01	0.96 (0.91,1.02)	2.0E-01	7.5E-01	0.0\%	0.96 (0.90,1.03)	$2.4 \mathrm{E}-01$	5.9E-01	0.0\%
8.5E-01	1.06 (0.97,1.16)	$2.0 \mathrm{E}-01$	1.3E-01	46.5\%	1.05 (0.96,1.16)	$3.0 \mathrm{E}-01$	1.0E-01	51.5\%
1.6E-01	0.94 (0.86,1.03)	2.0E-01	7.2E-01	0.0\%	0.96 (0.87,1.06)	$4.4 \mathrm{E}-01$	9.4E-01	0.0\%
6.2E-01	1.09 (0.95,1.25)	2.0E-01	8.5E-02	54.7\%	1.11 (0.96,1.27)	$1.7 \mathrm{E}-01$	2.4E-01	29.0\%
1.5E-01	1.04 (0.98,1.10)	2.0E-01	7.0E-01	0.0\%	1.03 (0.97,1.09)	$3.7 \mathrm{E}-01$	7.6E-01	0.0\%
1.5E-01	1.04 (0.98,1.10)	2.0E-01	7.0E-01	0.0\%	1.03 (0.97,1.09)	3.7E-01	7.6E-01	0.0\%
1.1E-01	0.97 (0.92,1.02)	2.0E-01	3.8E-01	3.1\%	0.97 (0.92,1.02)	$2.1 \mathrm{E}-01$	3.2E-01	15.3\%
5.7E-01	0.97 (0.93,1.02)	2.0E-01	8.0E-01	0.0\%	0.97 (0.93,1.02)	$2.6 \mathrm{E}-01$	7.7E-01	0.0\%
1.5E-01	1.04 (0.98,1.10)	2.0E-01	6.8E-01	0.0\%	1.03 (0.97,1.09)	3.7E-01	7.5E-01	0.0\%
1.9E-01	0.94 (0.85,1.04)	2.0E-01	9.3E-01	0.0\%	0.96 (0.86,1.07)	$4.6 \mathrm{E}-01$	9.8E-01	0.0\%
6.6E-01	1.03 (0.98,1.08)	$2.0 \mathrm{E}-01$	6.9E-01	0.0\%	1.03 (0.98,1.08)	$2.4 \mathrm{E}-01$	7.8E-01	0.0\%
1.3E-01	0.94 (0.85,1.03)	$2.0 \mathrm{E}-01$	7.7E-01	0.0\%	0.96 (0.87,1.07)	$4.7 \mathrm{E}-01$	9.6E-01	0.0\%
2.3E-01	0.95 (0.88,1.03)	2.0E-01	5.7E-01	0.0\%	0.97 (0.89,1.06)	$4.7 \mathrm{E}-01$	5.8E-01	0.0\%
1.3E-01	0.96 (0.91,1.02)	2.1E-01	6.9E-01	0.0\%	0.97 (0.92,1.03)	$3.6 \mathrm{E}-01$	7.7E-01	0.0\%
6.7E-01	1.03 (0.99,1.07)	2.1E-01	7.0E-01	0.0\%	1.03 (0.98,1.07)	$2.5 \mathrm{E}-01$	8.6E-01	0.0\%
2.6E-01	0.94 (0.85,1.04)	2.1E-01	6.7E-01	0.0\%	0.95 (0.85,1.06)	3.5E-01	6.2E-01	0.0\%
1.8E-01	0.96 (0.91,1.02)	2.1E-01	7.0E-01	0.0\%	0.97 (0.91,1.03)	$3.0 \mathrm{E}-01$	7.1E-01	0.0\%
5.9E-02	0.97 (0.92,1.02)	2.1E-01	1.8E-01	38.1\%	0.97 (0.92,1.02)	$2.2 \mathrm{E}-01$	1.6E-01	42.1\%
1.3E-01	0.93 (0.83,1.04)	2.1E-01	5.7E-01	0.0\%	0.96 (0.85,1.09)	$5.8 \mathrm{E}-01$	7.5E-01	0.0\%
$2.4 \mathrm{E}-01$	0.95 (0.88,1.03)	2.1E-01	5.7E-01	0.0\%	0.97 (0.89,1.06)	$4.8 \mathrm{E}-01$	5.7E-01	0.0\%
9.3E-01	1.03 (0.98,1.09)	$2.1 \mathrm{E}-01$	2.8E-01	21.1\%	1.05 (0.99,1.11)	$1.2 \mathrm{E}-01$	3.7E-01	5.1\%
1.4E-01	0.96 (0.91,1.02)	2.1E-01	6.9E-01	0.0\%	0.97 (0.92,1.03)	$3.7 \mathrm{E}-01$	7.7E-01	0.0\%
6.4E-02	0.97 (0.92,1.02)	2.1E-01	1.9E-01	36.5\%	0.97 (0.92,1.02)	$2.3 \mathrm{E}-01$	1.7E-01	40.6\%
2.5E-01	1.03 (0.98,1.08)	2.1E-01	9.7E-01	0.0\%	1.03 (0.97,1.08)	$3.3 \mathrm{E}-01$	9.7E-01	0.0\%
2.6E-01	0.97 (0.93,1.02)	2.1E-01	3.7E-01	5.6\%	0.98 (0.93,1.02)	$3.4 \mathrm{E}-01$	3.6E-01	7.5\%
2.8E-01	0.94 (0.84,1.04)	2.1E-01	6.1E-01	0.0\%	0.95 (0.85,1.06)	$3.8 \mathrm{E}-01$	6.4E-01	0.0\%
9.5E-02	0.97 (0.92,1.02)	2.2E-01	2.9E-01	19.4\%	0.97 (0.92,1.02)	$2.2 \mathrm{E}-01$	2.4E-01	28.7\%
1.5E-01	0.94 (0.85,1.04)	2.2E-01	8.2E-01	0.0\%	0.96 (0.87,1.07)	$4.9 \mathrm{E}-01$	9.8E-01	0.0\%
4.5E-01	1.04 (0.98,1.12)	2.2E-01	3.1E-01	16.4\%	1.05 (0.97,1.13)	$2.2 \mathrm{E}-01$	1.6E-01	42.4\%
1.1E-01	0.97 (0.92,1.02)	2.2E-01	7.3E-01	0.0\%	0.97 (0.92,1.03)	$3.0 \mathrm{E}-01$	7.5E-01	0.0\%
1.5E-01	1.04 (0.98,1.10)	2.2E-01	7.2E-01	0.0\%	1.03 (0.97,1.09)	$3.8 \mathrm{E}-01$	7.8E-01	0.0\%
9.4E-02	0.97 (0.92,1.02)	2.2E-01	3.3E-01	12.3\%	0.97 (0.92,1.02)	2.2E-01	2.8E-01	22.6\%
1.9E-01	1.04 (0.98,1.10)	2.2E-01	8.5E-01	0.0\%	1.03 (0.97,1.10)	3.2E-01	7.5E-01	0.0\%
8.2E-02	0.97 (0.92,1.02)	2.2E-01	2.7E-01	23.7\%	0.97 (0.92,1.02)	$2.3 \mathrm{E}-01$	$2.3 \mathrm{E}-01$	30.7\%
1.4E-01	1.04 (0.98,1.10)	2.3E-01	7.0E-01	0.0\%	1.03 (0.97,1.09)	$3.9 \mathrm{E}-01$	7.7E-01	0.0\%
1.5E-01	1.04 (0.98,1.10)	2.3E-01	7.1E-01	0.0\%	1.03 (0.97,1.09)	$3.9 \mathrm{E}-01$	7.7E-01	0.0\%
2.2E-01	0.94 (0.86,1.04)	2.3E-01	8.4E-01	0.0\%	0.97 (0.88,1.07)	$5.4 \mathrm{E}-01$	9.6E-01	0.0\%
6.1E-01	0.97 (0.93,1.02)	$2.3 \mathrm{E}-01$	7.7E-01	0.0\%	0.98 (0.93,1.02)	$3.1 \mathrm{E}-01$	7.2E-01	0.0\%
2.8E-01	0.95 (0.88,1.03)	2.3E-01	5.3E-01	0.0\%	0.97 (0.89,1.06)	5.0E-01	5.0E-01	0.0\%
3.0E-01	0.94 (0.84,1.04)	$2.3 \mathrm{E}-01$	8.2E-01	0.0\%	0.95 (0.85,1.07)	$4.1 \mathrm{E}-01$	8.5E-01	0.0\%
7.2E-02	0.97 (0.92,1.02)	2.3E-01	2.0E-01	35.5\%	0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	1.7E-01	39.9\%

7.2E-02
6.1E-01
2.9E-01 2.9E-01 3.0E-01 1.0E-01 2.3E-01 2.1E-02 3.7E-01 2.1E-01 2.1E-01 7.3E-02 $1.0 \mathrm{E}-01$ 2.0E-01 2.4E-01 7.4E-02 1.0E-01 3.9E-01 $1.1 \mathrm{E}-01$ 1.1E-01 7.6E-02 2.3E-01 4.8E-01 9.5E-02 3.0E-01 6.7E-01 8.3E-02 3.0E-01 1.1E-01 8.5E-02
5.7E-01
1.0E-01
9.5E-02
8.4E-02
8.5E-02
4.6E-01
8.3E-02
3.9E-01
3.8E-01
8.8E-01
2.5E-01
1.1E-01
3.6E-01
1.1E-01
1.9E-01
6.8E-01
2.6E-01
2.6E-01
2.6E-01
3.1E-01

0.97 (0.92,1.02)	2.3E-01	2.0E-01	35.5\%
0.97 (0.93,1.02)	2.3E-01	7.6E-01	0.0\%
0.94 (0.84,1.04)	2.3E-01	7.9E-01	0.0\%
0.94 (0.84,1.04)	2.3E-01	7.9E-01	0.0\%
0.94 (0.84,1.04)	$2.3 \mathrm{E}-01$	8.2E-01	0.0\%
0.97 (0.92,1.02)	2.3E-01	3.5E-01	8.1\%
0.94 (0.86,1.04)	$2.3 \mathrm{E}-01$	8.3E-01	0.0\%
0.93 (0.83,1.05)	$2.4 \mathrm{E}-01$	8.5E-02	54.6\%
0.97 (0.93,1.02)	$2.4 \mathrm{E}-01$	5.2E-01	0.0\%
0.91 (0.79,1.06)	$2.4 \mathrm{E}-01$	9.4E-01	0.0\%
0.91 (0.79,1.06)	$2.4 \mathrm{E}-01$	9.3E-01	0.0\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	2.0E-01	35.8\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	1.4E-01	44.6\%
0.96 (0.91,1.02)	$2.4 \mathrm{E}-01$	7.4E-01	0.0\%
0.95 (0.86,1.04)	$2.4 \mathrm{E}-01$	8.3E-01	0.0\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	2.0E-01	35.6\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	3.1E-01	16.0\%
0.97 (0.93,1.02)	$2.4 \mathrm{E}-01$	5.4E-01	0.0\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	3.3E-01	12.6\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	2.1E-01	33.6\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	2.0E-01	34.6\%
0.94 (0.85,1.04)	$2.4 \mathrm{E}-01$	8.4E-01	0.0\%
1.04 (0.97,1.11)	$2.4 \mathrm{E}-01$	3.5E-01	9.3\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	2.9E-01	20.8\%
0.94 (0.85,1.04)	$2.4 \mathrm{E}-01$	8.0E-01	0.0\%
0.97 (0.93,1.02)	$2.4 \mathrm{E}-01$	5.1E-01	0.0\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	2.2E-01	31.6\%
0.94 (0.85,1.04)	$2.5 \mathrm{E}-01$	8.1E-01	0.0\%
0.97 (0.92,1.02)	2.5E-01	3.3E-01	13.2\%
0.97 (0.92,1.02)	$2.5 \mathrm{E}-01$	2.0E-01	35.3\%
0.97 (0.93,1.02)	2.5E-01	8.4E-01	0.0\%
0.97 (0.92,1.02)	2.5E-01	1.6E-01	42.4\%
0.97 (0.92,1.02)	$2.5 \mathrm{E}-01$	$2.8 \mathrm{E}-01$	21.3\%
0.97 (0.92,1.02)	2.5E-01	2.2E-01	31.9\%
0.97 (0.92,1.02)	2.5E-01	2.3E-01	31.2\%
1.03 (0.98,1.08)	$2.5 \mathrm{E}-01$	8.8E-01	0.0\%
0.97 (0.92,1.02)	$2.5 \mathrm{E}-01$	1.9E-01	36.5\%
1.03 (0.98,1.09)	$2.5 \mathrm{E}-01$	8.6E-01	0.0\%
0.98 (0.94,1.02)	$2.5 \mathrm{E}-01$	9.6E-01	0.0\%
1.03 (0.98,1.07)	$2.5 \mathrm{E}-01$	1.8E-01	39.0\%
0.95 (0.86,1.04)	2.5E-01	8.3E-01	0.0\%
0.97 (0.92,1.02)	2.5E-01	3.1E-01	15.7\%
0.96 (0.89,1.03)	2.6E-01	7.9E-01	0.0\%
0.97 (0.92,1.02)	2.6E-01	3.1E-01	16.8\%
0.97 (0.91,1.02)	2.6E-01	9.1E-01	0.0\%
1.03 (0.98,1.09)	2.6E-01	8.7E-01	0.0\%
0.95 (0.86,1.04)	2.6E-01	8.3E-01	0.0\%
0.95 (0.86,1.04)	2.6E-01	8.3E-01	0.0\%
0.95 (0.86,1.04)	2.6E-01	8.3E-01	0.0\%
0.94 (0.85,1.05)	$2.6 \mathrm{E}-01$	8.2E-01	0.0\%

0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	1.7E-01	39.9\%
0.98 (0.93,1.02)	3.2E-01	7.0E-01	0.0\%
0.95 (0.85,1.07)	4.1E-01	8.3E-01	0.0\%
0.95 (0.85,1.07)	4.1E-01	8.3E-01	0.0\%
0.95 (0.85,1.07)	4.1E-01	8.5E-01	0.0\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	3.0E-01	18.1\%
0.97 (0.88,1.07)	$5.4 \mathrm{E}-01$	9.6E-01	0.0\%
0.95 (0.84,1.07)	3.6E-01	1.1E-01	51.1\%
0.98 (0.93,1.03)	4.1E-01	6.3E-01	0.0\%
0.92 (0.79,1.08)	$3.2 \mathrm{E}-01$	$9.4 \mathrm{E}-01$	0.0\%
0.92 (0.79,1.08)	3.2E-01	$9.4 \mathrm{E}-01$	0.0\%
0.97 (0.92,1.02)	$2.5 \mathrm{E}-01$	1.7E-01	40.6\%
0.97 (0.92,1.02)	$2.5 \mathrm{E}-01$	1.1E-01	49.6\%
0.97 (0.91,1.03)	3.5E-01	7.6E-01	0.0\%
0.97 (0.88,1.07)	5.5E-01	9.6E-01	0.0\%
0.97 (0.92,1.02)	2.5E-01	1.7E-01	40.5\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	2.6E-01	25.3\%
0.98 (0.93,1.03)	4.1E-01	6.3E-01	0.0\%
0.97 (0.92,1.02)	$2.5 \mathrm{E}-01$	$2.8 \mathrm{E}-01$	21.7\%
0.97 (0.91,1.02)	2.2E-01	$1.5 \mathrm{E}-01$	43.4\%
0.97 (0.92,1.02)	2.5E-01	1.8E-01	39.2\%
0.97 (0.87,1.09)	$6.4 \mathrm{E}-01$	9.4E-01	0.0\%
1.04 (0.97,1.12)	$2.3 \mathrm{E}-01$	1.7E-01	40.3\%
0.97 (0.92,1.02)	$2.4 \mathrm{E}-01$	$2.4 \mathrm{E}-01$	29.4\%
0.96 (0.85,1.07)	4.3E-01	8.4E-01	0.0\%
0.97 (0.93,1.02)	$2.6 \mathrm{E}-01$	4.9E-01	0.0\%
0.97 (0.92,1.02)	2.6E-01	1.9E-01	36.5\%
0.96 (0.85,1.07)	$4.3 \mathrm{E}-01$	8.5E-01	0.0\%
0.97 (0.92,1.02)	$2.5 \mathrm{E}-01$	2.8E-01	22.2\%
0.97 (0.92,1.02)	2.7E-01	1.7E-01	39.8\%
0.97 (0.93,1.02)	$2.7 \mathrm{E}-01$	8.5E-01	0.0\%
0.97 (0.92,1.02)	$2.3 \mathrm{E}-01$	1.2E-01	48.3\%
0.97 (0.92,1.02)	2.6E-01	$2.4 \mathrm{E}-01$	28.5\%
0.97 (0.92,1.02)	2.6E-01	1.9E-01	36.9\%
0.97 (0.92,1.02)	$2.5 \mathrm{E}-01$	$1.8 \mathrm{E}-01$	38.5\%
1.02 (0.97,1.08)	$4.0 \mathrm{E}-01$	6.8E-01	0.0\%
0.97 (0.92,1.02)	$2.8 \mathrm{E}-01$	1.7E-01	40.5\%
1.03 (0.98,1.09)	$2.3 \mathrm{E}-01$	8.6E-01	0.0\%
0.97 (0.93,1.01)	1.6E-01	9.5E-01	0.0\%
1.03 (0.98,1.07)	$2.9 \mathrm{E}-01$	2.1E-01	33.2\%
0.97 (0.88,1.07)	5.6E-01	$9.5 \mathrm{E}-01$	0.0\%
0.97 (0.92,1.02)	2.6E-01	2.6E-01	24.5\%
0.98 (0.90,1.06)	5.6E-01	7.1E-01	0.0\%
0.97 (0.92,1.02)	2.6E-01	$2.6 \mathrm{E}-01$	25.6\%
0.97 (0.91,1.03)	3.1E-01	8.2E-01	0.0\%
1.03 (0.98,1.10)	2.6E-01	8.4E-01	0.0\%
0.97 (0.88,1.07)	5.7E-01	9.5E-01	0.0\%
0.97 (0.88,1.07)	5.7E-01	9.5E-01	0.0\%
0.97 (0.88,1.07)	5.7E-01	9.5E-01	0.0\%
0.96 (0.86,1.07)	4.6E-01	8.6E-01	0.0\%

1.1E-01 9.3E-02 3.9E-01 $1.1 \mathrm{E}-01$ 3.9E-01 3.0E-02 7.3E-02 2.5E-01 6.0E-01 2.5E-02 2.2E-01 1.0E-01 9.7E-02 1.7E-01 2.3E-01 3.9E-01 9.3E-01 1.6E-01 1.0E-01 2.8E-01 2.8E-01 2.8E-01 1.2E-01 1.1E-01 2.0E-01 $1.6 \mathrm{E}-01$ $1.3 \mathrm{E}-01$ 1.0E-01 1.2E-01 6.9E-01 3.4E-01 1.1E-01 1.2E-01 1.2E-01 1.3E-01 1.0E-01 8.5E-01 5.5E-02 1.9E-01 1.2E-01 1.2E-01 $1.1 \mathrm{E}-01$ 1.2E-01 1.2E-01 $1.3 \mathrm{E}-01$ 1.9E-01 1.3E-01 2.0E-01 1.9E-01 3.0E-01

0.97 (0.92,1.02)	2.6E-01	1.6E-01	42.3\%
0.97 (0.92,1.02)	2.6E-01	1.4E-01	44.7\%
1.03 (0.98,1.09)	2.6E-01	8.6E-01	0.0\%
0.97 (0.92,1.02)	2.6E-01	3.1E-01	16.7\%
0.97 (0.92,1.02)	2.6E-01	9.1E-01	0.0\%
0.94 (0.84,1.05)	$2.6 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	48.6\%
1.03 (0.98,1.08)	2.6E-01	3.9E-01	0.3\%
0.95 (0.86,1.04)	2.6E-01	9.5E-01	0.0\%
1.03 (0.98,1.08)	2.6E-01	6.7E-01	0.0\%
0.94 (0.84,1.05)	2.7E-01	8.7E-02	54.3\%
1.04 (0.97,1.13)	2.7E-01	7.3E-01	0.0\%
0.97 (0.92,1.02)	2.7E-01	2.0E-01	35.0\%
0.97 (0.92,1.02)	2.7E-01	2.0E-01	36.0\%
0.97 (0.92,1.02)	2.7E-01	6.0E-01	0.0\%
1.04 (0.97,1.13)	$2.8 \mathrm{E}-01$	7.4E-01	0.0\%
1.03 (0.97,1.10)	2.8E-01	6.9E-01	0.0\%
1.03 (0.98,1.09)	$2.8 \mathrm{E}-01$	4.2E-01	0.0\%
1.03 (0.98,1.07)	$2.8 \mathrm{E}-01$	6.6E-01	0.0\%
0.97 (0.92,1.02)	$2.8 \mathrm{E}-01$	1.5E-01	44.1\%
0.94 (0.85,1.05)	$2.8 \mathrm{E}-01$	7.9E-01	0.0\%
0.95 (0.86,1.04)	$2.8 \mathrm{E}-01$	9.5E-01	0.0\%
0.95 (0.86,1.04)	2.8E-01	9.5E-01	0.0\%
0.97 (0.92,1.02)	$2.8 \mathrm{E}-01$	1.4E-01	45.3\%
0.97 (0.92,1.02)	2.9E-01	$2.4 \mathrm{E}-01$	27.9\%
0.97 (0.92,1.03)	$2.9 \mathrm{E}-01$	5.9E-01	0.0\%
1.05 (0.96,1.15)	$2.9 \mathrm{E}-01$	5.7E-01	0.0\%
0.97 (0.93,1.02)	2.9E-01	$4.3 \mathrm{E}-01$	0.0\%
1.03 (0.98,1.08)	$2.9 \mathrm{E}-01$	5.7E-01	0.0\%
0.97 (0.92,1.02)	2.9E-01	2.2E-01	31.4\%
1.03 (0.98,1.08)	$2.9 \mathrm{E}-01$	7.9E-02	55.7\%
0.97 (0.93,1.02)	2.9E-01	8.4E-01	0.0\%
0.97 (0.93,1.02)	2.9E-01	2.8E-01	22.2\%
0.97 (0.93,1.02)	2.9E-01	2.5E-01	27.5\%
0.97 (0.92,1.02)	2.9E-01	2.5E-01	27.5\%
0.97 (0.92,1.02)	3.0E-01	2.0E-01	35.6\%
0.97 (0.93,1.02)	3.0E-01	$2.8 \mathrm{E}-01$	22.5\%
1.03 (0.97,1.09)	3.0E-01	4.1E-01	0.0\%
1.03 (0.97,1.10)	3.0E-01	1.3E-01	46.9\%
0.97 (0.92,1.02)	3.0E-01	4.9E-01	0.0\%
0.97 (0.92,1.02)	3.0E-01	1.6E-01	42.7\%
0.97 (0.92,1.02)	3.0E-01	$1.7 \mathrm{E}-01$	41.1\%
0.97 (0.92,1.02)	3.0E-01	1.5E-01	42.9\%
0.97 (0.93,1.02)	3.0E-01	3.4E-01	10.4\%
0.97 (0.92,1.02)	3.0E-01	1.7E-01	41.0\%
0.97 (0.93,1.02)	3.0E-01	1.7E-01	40.8\%
1.04 (0.97,1.11)	3.0E-01	6.6E-01	0.0\%
0.97 (0.92,1.03)	3.0E-01	1.9E-01	36.2\%
0.97 (0.92,1.03)	3.0E-01	5.7E-01	0.0\%
0.98 (0.93,1.02)	3.1E-01	7.2E-01	0.0\%
0.95 (0.85,1.05)	3.1E-01	7.9E-01	0.0\%

$0.97(0.92,1.02)$	$2.4 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	48.1%
$0.97(0.91,1.02)$	$2.5 \mathrm{E}-01$	$1.1 \mathrm{E}-01$	49.5%
$1.03(0.98,1.09)$	$2.4 \mathrm{E}-01$	$8.6 \mathrm{E}-01$	0.0%
$0.97(0.92,1.02)$	$2.6 \mathrm{E}-01$	$2.6 \mathrm{E}-01$	25.3%
$0.97(0.92,1.03)$	$2.9 \mathrm{E}-01$	$9.0 \mathrm{E}-01$	0.0%
$0.95(0.84,1.07)$	$4.1 \mathrm{E}-01$	$1.5 \mathrm{E}-01$	42.8%
$1.01(0.96,1.06)$	$6.7 \mathrm{E}-01$	$6.2 \mathrm{E}-01$	0.0%
$0.97(0.87,1.07)$	$5.2 \mathrm{E}-01$	$9.8 \mathrm{E}-01$	0.0%
$1.04(0.99,1.09)$	$1.6 \mathrm{E}-01$	$7.4 \mathrm{E}-01$	0.0%
$0.95(0.84,1.07)$	$4.2 \mathrm{E}-01$	$1.3 \mathrm{E}-01$	47.3%
$1.06(0.97,1.15)$	$2.0 \mathrm{E}-01$	$6.8 \mathrm{E}-01$	0.0%
$0.97(0.92,1.02)$	$2.7 \mathrm{E}-01$	$1.7 \mathrm{E}-01$	40.6%
$0.97(0.92,1.02)$	$2.7 \mathrm{E}-01$	$1.6 \mathrm{E}-01$	41.3%
$0.97(0.92,1.03)$	$3.3 \mathrm{E}-01$	$5.5 \mathrm{E}-01$	0.0%
$1.05(0.97,1.15)$	$2.0 \mathrm{E}-01$	$6.9 \mathrm{E}-01$	0.0%
$1.02(0.96,1.09)$	$5.0 \mathrm{E}-01$	$7.9 \mathrm{E}-01$	0.0%
$1.04(0.98,1.10)$	$1.6 \mathrm{E}-01$	$5.3 \mathrm{E}-01$	0.0%
$1.01(0.97,1.06)$	$5.8 \mathrm{E}-01$	$7.5 \mathrm{E}-01$	0.0%
$0.97(0.92,1.02)$	$2.7 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	48.9%
$0.96(0.86,1.08)$	$4.9 \mathrm{E}-01$	$8.6 \mathrm{E}-01$	0.0%
$0.97(0.87,1.07)$	$5.0 \mathrm{E}-01$	$9.7 \mathrm{E}-01$	0.0%
$0.97(0.87,1.07)$	$5.0 \mathrm{E}-01$	$9.7 \mathrm{E}-01$	0.0%
$0.97(0.92,1.02)$	$2.7 \mathrm{E}-01$	$1.1 \mathrm{E}-01$	50.8%
$0.97(0.92,1.02)$	$2.8 \mathrm{E}-01$	$2.0 \mathrm{E}-01$	36.1%
$0.97(0.92,1.03)$	$3.9 \mathrm{E}-01$	$6.3 \mathrm{E}-01$	0.0%
$1.06(0.97,1.17)$	$2.1 \mathrm{E}-01$	$5.0 \mathrm{E}-01$	0.0%
$0.97(0.92,1.02)$	$2.8 \mathrm{E}-01$	$3.7 \mathrm{E}-01$	3.8%
$0.96(0.86,1.08)$	$5.3 \mathrm{E}-01$	$8.6 \mathrm{E}-01$	0.0%

3.6E-01	0.95 (0.85,1.05)	3.1E-01	8.7E-01	0.0\%	0.96 (0.86,1.08)	5.4E-01	9.0E-01	0.0\%
3.2E-02	0.98 (0.93,1.02)	3.1E-01	1.3E-01	46.7\%	0.98 (0.94,1.03)	4.2E-01	2.1E-01	33.6\%
1.3E-02	0.98 (0.93,1.02)	3.1E-01	2.1E-02	69.1\%	0.98 (0.94,1.03)	5.2E-01	3.8E-02	64.4\%
1.1E-01	0.98 (0.94,1.02)	3.1E-01	1.3E-01	47.7\%	0.98 (0.93,1.02)	3.1E-01	9.6E-02	52.7\%
1.4E-01	0.97 (0.92,1.03)	3.1E-01	2.1E-01	33.5\%	0.97 (0.92,1.03)	2.8E-01	$1.7 \mathrm{E}-01$	41.1\%
1.4E-01	0.97 (0.92,1.03)	3.1E-01	2.3E-01	30.8\%	0.97 (0.92,1.03)	2.8E-01	$1.8 \mathrm{E}-01$	38.8\%
5.9E-01	0.94 (0.82,1.06)	3.1E-01	5.4E-01	0.0\%	0.91 (0.79,1.04)	1.6E-01	6.7E-01	0.0\%
$3.0 \mathrm{E}-02$	0.98 (0.93,1.02)	3.1E-01	1.2E-01	49.0\%	0.98 (0.94,1.03)	4.2E-01	1.8E-01	38.2\%
6.3E-02	1.10 (0.91,1.33)	3.1E-01	1.7E-01	40.5\%	1.11 (0.91,1.36)	3.1E-01	$1.7 \mathrm{E}-01$	40.2\%
8.0E-01	0.94 (0.83,1.06)	3.1E-01	3.3E-01	12.1\%	0.91 (0.79,1.04)	1.5E-01	$4.9 \mathrm{E}-01$	0.0\%
1.5E-01	0.97 (0.92,1.03)	3.1E-01	2.2E-01	32.1\%	0.97 (0.92,1.03)	2.8E-01	$1.7 \mathrm{E}-01$	39.9\%
2.1E-01	0.97 (0.92,1.03)	3.1E-01	5.7E-01	0.0\%	0.98 (0.92,1.03)	4.1E-01	5.9E-01	0.0\%
3.7E-01	0.98 (0.94,1.02)	3.1E-01	4.9E-01	0.0\%	0.98 (0.94,1.03)	4.7E-01	5.1E-01	0.0\%
1.5E-01	0.97 (0.92,1.03)	3.1E-01	2.2E-01	32.6\%	0.97 (0.92,1.03)	2.8E-01	$1.7 \mathrm{E}-01$	40.9\%
9.9E-01	0.98 (0.94,1.02)	3.2E-01	4.3E-01	0.0\%	0.98 (0.94,1.02)	3.4E-01	3.6E-01	6.5\%
$1.5 \mathrm{E}-01$	0.97 (0.92,1.03)	3.2E-01	2.3E-01	31.1\%	0.97 (0.92,1.03)	2.9E-01	$1.8 \mathrm{E}-01$	38.8\%
1.5E-01	0.97 (0.92,1.03)	3.2E-01	2.0E-01	35.4\%	0.97 (0.92,1.03)	2.9E-01	$1.6 \mathrm{E}-01$	42.4\%
1.5E-01	0.97 (0.92,1.03)	3.2E-01	2.1E-01	33.1\%	0.97 (0.92,1.03)	2.8E-01	1.7E-01	41.0\%
1.4E-01	0.97 (0.93,1.02)	3.2E-01	2.8E-01	21.4\%	0.97 (0.92,1.03)	3.3E-01	2.3E-01	29.7\%
1.5E-01	0.97 (0.92,1.03)	3.2E-01	2.1E-01	33.0\%	0.97 (0.92,1.03)	2.9E-01	$1.7 \mathrm{E}-01$	40.9\%
1.8E-01	0.97 (0.90,1.03)	3.2E-01	5.7E-01	0.0\%	0.97 (0.90,1.05)	4.4E-01	5.8E-01	0.0\%
3.7E-01	1.02 (0.98,1.07)	3.2E-01	9.9E-01	0.0\%	1.03 (0.98,1.08)	$2.5 \mathrm{E}-01$	$1.0 \mathrm{E}+00$	0.0\%
3.6E-01	1.02 (0.98,1.07)	3.2E-01	9.4E-01	0.0\%	1.02 (0.97,1.08)	3.8E-01	9.5E-01	0.0\%
2.2E-01	0.97 (0.92,1.03)	3.2E-01	5.8E-01	0.0\%	0.98 (0.92,1.03)	4.3E-01	6.1E-01	0.0\%
2.2E-01	0.97 (0.92,1.03)	3.2E-01	5.6E-01	0.0\%	0.98 (0.92,1.03)	4.2E-01	5.9E-01	0.0\%
3.0E-01	0.95 (0.85,1.05)	3.2E-01	7.7E-01	0.0\%	0.97 (0.86,1.08)	5.6E-01	8.4E-01	0.0\%
8.3E-02	0.97 (0.93,1.03)	3.2E-01	1.7E-01	39.9\%	0.98 (0.92,1.03)	3.7E-01	$1.7 \mathrm{E}-01$	40.3\%
2.1E-01	0.95 (0.86,1.05)	3.2E-01	8.1E-01	0.0\%	0.98 (0.88,1.09)	6.8E-01	9.6E-01	0.0\%
1.6E-01	1.08 (0.93,1.26)	3.2E-01	9.8E-02	52.4\%	1.11 (0.94,1.31)	2.4E-01	7.1E-02	57.2\%
$2.5 \mathrm{E}-01$	1.07 (0.93,1.23)	3.2E-01	9.3E-01	0.0\%	1.07 (0.92,1.24)	3.7E-01	9.3E-01	0.0\%
1.3E-01	0.97 (0.93,1.03)	3.2E-01	1.7E-01	41.1\%	0.97 (0.92,1.03)	3.0E-01	1.3E-01	47.0\%
2.7E-01	1.03 (0.98,1.08)	3.2E-01	8.2E-01	0.0\%	1.02 (0.97,1.08)	3.6E-01	8.7E-01	0.0\%
8.8E-01	0.98 (0.93,1.02)	3.3E-01	3.2E-01	14.3\%	0.98 (0.93,1.03)	4.2E-01	2.6E-01	25.4\%
2.1E-01	0.95 (0.86,1.05)	3.3E-01	8.0E-01	0.0\%	0.98 (0.88,1.09)	6.9E-01	9.6E-01	0.0\%
1.9E-01	0.98 (0.93,1.02)	3.3E-01	8.4E-01	0.0\%	0.98 (0.94,1.03)	5.0E-01	8.9E-01	0.0\%
7.9E-01	1.02 (0.98,1.07)	3.3E-01	1.5E-01	42.8\%	1.04 (0.99,1.09)	1.1E-01	$1.6 \mathrm{E}-01$	41.2\%
1.6E-01	0.97 (0.93,1.03)	3.3E-01	1.6E-01	41.8\%	0.97 (0.92,1.03)	2.9E-01	$1.2 \mathrm{E}-01$	48.3\%
2.2E-01	1.03 (0.97,1.11)	3.3E-01	7.2E-01	0.0\%	1.03 (0.96,1.11)	4.4E-01	7.2E-01	0.0\%
$6.5 \mathrm{E}-02$	1.03 (0.97,1.10)	3.3E-01	1.4E-01	45.1\%	1.01 (0.94,1.08)	7.8E-01	$2.9 \mathrm{E}-01$	19.4\%
$4.0 \mathrm{E}-01$	1.02 (0.98,1.07)	3.3E-01	$1.0 \mathrm{E}+00$	0.0\%	1.03 (0.98,1.08)	2.7E-01	$1.0 \mathrm{E}+00$	0.0\%
2.1E-01	0.95 (0.86,1.05)	3.3E-01	7.9E-01	0.0\%	0.98 (0.88,1.09)	7.0E-01	9.6E-01	0.0\%
2.1E-01	0.95 (0.86,1.05)	3.3E-01	7.9E-01	0.0\%	0.98 (0.88,1.09)	7.0E-01	9.6E-01	0.0\%
2.1E-01	0.95 (0.87,1.05)	3.3E-01	7.8E-01	0.0\%	0.98 (0.88,1.09)	7.0E-01	9.7E-01	0.0\%
2.1E-01	0.95 (0.87,1.05)	3.3E-01	7.8E-01	0.0\%	0.98 (0.88,1.09)	7.0E-01	9.7E-01	0.0\%
1.7E-01	0.98 (0.94,1.02)	3.3E-01	1.6E-01	42.4\%	0.98 (0.94,1.03)	4.7E-01	2.5E-01	27.2\%
$2.0 \mathrm{E}-01$	0.97 (0.90,1.04)	3.3E-01	5.9E-01	0.0\%	0.97 (0.90,1.05)	4.6E-01	6.0E-01	0.0\%
4.0E-01	1.02 (0.98,1.06)	3.4E-01	6.0E-01	0.0\%	1.02 (0.98,1.06)	4.2E-01	5.8E-01	0.0\%
2.4E-01	1.06 (0.94,1.18)	3.4E-01	7.7E-01	0.0\%	1.07 (0.95,1.21)	2.9E-01	7.3E-01	0.0\%
3.9E-01	1.02 (0.98,1.07)	3.4E-01	9.9E-01	0.0\%	1.03 (0.98,1.08)	2.6E-01	$1.0 \mathrm{E}+00$	0.0\%
1.3E-01	0.97 (0.92,1.03)	3.4E-01	1.3E-01	46.2\%	0.97 (0.92,1.03)	3.1E-01	1.0E-01	51.4\%

-01	1.03 (0.97,1.08)	3.4E-01	1.9E-01	37.7\%	1.03 (0.97,1.08)	3.5E-01	.7E-0	41.0\%
2.4E-01	0.97 (0.92,1.03)	3.4E-01	5.9E-01	0.0\%	0.98 (0.92,1.04)	4.4E-01	6.2E-01	0.0\%
2.0E-01	0.97 (0.90,1.04)	4E-01	$5.8 \mathrm{E}-01$	0.0\%	0.97 (0.90,1.05)	E-0	6.0E-01	0.0\%
-01	0.98 (0.93,1.02)	3.4E-01	2.2E-01	31.3\%	0.98 (0.93,1.03)	4.2E-01	1.6E-01	42.0\%
2.	0.97 (0.92,1.03)	3.4E-01	5.3E-0	0.0\%	(0.92,1.04)	4.5E-01	5.5E-0	0.0\%
3.8E-01	0.98 (0.94,1.02)	4E-01	1E-01	0\%	0.98 (0.94,1.03)	4.4E-01	E-01	4.9\%
2.6E-01	1.02 (0.97,1.08)	4E-01	8.2E-0	0.0\%	. 02 (0.97,1.08)	$3.8 \mathrm{E}-0$	8.8E	0.0\%
2.4E-01	0.97 (0.92,1.03)	3.4E-01	8E-01	0.0\%	0.98 (0.92,1.03)	E-01	. 0	0.0\%
-01	0.97 (0.91,1.03)	3.4E-01	7.4	0.0\%	0.98 (0.92,1.04	OE-0	7E-0	0.0\%
2.4E-01	0.97 (0.92,1.03)	3.4E-01	5.8E-01	0\%	0.98 (0.92,1.04)	4.4E-0	6.1E-0	0.0\%
4.2E-01	1.02 (0.98,1.06)	3.5E-0	6.2E-0	0.0\%	1.02 (0.98,1.06)	4.1E-0	6.1E-0	0.0\%
-01	0.97 (0.92,1.03)	3.5E-01	7.3E-01	0\%	0.97 (0.92,1.03)	E-01	E-01	0.0\%
3.5E-01	1.02 (0.97,1.08)	$3.5 \mathrm{E}-$	5.9E-01	0.0\%	1.03 (0.97,1.08)	E-01	7.4E-01	0.0\%
$1.6 \mathrm{E}-$	0.98 (0.93,1.03)	3.5	$4.7 \mathrm{E}-01$	0.0\%	0.97 (0.92,1.03)	3.5E-01	4.2E-01	0.0\%
3.7E-02	0.98 (0.94,1.02)	3.5E-01	1.4E-01	45.9\%	0.98 (0.94,1.03)	5.2E-01	2.3E-01	29.5\%
4.6E-01	1.02 (0.97,1.08)	$3.5 \mathrm{E}-1$	7.4E-01	0.0\%	1.02 (0.97,1.08)	4.4E-01	7.1E-01	0.0\%
3.5	1.02 (0.97,1.08)	3.5E-01	5.7E-01	0.0\%	1.02 (0.97,1.08)	3.8E-01	2E	0.0\%
9.6 E	1.03 (0.97,1.08)	3.5E-0	4.7E-01	0\%	1.04 (0.98,1.10)	2.3E-01	5.5E-0	0.0\%
9.0E-01	0.98 (0.94,1.02)	3.6E-01	7.2E-01	0.0\%	0.97 (0.93,1.02)	2.5E-01	$8.0 \mathrm{E}-01$	0.0\%
3.3E-01	1.02 (0.98,1.06)	6E-01	8.5E-0	0.0\%	1.03 (0.98,1.08)	2.1E-01	OE-0	0.0\%
2.5E-01	1.05 (0.94,1	3.6E-01	7.8E-01	0.0\%	1.06 (0.94,1.20)	3.1E-01	01	0.0
5.4E-01	0.94 (0.83,1.07)	3.6E-0	2.9 E	19.5\%	0.90 (0.79,1.03)	E-01	2.8E-01	22.6\%
$7.2 \mathrm{E}-01$	1.02 (0.97,1.08)	3.6E-01	$1.3 \mathrm{E}-0$	47.3\%	1.02 (0.97,1.08)	9E-01	1.2E-01	49.1\%
2.	0.98 (0.92,1.03)	$3.6 \mathrm{E}-1$	5.6 E	0.0\%	0.98 (0.92,1.04)	4.6E-01	5.7E-01	0.0\%
$3.8 \mathrm{E}-01$	1.02 (0.97,1.07)	3.6	9.8	0.0\%	1.03 (0.98,1.08)	E-01	9.9E-01	0.0\%
6.9E-01	1.02 (0.97,1.08)	3.6E-01	1.2E-01	49.3\%	1.02 (0.97,1.08)	3.8E-01	1.1E-01	50.3\%
7.0E-02	1.03 (0.97,1.10)	$7 \mathrm{E}-0$	EE-01	45.6	1.01 (0.94,1.08)	7.8E-01	3.0E-01	18.8\%
1.5	0.98 (0.93,1.03)	3.7E-01	3.1E-01	16.7\%	0.97 (0.92,1.03)	3.3E-01	2.4E-01	28.3\%
2.3	0.98 (0.92,1.03)	3.7E-01	5.	0.0\%	0.98 (0.92,1.04)	4.7E-01	5.6E-01	0.0\%
1.6 E	0.98 (0.93,1.03)	3.7E-01	2.4E-0	28.3\%	0.98 (0.92,1.03)	3.6E-01	2.0 E	36.0\%
2.8E-01	1.02 (0.97,1.08)	3.7E-01	7.9E-01	0.0\%	1.02 (0.97,1.08)	4.2E-01	8.6E-01	0.0\%
1.3E-01	0.98 (0.93,1.03)	3.7E-01	1.5E-0	43.7\%	0.97 (0.92,1.03)	E-0	1.1E-01	9.9\%
2.1E-0	0.98 (0.94,1.02)	3.7	8.0	0.0\%	0.99 (0.94,1.04)	5.7E-01	8.6E-01	0.0\%
9.6 E	1.03 (0.97,1.09)	3.7E-0	7.2E-01	0.0\%	1.05 (0.98,1.12)	E-01	9.0E-01	0.0\%
7.2E-01	0.98 (0.94,1.02)	3.7E-01	-01	0\%	0.99 (0.94,1.03)	5.5E-01	7.1E-02	57.4\%
6.6E-01	0.98 (0.94,1.02)	3.7E-01	9.1E-0	53.5	0.99 (0.94,1.03)	5.6E-01	6.6E-02	58.2\%
8.7	1.02 (0.98,1.06)	3.7E-01	$8.0 \mathrm{E}-01$	0.0\%	1.03 (0.98,1.07)	2.71	8.8E-01	0.0\%
3.7E-01	1.02 (0.97,1.08)	3.7E-01	$6.3 \mathrm{E}-01$	0.0\%	1.02 (0.97,1.08)	3.9E-01	7.6E-01	0.0\%
2.9E-01	0.98 (0.93,1.03)	3.8	6.5E-01	0.0\%	0.98 (0.93,1.03)	3.9E-01	7.8E-01	0.0\%
8.9E-02	0.97 (0.92,1.03)	3.8 E	$2.6 \mathrm{E}-0$	24.6	0.98 (0.92,1.05)	5.5E-	4.7E-01	0.0
6.7E-01	1.02 (0.97,1.08)	$3.8 \mathrm{E}-01$	1E-01	49.6\%	1.02 (0.97,1.08)	3.9E-01	1.1E-01	50.6\%
3.3E-01	1.04 (0.96,1.12)	3.8E-0	$1.7 \mathrm{E}-01$	40.7\%	1.01 (0.93,1.11)	4E-01	$4 \mathrm{E}-1$	45.2\%
1.0 E	1.02 (0.98,1.06)	$8 \mathrm{E}-01$	4E-01	.0\%	1.02 (0.97,1.06)	4.7E-01	5.0E-01	0.0\%
4.9E-01	1.02 (0.97,1.07)	$3.8 \mathrm{E}-01$	$8.2 \mathrm{E}-01$	0.0\%	1.02 (0.97,1.07)	4.7E-01	7.8E-01	0.0
3.7E-01	1.02 (0.97,1.08)	3.8E-01	6.5E-01	0.0\%	1.02 (0.97,1.08)	3.9E-01	7.7E-01	0.0\%
4.6E-01	0.95 (0.85,1.06)	8E-0	3.3E-01	12.0\%	0.91 (0.81,1.02)	9.4E-02	2.8E-01	21.1\%
6.7E-01	1.02 (0.97,1.08)	3.8E-01	1.2E-01	47.8	1.02 (0.97,1.08)	OE-01	1.2E-01	49.0
5.1E-01	1.02 (0.97,1.07)	3.8E-01	8.2E-01	0.0\%	1.02 (0.97,1.07)	4.7E-01	7.9E-01	0.0\%
4.0E-01	1.02 (0.97,1.07)	3.8E-01	9.9E-01	0.0\%	1.03 (0.98,1.08)	3.2E-01	9.9E-01	0.0
5.2E-01	1.02 (0.97,1.07)	3.8E-01	8.1E-01	0.0\%	1.02 (0.97,1.07	4.6E-01	7.8E-01	0.0\%

2.3E-01	0.97 (0.90,1.04)	3.8E-01	6.0E-01	0.0\%	0.98 (0.91,1.05)	5.1E-01	6.1E-01	0.0\%
1.0E-01	1.03 (0.97,1.10)	3.8E-01	2.0E-01	35.3\%	1.00 (0.94,1.07)	$1.0 \mathrm{E}+00$	4.2E-01	0.0\%
6.0E-01	0.98 (0.94,1.02)	3.8E-01	7.0E-01	0.0\%	0.98 (0.94,1.03)	$4.8 \mathrm{E}-01$	5.8E-01	0.0\%
8.6E-01	1.02 (0.98,1.06)	3.8E-01	8.2E-01	0.0\%	1.03 (0.98,1.07)	2.7E-01	9.0E-01	0.0\%
6.6E-01	1.02 (0.97,1.08)	$3.8 \mathrm{E}-01$	1.2E-01	49.0\%	1.02 (0.97,1.08)	4.1E-01	$1.1 \mathrm{E}-01$	50.6\%
4.7E-01	1.03 (0.97,1.09)	3.9E-01	7.3E-01	0.0\%	1.01 (0.95,1.08)	6.8E-01	8.4E-01	0.0\%
5.9E-01	0.98 (0.93,1.03)	3.9E-01	8.1E-01	0.0\%	0.98 (0.93,1.03)	3.9E-01	7.4E-01	0.0\%
4.4E-01	1.03 (0.97,1.09)	3.9E-01	7.0E-01	0.0\%	1.01 (0.95,1.08)	6.9E-01	8.0E-01	0.0\%
2.4E-01	0.97 (0.90,1.04)	3.9E-01	6.0E-01	0.0\%	0.98 (0.91,1.05)	5.2E-01	6.2E-01	0.0\%
6.9E-01	1.02 (0.97,1.08)	$3.9 \mathrm{E}-01$	1.1E-01	50.1\%	1.02 (0.97,1.08)	4.0E-01	1.1E-01	50.0\%
7.8E-01	1.02 (0.98,1.06)	3.9E-01	3.3E-01	13.4\%	1.03 (0.99,1.08)	1.4E-01	3.1E-01	15.6\%
3.4E-01	0.98 (0.93,1.03)	$3.9 \mathrm{E}-01$	6.2E-01	0.0\%	0.98 (0.93,1.04)	4.8E-01	7.3E-01	0.0\%
3.7E-01	1.02 (0.97,1.08)	$3.9 \mathrm{E}-01$	6.5E-01	0.0\%	1.02 (0.97,1.08)	4.1E-01	7.7E-01	0.0\%
8.7E-01	1.02 (0.98,1.06)	3.9E-01	8.2E-01	0.0\%	1.03 (0.98,1.07)	2.8E-01	8.9E-01	0.0\%
9.1E-01	1.05 (0.93,1.19)	3.9E-01	3.8E-01	2.3\%	1.04 (0.92,1.18)	$5.4 \mathrm{E}-01$	$3.5 \mathrm{E}-01$	8.9\%
4.9E-01	1.03 (0.97,1.09)	$3.9 \mathrm{E}-01$	7.3E-01	0.0\%	1.01 (0.95,1.08)	6.9E-01	$8.4 \mathrm{E}-01$	0.0\%
8.3E-01	1.02 (0.98,1.06)	3.9E-01	8.6E-01	0.0\%	1.02 (0.98,1.07)	3.0E-01	9.1E-01	0.0\%
2.3E-01	0.97 (0.91,1.04)	3.9E-01	6.6E-01	0.0\%	0.98 (0.91,1.05)	5.0E-01	6.5E-01	0.0\%
$1.9 \mathrm{E}-01$	0.98 (0.93,1.03)	3.9E-01	2.4E-01	28.5\%	0.97 (0.92,1.03)	3.7E-01	1.9E-01	37.1\%
9.0E-01	1.02 (0.98,1.06)	3.9E-01	8.0E-01	0.0\%	1.03 (0.98,1.07)	2.8E-01	8.8E-01	0.0\%
4.9E-01	1.02 (0.97,1.07)	$4.0 \mathrm{E}-01$	8.4E-01	0.0\%	1.02 (0.97,1.07)	4.9E-01	8.1E-01	0.0\%
1.1E-01	1.03 (0.97,1.09)	$4.0 \mathrm{E}-01$	1.9E-01	37.8\%	1.00 (0.94,1.07)	9.9E-01	3.9E-01	0.8\%
5.3E-01	1.02 (0.97,1.07)	$4.0 \mathrm{E}-01$	8.9E-01	0.0\%	1.02 (0.97,1.07)	5.0E-01	8.5E-01	0.0\%
3.6E-01	1.04 (0.95,1.13)	$4.0 \mathrm{E}-01$	7.7E-01	0.0\%	1.02 (0.93,1.12)	6.7E-01	8.2E-01	0.0\%
3.3E-01	1.02 (0.97,1.08)	$4.0 \mathrm{E}-01$	8.7E-01	0.0\%	1.01 (0.96,1.07)	6.1E-01	9.2E-01	0.0\%
5.3E-01	1.02 (0.97,1.07)	4.0E-01	8.2E-01	0.0\%	1.02 (0.97,1.07)	4.8E-01	7.8E-01	0.0\%
$6.7 \mathrm{E}-01$	1.02 (0.97,1.08)	4.0E-01	1.2E-01	48.3\%	1.02 (0.97,1.08)	4.0E-01	1.2E-01	48.6\%
5.3E-01	1.02 (0.97,1.07)	4.0E-01	8.2E-01	0.0\%	1.02 (0.97,1.07)	4.8E-01	7.9E-01	0.0\%
$1.8 \mathrm{E}-01$	0.98 (0.93,1.03)	4.0E-01	1.4E-01	44.8\%	0.98 (0.93,1.03)	4.3E-01	1.2E-01	48.4\%
4.3E-01	1.02 (0.97,1.07)	$4.0 \mathrm{E}-01$	9.9E-01	0.0\%	1.03 (0.98,1.08)	3.2E-01	9.9E-01	0.0\%
6.8E-01	0.98 (0.94,1.03)	$4.0 \mathrm{E}-01$	2.4E-01	28.6\%	0.98 (0.94,1.03)	4.5E-01	2.6E-01	24.5\%
$2.4 \mathrm{E}-01$	0.97 (0.91,1.04)	$4.0 \mathrm{E}-01$	5.9E-01	0.0\%	0.98 (0.91,1.05)	5.3E-01	6.1E-01	0.0\%
5.3E-01	1.02 (0.97,1.07)	$4.0 \mathrm{E}-01$	8.1E-01	0.0\%	1.02 (0.97,1.07)	4.9E-01	7.7E-01	0.0\%
4.3E-01	1.02 (0.97,1.07)	$4.0 \mathrm{E}-01$	9.9E-01	0.0\%	1.03 (0.98,1.08)	$3.3 \mathrm{E}-01$	9.9E-01	0.0\%
5.3E-01	1.02 (0.97,1.07)	$4.0 \mathrm{E}-01$	8.2E-01	0.0\%	1.02 (0.97,1.07)	4.9E-01	7.9E-01	0.0\%
3.3E-01	1.02 (0.97,1.07)	$4.0 \mathrm{E}-01$	8.4E-01	0.0\%	1.02 (0.97,1.08)	4.6E-01	8.9E-01	0.0\%
$4.6 \mathrm{E}-01$	1.02 (0.97,1.09)	$4.0 \mathrm{E}-01$	7.6E-01	0.0\%	1.01 (0.95,1.07)	7.6E-01	8.7E-01	0.0\%
4.2E-01	1.02 (0.97,1.07)	4.0E-01	9.9E-01	0.0\%	1.03 (0.98,1.08)	3.2E-01	9.9E-01	0.0\%
$6.4 \mathrm{E}-01$	0.98 (0.93,1.03)	4.0E-01	1.1E-01	50.6\%	0.98 (0.92,1.03)	4.1E-01	1.0E-01	51.2\%
$2.9 \mathrm{E}-01$	0.97 (0.91,1.04)	$4.0 \mathrm{E}-01$	7.1E-01	0.0\%	0.97 (0.91,1.05)	4.9E-01	7.0E-01	0.0\%
7.6E-01	0.98 (0.94,1.03)	4.0E-01	1.2E-01	48.9\%	0.99 (0.94,1.03)	5.6E-01	8.2E-02	55.3\%
$2.4 \mathrm{E}-01$	1.03 (0.96,1.10)	4.0E-01	6.8E-01	0.0\%	1.02 (0.95,1.10)	5.3E-01	7.0E-01	0.0\%
3.9E-01	0.98 (0.93,1.03)	4.1E-01	9.4E-01	0.0\%	0.98 (0.92,1.03)	4.0E-01	9.3E-01	0.0\%
3.0E-01	1.03 (0.96,1.11)	4.1E-01	1.4E-01	44.9\%	1.03 (0.95,1.11)	5.3E-01	$2.0 \mathrm{E}-01$	36.0\%
3.6E-01	1.02 (0.97,1.08)	4.1E-01	6.4E-01	0.0\%	1.02 (0.97,1.08)	4.4E-01	7.5E-01	0.0\%
1.1E-01	0.98 (0.93,1.03)	4.1E-01	1.4E-01	45.6\%	0.97 (0.92,1.03)	3.6E-01	1.0E-01	51.9\%
$2.8 \mathrm{E}-01$	1.03 (0.96,1.12)	4.1E-01	9.3E-02	53.3\%	1.03 (0.95,1.12)	4.7E-01	1.3E-01	47.0\%
5.0E-01	1.02 (0.97,1.08)	4.1E-01	1.8E-01	38.3\%	1.02 (0.97,1.08)	4.1E-01	2.0E-01	35.9\%
2.7E-01	1.03 (0.96,1.10)	4.1E-01	7.3E-01	0.0\%	1.02 (0.95,1.10)	5.1E-01	7.3E-01	0.0\%
$2.5 \mathrm{E}-01$	0.97 (0.91,1.04)	4.1E-01	6.7E-01	0.0\%	0.98 (0.91,1.05)	5.1E-01	6.6E-01	0.0\%

2.5E-01	1.03 (0.96,1.10)	4.1E-01	6.7E-01	0.0\%	1.02 (0.95,1.10)	5.2E-01	6.6E-01	0.0\%
$2.5 \mathrm{E}-01$	0.97 (0.91,1.04)	4.1E-01	6.7E-01	0.0\%	0.98 (0.91,1.05)	5.2E-01	6.6E-01	0.0\%
5.2E-01	0.95 (0.83,1.08)	4.1E-01	2.6E-01	25.6\%	0.91 (0.79,1.03)	1.5E-01	2.3E-01	30.7\%
5.3E-01	1.02 (0.98,1.06)	4.1E-01	7.6E-01	0.0\%	1.02 (0.97,1.06)	4.7E-01	8.1E-01	0.0\%
$4.5 \mathrm{E}-01$	1.02 (0.97,1.07)	$4.2 \mathrm{E}-01$	9.8E-01	0.0\%	1.03 (0.97,1.08)	3.3E-01	9.9E-01	0.0\%
7.1E-01	1.02 (0.97,1.08)	4.2E-01	2.0E-01	35.6\%	1.02 (0.97,1.08)	$4.3 \mathrm{E}-01$	$1.8 \mathrm{E}-01$	39.1\%
8.6E-01	0.98 (0.94,1.03)	4.2E-01	5.2E-01	0.0\%	0.98 (0.94,1.03)	3.8E-01	4.4E-01	0.0\%
6.3E-01	0.98 (0.94,1.02)	4.2E-01	7.7E-01	0.0\%	0.99 (0.94,1.03)	5.2E-01	6.7E-01	0.0\%
5.5E-01	1.02 (0.97,1.07)	4.2E-01	8.9E-01	0.0\%	1.02 (0.97,1.07)	5.2E-01	8.5E-01	0.0\%
7.1E-01	1.02 (0.97,1.07)	4.2E-01	1.9E-01	37.7\%	1.02 (0.97,1.08)	$4.4 \mathrm{E}-01$	$1.8 \mathrm{E}-01$	37.9\%
3.7E-01	1.02 (0.98,1.06)	4.2E-01	6.0E-01	0.0\%	1.01 (0.96,1.05)	8.0E-01	$6.4 \mathrm{E}-01$	0.0\%
5.3E-01	1.02 (0.97,1.09)	4.2E-01	7.0E-01	0.0\%	1.02 (0.95,1.08)	6.3E-01	8.0E-01	0.0\%
3.1E-01	1.03 (0.96,1.11)	4.2E-01	1.4E-01	44.6\%	1.02 (0.95,1.11)	5.5E-01	2.0E-01	35.7\%
$5.4 \mathrm{E}-01$	1.02 (0.97,1.07)	4.2E-01	8.4E-01	0.0\%	1.02 (0.97,1.07)	5.1E-01	7.9E-01	0.0\%
6.8E-01	1.02 (0.97,1.07)	4.2E-01	2.0E-01	35.4\%	1.02 (0.97,1.08)	$4.6 \mathrm{E}-01$	1.7E-01	41.0\%
$4.9 \mathrm{E}-01$	1.02 (0.97,1.08)	4.3E-01	7.3E-01	0.0\%	1.01 (0.95,1.07)	8.0E-01	8.5E-01	0.0\%
6.5E-01	0.98 (0.94,1.03)	4.3E-01	1.8E-01	38.6\%	0.99 (0.94,1.03)	5.6E-01	$1.4 \mathrm{E}-01$	45.3\%
5.5E-01	1.02 (0.97,1.07)	4.3E-01	8.4E-01	0.0\%	1.02 (0.97,1.07)	5.2E-01	8.0E-01	0.0\%
4.4E-01	1.02 (0.97,1.07)	4.3E-01	9.8E-01	0.0\%	1.02 (0.97,1.08)	3.4E-01	9.9E-01	0.0\%
4.2E-01	1.02 (0.97,1.07)	4.3E-01	6.4E-01	0.0\%	1.02 (0.97,1.08)	$4.6 \mathrm{E}-01$	7.8E-01	0.0\%
5.0E-01	1.02 (0.97,1.07)	4.3E-01	8.4E-01	0.0\%	1.02 (0.97,1.07)	5.3E-01	7.9E-01	0.0\%
$5.4 \mathrm{E}-01$	1.02 (0.97,1.08)	$4.3 \mathrm{E}-01$	7.0E-01	0.0\%	1.01 (0.95,1.08)	$6.4 \mathrm{E}-01$	7.9E-01	.0\%
5.6E-01	1.02 (0.97,1.07)	4.3E-01	8.6E-01	0.0\%	1.02 (0.97,1.07)	5.2E-01	8.1E-01	0.0\%
5.7E-01	1.02 (0.97,1.07)	$4.3 \mathrm{E}-01$	8.5E-01	0.0\%	1.02 (0.97,1.07)	5.2E-01	8.1E-01	0.0\%
4.1E-01	0.98 (0.93,1.03)	4.3E-01	6.2E-01	0.0\%	0.98 (0.93,1.03)	$4.6 \mathrm{E}-01$	7.4E-01	0.0\%
5.7E-01	1.02 (0.97,1.07)	$4.3 \mathrm{E}-01$	8.5E-01	0.0\%	1.02 (0.97,1.07)	5.2E-01	8.0E-01	0.0\%
5.7E-01	1.02 (0.97,1.07)	4.3E-01	8.5E-01	0.0\%	1.02 (0.97,1.07)	5.3E-01	8.1E-01	0.0\%
4.6E-01	1.02 (0.97,1.08)	4.3E-01	7.1E-01	0.0\%	1.01 (0.95,1.07)	7.7E-01	8.3E-01	0.0\%
$5.4 \mathrm{E}-01$	1.02 (0.97,1.07)	4.3E-01	1.0E+00	0.0\%	1.03 (0.97,1.08)	3.4E-01	$1.0 \mathrm{E}+00$	0.0\%
$4.5 \mathrm{E}-01$	1.03 (0.96,1.09)	4.3E-01	4.5E-01	0.0\%	1.03 (0.97,1.11)	$3.3 \mathrm{E}-01$	3.0E-01	18.3\%
$5.8 \mathrm{E}-01$	1.02 (0.97,1.07)	$4.3 \mathrm{E}-01$	8.5E-01	0.0\%	1.02 (0.97,1.07)	5.2E-01	8.1E-01	0.0\%
6.0E-01	1.02 (0.97,1.07)	4.3E-01	1.1E-01	50.1\%	1.02 (0.97,1.08)	$4.4 \mathrm{E}-01$	$1.1 \mathrm{E}-01$	50.9\%
$3.8 \mathrm{E}-01$	1.02 (0.97,1.07)	4.3E-01	6.6E-01	0.0\%	1.02 (0.96,1.08)	$4.9 \mathrm{E}-01$	7.6E-01	0.0\%
$5.4 \mathrm{E}-01$	1.02 (0.97,1.08)	4.4E-01	7.0E-01	0.0\%	1.01 (0.95,1.08)	6.7E-01	8.0E-01	0.0\%
5.8E-01	1.02 (0.97,1.07)	4.4E-01	8.5E-01	0.0\%	1.02 (0.97,1.07)	5.3E-01	8.1E-01	0.0\%
3.1E-01	0.98 (0.94,1.02)	4.4E-01	2.4E-01	29.4\%	0.99 (0.95,1.03)	6.6E-01	$4.2 \mathrm{E}-01$	0.0\%
5.9E-01	1.02 (0.97,1.07)	4.4E-01	8.4E-01	0.0\%	1.02 (0.97,1.07)	5.3E-01	7.9E-01	0.0\%
3.7E-01	0.98 (0.93,1.03)	$4.4 \mathrm{E}-01$	6.3E-01	0.0\%	0.98 (0.93,1.04)	5.7E-01	7.3E-01	0.0\%
5.7E-01	1.02 (0.97,1.07)	4.4E-01	8.7E-01	0.0\%	1.02 (0.97,1.07)	5.3E-01	8.3E-01	0.0\%
4.7E-01	1.02 (0.97,1.07)	4.4E-01	8.1E-01	0.0\%	1.01 (0.96,1.07)	6.1E-01	7.8E-01	0.0\%
5.7E-01	1.02 (0.97,1.07)	4.4E-01	8.5E-01	0.0\%	1.02 (0.97,1.07)	5.3E-01	8.0E-01	0.0\%
$5.0 \mathrm{E}-01$	1.02 (0.97,1.06)	4.4E-01	8.3E-01	0.0\%	1.02 (0.98,1.07)	$3.0 \mathrm{E}-01$	$8.4 \mathrm{E}-01$	0.0\%
5.9E-01	0.98 (0.94,1.03)	$4.5 \mathrm{E}-01$	$4.6 \mathrm{E}-01$	0.0\%	0.97 (0.93,1.02)	$2.4 \mathrm{E}-01$	5.0E-01	0.0\%
2.9E-01	0.97 (0.91,1.04)	4.5E-01	6.5E-01	0.0\%	0.98 (0.91,1.06)	6.7E-01	6.8E-01	0.0\%
4.4E-01	0.96 (0.86,1.07)	4.5E-01	3.3E-01	13.1\%	0.91 (0.81,1.02)	1.1E-01	$2.5 \mathrm{E}-01$	27.8\%
5.2E-01	0.98 (0.94,1.03)	4.5E-01	1.1E-01	50.6\%	0.99 (0.94,1.03)	5.6E-01	8.8E-02	54.1\%
6.2E-01	1.02 (0.97,1.07)	4.5E-01	8.2E-01	0.0\%	1.02 (0.96,1.07)	5.5E-01	7.7E-01	0.0\%
$5.5 \mathrm{E}-01$	1.02 (0.97,1.07)	4.5E-01	8.6E-01	0.0\%	1.01 (0.96,1.07)	6.0E-01	$8.4 \mathrm{E}-01$	0.0\%
8.0E-01	1.02 (0.97,1.06)	4.5E-01	5.1E-01	0.0\%	1.01 (0.96,1.05)	8.1E-01	3.5E-01	8.5\%
1.7E-01	0.98 (0.93,1.03)	4.5E-01	3.0E-01	17.7\%	0.98 (0.93,1.03)	4.0E-01	$2.5 \mathrm{E}-01$	27.2\%

5.7E-01	1.03 (0.96,1.10)	4.5E-01	1.7E-01	40.0\%	1.03 (0.95,1.11)	4.8E-01	1.4E-01	44.6\%
6.6E-01	1.02 (0.97,1.07)	4.5E-01	7.4E-01	0.0\%	1.02 (0.97,1.07)	5.3E-01	7.2E-01	0.0\%
5.2E-01	0.98 (0.94,1.03)	4.6E-01	$1.5 \mathrm{E}-01$	42.8\%	0.99 (0.94,1.03)	5.8E-01	1.4E-01	45.0\%
4.3E-01	0.98 (0.94,1.03)	4.6E-01	9.1E-01	0.0\%	0.97 (0.92,1.02)	2.6E-01	7.4E-01	0.0\%
$9.6 \mathrm{E}-01$	1.02 (0.97,1.06)	4.6E-01	7.3E-01	0.0\%	1.02 (0.98,1.07)	3.5E-01	8.3E-01	0.0\%
$6.2 \mathrm{E}-01$	1.02 (0.97,1.07)	4.6E-01	$1.0 \mathrm{E}+00$	0.0\%	1.02 (0.97,1.08)	3.5E-01	$1.0 \mathrm{E}+00$	0.0\%
6.2E-01	1.02 (0.97,1.07)	4.6E-01	7.5E-01	0.0\%	1.02 (0.97,1.07)	5.3E-01	7.4E-01	0.0\%
6.5E-01	1.02 (0.97,1.07)	4.6E-01	8.3E-01	0.0\%	1.02 (0.97,1.07)	5.3E-01	8.1E-01	0.0\%
4.7E-01	1.02 (0.97,1.08)	4.6E-01	8.1E-01	0.0\%	1.01 (0.95,1.07)	8.0E-01	9.1E-01	0.0\%
6.3E-01	1.02 (0.97,1.07)	4.6E-01	7.5E-01	0.0\%	1.02 (0.96,1.07)	5.4E-01	7.3E-01	0.0\%
4.2E-01	1.02 (0.97,1.07)	4.6E-01	6.8E-01	0.0\%	1.02 (0.96,1.08)	5.2E-01	8.1E-01	0.0\%
6.3E-01	1.02 (0.97,1.07)	4.6E-01	$1.2 \mathrm{E}-01$	47.8\%	1.02 (0.96,1.08)	5.0E-01	1.1E-01	50.1\%
6.6E-02	1.02 (0.97,1.08)	4.6E-01	1.1E-01	50.9\%	1.02 (0.96,1.08)	5.2E-01	$1.2 \mathrm{E}-01$	48.1\%
3.0E-01	0.97 (0.91,1.04)	4.6E-01	6.5E-01	0.0\%	0.98 (0.91,1.06)	6.9E-01	6.9E-01	.0\%
$3.8 \mathrm{E}-01$	0.98 (0.93,1.03)	$4.6 \mathrm{E}-01$	6.3E-01	0.0\%	0.98 (0.93,1.04)	5.6E-01	7.0E-01	0.0\%
6.2E-01	0.98 (0.94,1.03)	4.6E-01	2.0E-01	34.9\%	0.98 (0.94,1.04)	5.5E-01	1.7E-01	40.3\%
4.0E-01	0.98 (0.93,1.03)	4.6E-01	6.3E-01	0.0\%	0.98 (0.93,1.04)	5.5E-01	7.3E-01	0.0\%
2.2E-01	0.98 (0.93,1.03)	4.6E-01	2.7E-01	23.1\%	0.98 (0.93,1.03)	4.1E-01	2.2E-01	32.6\%
5.5E-01	1.02 (0.97,1.07)	4.7E-01	8.4E-01	0.0\%	1.01 (0.96,1.06)	6.6E-01	8.3E-01	0.0\%
5.7E-01	1.02 (0.97,1.07)	4.7E-01	9.1E-01	0.0\%	1.02 (0.96,1.07)	5.6E-01	8.9E-01	0.0\%
8.4E-01	1.02 (0.97,1.06)	4.7E-01	5.4E-01	0.0\%	1.00 (0.96,1.05)	8.6E-01	3.6E-01	6.1\%
6.1E-01	1.02 (0.97,1.07)	4.7E-01	9.1E-01	0.0\%	1.02 (0.97,1.07)	5.4E-01	8.7E-01	0.0\%
6.1E-01	1.02 (0.97,1.07)	4.7E-01	9.1E-01	0.0\%	1.02 (0.97,1.07)	$5.4 \mathrm{E}-01$	8.7E-01	0.0\%
6.1E-01	1.02 (0.97,1.07)	4.7E-01	9.6E-01	0.0\%	1.01 (0.96,1.07)	5.9E-01	9.6E-01	0.0\%
5.1E-01	0.98 (0.94,1.03)	4.7E-01	1.2E-01	48.9\%	0.99 (0.94,1.03)	5.9E-01	9.7E-02	52.5\%
6.2E-01	1.02 (0.97,1.07)	4.7E-01	9.0E-01	0.0\%	1.02 (0.97,1.07)	5.4E-01	8.7E-01	0.0\%
5.1E-01	0.98 (0.94,1.03)	4.7E-01	1.2E-01	48.9\%	0.99 (0.94,1.03)	5.9E-01	9.7E-02	52.5\%
5.9E-01	0.98 (0.94,1.03)	4.7E-01	$1.7 \mathrm{E}-01$	40.5\%	0.99 (0.94,1.03)	5.9E-01	$1.3 \mathrm{E}-01$	46.2\%
4.0E-01	0.98 (0.93,1.03)	4.7E-01	6.6E-01	0.0\%	0.98 (0.93,1.04)	5.7E-01	7.4E-01	0.0\%
6.0E-01	0.98 (0.94,1.03)	4.7E-01	$1.7 \mathrm{E}-01$	40.4\%	0.99 (0.94,1.03)	6.1E-01	$1.3 \mathrm{E}-01$	46.4\%
5.3E-01	1.02 (0.97,1.07)	$4.8 \mathrm{E}-01$	7.7E-01	0.0\%	1.01 (0.96,1.06)	6.4E-01	7.3E-01	0.0\%
6.3E-01	1.02 (0.97,1.07)	$4.8 \mathrm{E}-01$	9.0E-01	0.0\%	1.02 (0.97,1.07)	5.5E-01	8.7E-01	0.0\%
5.8E-01	0.96 (0.86,1.07)	4.8E-01	$3.3 \mathrm{E}-01$	13.1\%	0.91 (0.81,1.03)	1.3E-01	2.9E-01	20.5\%
5.8E-01	0.96 (0.86,1.07)	$4.8 \mathrm{E}-01$	3.2E-01	13.5\%	0.91 (0.81,1.03)	1.3E-01	$2.8 \mathrm{E}-01$	21.1\%
4.1E-01	0.98 (0.93,1	$4.8 \mathrm{E}-01$	6.7E-01	0.0\%	0.98 (0.93,1.04)	5.7E-01	7.6E-01	0.0\%
5.9E-01	0.98 (0.94,1.03)	$4.8 \mathrm{E}-01$	$1.5 \mathrm{E}-01$	44.2\%	0.99 (0.94,1.03)	5.8E-01	1.2E-01	49.3\%
3.6E-01	0.98 (0.93,1.03)	$4.8 \mathrm{E}-01$	6.9E-01	0.0\%	0.98 (0.93,1.04)	5.5E-01	7.0E-01	0.0\%
5.8E-01	0.96 (0.86,1.07)	$4.8 \mathrm{E}-01$	3.2E-01	13.6\%	0.91 (0.81,1.03)	1.3E-01	2.8E-01	21.4\%
5.8E-01	0.96 (0.86,1.07)	$4.8 \mathrm{E}-01$	3.2E-01	13.7\%	0.91 (0.81,1.03)	$1.3 \mathrm{E}-01$	$2.8 \mathrm{E}-01$	21.4\%
$6.8 \mathrm{E}-01$	0.98 (0.93,1.03)	$4.8 \mathrm{E}-01$	2.3E-01	30.9\%	0.98 (0.93,1.04)	$4.9 \mathrm{E}-01$	2.2E-01	31.9\%
6.1E-01	1.02 (0.97,1.07)	4.8E-01	9.0E-01	0.0\%	1.02 (0.97,1.07)	5.5E-01	8.7E-01	0.0\%
$5.8 \mathrm{E}-01$	1.02 (0.97,1.07)	$4.8 \mathrm{E}-01$	$1.0 \mathrm{E}+00$	0.0\%	1.02 (0.97,1.08)	$3.9 \mathrm{E}-01$	$1.0 \mathrm{E}+00$	0.0\%
4.0E-01	1.04 (0.93,1.16)	$4.8 \mathrm{E}-01$	4.5E-01	0.0\%	1.05 (0.94,1.18)	$3.8 \mathrm{E}-01$	$4.2 \mathrm{E}-01$	0.0\%
8.6E-01	1.02 (0.97,1.06)	$4.8 \mathrm{E}-01$	4.6E-01	0.0\%	1.01 (0.96,1.05)	8.3E-01	3.2E-01	13.5\%
6.5E-01	1.02 (0.97,1.07)	4.8E-01	7.8E-01	0.0\%	1.02 (0.96,1.07)	5.5E-01	7.7E-01	0.0\%
6.6E-01	1.04 (0.94,1.14)	$4.9 \mathrm{E}-01$	3.3E-01	12.4\%	1.02 (0.92,1.13)	6.9E-01	3.1E-01	15.6\%
5.5E-01	1.02 (0.97,1.07)	4.9E-01	7.6E-01	0.0\%	1.01 (0.96,1.06)	$6.5 \mathrm{E}-01$	7.3E-01	0.0\%
7.5E-01	0.98 (0.92,1.04)	$4.9 \mathrm{E}-01$	9.8E-01	0.0\%	0.98 (0.92,1.04)	$4.6 \mathrm{E}-01$	9.8E-01	0.0\%
5.3E-01	1.02 (0.97,1.07)	$4.9 \mathrm{E}-01$	7.8E-01	0.0\%	1.01 (0.96,1.06)	6.5E-01	7.5E-01	0.0\%
1.2E-01	0.98 (0.92,1.04)	$4.9 \mathrm{E}-01$	2.7E-01	23.3\%	0.98 (0.93,1.05)	$6.0 \mathrm{E}-01$	3.0E-01	18.0\%

6.0E-01	0.96 (0.86,1.07)	4.9E-01	3.2E-01	13.6\%	0.91 (0.81,1.03)	1.3E-01	2.9E-01	20.2\%
6.9E-02	1.02 (0.97,1.07)	$4.9 \mathrm{E}-01$	3.7E-02	64.7\%	1.02 (0.96,1.08)	$4.8 \mathrm{E}-01$	3.3E-02	65.6\%
6.4E-01	0.96 (0.86,1.08)	$4.9 \mathrm{E}-01$	2.6E-01	25.4\%	0.91 (0.81,1.03)	1.4E-01	2.4E-01	28.6\%
$4.3 \mathrm{E}-01$	1.03 (0.95,1.10)	4.9E-01	2.5E-01	27.7\%	1.02 (0.94,1.10)	6.1E-01	2.6E-01	24.9\%
5.3E-01	1.02 (0.97,1.07)	4.9E-01	7.7E-01	0.0\%	1.01 (0.96,1.06)	6.5E-01	7.4E-01	0.0\%
5.7E-01	1.02 (0.97,1.07)	4.9E-01	7.7E-01	0.0\%	1.01 (0.96,1.06)	6.6E-01	7.3E-01	0.0\%
3.1E-01	0.98 (0.91,1.05)	$4.9 \mathrm{E}-01$	6.4E-01	0.0\%	0.99 (0.92,1.06)	7.1E-01	6.7E-01	0.0\%
8.8E-01	0.98 (0.94,1.03)	5.0E-01	3.4E-01	10.0\%	0.98 (0.93,1.03)	4.1E-01	4.4E-01	0.0\%
7.0E-01	1.04 (0.94,1.15)	5.0E-01	2.9E-01	19.3\%	1.02 (0.91,1.14)	7.2E-01	2.8E-01	21.5\%
9.0E-01	1.03 (0.94,1.13)	5.0E-01	6.5E-01	0.0\%	1.03 (0.94,1.13)	5.5E-01	6.7E-01	0.0\%
3.1E-01	0.98 (0.91,1.05)	5.0E-01	6.0E-01	0.0\%	0.98 (0.91,1.06)	6.2E-01	6.1E-01	0.0\%
7.1E-01	1.04 (0.93,1.15)	5.0E-01	3.0E-01	17.8\%	1.02 (0.91,1.14)	7.3E-01	2.9E-01	20.1\%
6.0E-01	0.96 (0.86,1.08)	5.0E-01	3.2E-01	14.7\%	0.92 (0.81,1.03)	$1.3 \mathrm{E}-01$	$2.8 \mathrm{E}-01$	22.0\%
6.0E-01	0.96 (0.86,1.08)	5.0E-01	3.2E-01	14.3\%	0.91 (0.81,1.03)	1.3E-01	$2.8 \mathrm{E}-01$	21.8\%
6.7E-01	1.03 (0.94,1.14)	5.0E-01	3.3E-01	13.2\%	1.02 (0.92,1.13)	7.1E-01	3.1E-01	16.2\%
5.0E-01	1.02 (0.97,1.06)	5.0E-01	1.2E-01	48.0\%	1.01 (0.97,1.06)	5.8E-01	$1.1 \mathrm{E}-01$	51.0\%
6.1E-01	1.02 (0.97,1.07)	5.0E-01	8.6E-01	0.0\%	1.02 (0.97,1.08)	$4.6 \mathrm{E}-01$	8.4E-01	0.0\%
5.4E-01	1.02 (0.97,1.07)	5.0E-01	7.7E-01	0.0\%	1.01 (0.96,1.06)	6.7E-01	7.4E-01	0.0\%
5.4E-01	1.02 (0.97,1.07)	5.0E-01	7.7E-01	0.0\%	1.01 (0.96,1.06)	$6.8 \mathrm{E}-01$	7.4E-01	0.0\%
9.5E-01	1.01 (0.97,1.06)	5.0E-01	7.7E-01	0.0\%	1.02 (0.98,1.07)	3.7E-01	8.7E-01	0.0\%
7.7E-01	1.01 (0.97,1.06)	5.0E-01	4.8E-01	0.0\%	1.03 (0.99,1.08)	1.7E-01	3.9E-01	0.2\%
5.3E-01	1.02 (0.97,1.07)	5.0E-01	7.5E-01	0.0\%	1.01 (0.96,1.06)	6.8E-01	7.2E-01	0.0\%
$6.0 \mathrm{E}-01$	1.02 (0.97,1.07)	$5.1 \mathrm{E}-0$	9.1E-01	0.0\%	1.01 (0.96,1.07)	6.1E-01	8.8E-01	0.0\%
6.7E-01	1.02 (0.97,1.07)	5.1E-01	9.0E-01	0.0\%	1.01 (0.96,1.07)	5.8E-01	8.7E-01	0.0\%
6.6E-01	1.02 (0.97,1.07)	5.1E-01	9.1E-01	0.0\%	1.01 (0.96,1.07)	6.0E-01	8.8E-01	0.0\%
6.0E-01	1.02 (0.96,1.08)	5.1E-01	8.5E-01	0.0\%	1.02 (0.96,1.09)	5.4E-01	8.0E-01	0.0\%
$5.1 \mathrm{E}-01$	0.96 (0.86,1.07)	5.1E-01	6.7E-01	0.0\%	0.97 (0.87,1.09)	6.6E-01	7.7E-01	0.0\%
$4.2 \mathrm{E}-01$	1.04 (0.93,1.15)	5.1E-01	4.6E-01	0.0\%	1.05 (0.94,1.18)	4.0E-01	4.3E-01	0.0\%
2.6E-01	1.02 (0.97,1.07)	5.1E-01	1.3E-01	47.0\%	1.02 (0.97,1.07)	$4.9 \mathrm{E}-01$	$1.0 \mathrm{E}-01$	51.8\%
6.7E-01	1.02 (0.97,1.07)	5.1E-01	9.0E-01	0.0\%	1.01 (0.96,1.07)	5.8E-01	8.7E-01	0.0\%
4.2E-01	1.04 (0.93,1.15)	5.1E-01	4.6E-01	0.0\%	1.05 (0.94,1.18)	$4.0 \mathrm{E}-01$	$4.3 \mathrm{E}-01$	0.0\%
4.2E-01	1.04 (0.93,1.15)	$5.1 \mathrm{E}-0$	4.6E-01	0.0\%	1.05 (0.94,1.18)	$4.0 \mathrm{E}-01$	$4.3 \mathrm{E}-01$	0.0\%
4.2E-01	1.04 (0.93,1.15)	5.1E-01	4.6E-01	0.0\%	1.05 (0.94,1.18)	$4.0 \mathrm{E}-01$	4.3E-01	0.0\%
4.2E-01	1.04 (0.93,1.15)	5.1E-01	4.6E-01	0.0\%	1.05 (0.94,1.18)	4.0E-01	4.3E-01	0.0\%
$6.4 \mathrm{E}-01$	1.02 (0.97,1.07)	5.1E-01	8.5E-01	0.0\%	1.02 (0.96,1.07)	5.7E-01	8.4E-01	0.0\%
4.2E-01	1.04 (0.93,1.15)	5.1E-01	4.6E-01	0.0\%	1.05 (0.94,1.18)	$4.0 \mathrm{E}-01$	4.3E-01	0.0\%
4.2E-01	1.04 (0.93,1.15)	5.1E-01	4.6E-01	0.0\%	1.05 (0.94,1.18)	4.0E-01	$4.3 \mathrm{E}-01$	0.0\%
4.2E-01	1.04 (0.93,1.15)	5.1E-01	4.6E-01	0.0\%	1.05 (0.94,1.18)	$4.0 \mathrm{E}-01$	$4.3 \mathrm{E}-01$	0.0\%
2.6E-01	1.02 (0.97,1.07)	5.1E-01	1.2E-01	48.3\%	1.02 (0.97,1.07)	5.0E-01	9.6E-02	52.7\%
5.7E-01	0.99 (0.94,1.03)	5.1E-01	5.5E-01	0.0\%	0.99 (0.95,1.04)	7.1E-01	5.4E-01	0.0\%
5.3E-01	1.02 (0.97,1.07)	5.2E-01	7.5E-01	0.0\%	1.01 (0.96,1.06)	$6.9 \mathrm{E}-01$	7.2E-01	0.0\%
5.9E-01	1.04 (0.92,1.17)	5.2E-01	9.0E-01	0.0\%	1.02 (0.90,1.16)	7.4E-01	7.8E-01	0.0\%
9.3E-02	0.98 (0.94,1.03)	5.2E-01	1.9E-01	37.6\%	0.99 (0.94,1.04)	6.1E-01	2.1E-01	33.6\%
$4.2 \mathrm{E}-01$	0.97 (0.88,1.07)	5.2E-01	3.1E-01	16.9\%	0.99 (0.89,1.09)	7.8E-01	5.0E-01	0.0\%
6.4E-01	1.02 (0.97,1.07)	5.2E-01	8.9E-01	0.0\%	1.01 (0.96,1.07)	6.1E-01	8.6E-01	0.0\%
6.1E-01	1.02 (0.97,1.07)	5.2E-01	9.1E-01	0.0\%	1.01 (0.96,1.07)	6.1E-01	8.8E-01	0.0\%
6.1E-01	1.02 (0.97,1.07)	5.2E-01	9.1E-01	0.0\%	1.01 (0.96,1.07)	6.1E-01	8.8E-01	0.0\%
6.1E-01	1.02 (0.97,1.07)	5.2E-01	9.1E-01	0.0\%	1.01 (0.96,1.07)	6.1E-01	8.8E-01	0.0\%
4.9E-01	1.01 (0.97,1.06)	5.2E-01	1.1E-01	49.6\%	1.01 (0.97,1.06)	$6.3 \mathrm{E}-01$	9.0E-02	53.9\%
5.3E-01	0.99 (0.94,1.03)	5.2E-01	1.6E-01	41.5\%	0.99 (0.95,1.04)	6.5E-01	$1.3 \mathrm{E}-01$	46.8\%

6.2E-01	1.02 (0.97,1.07)	5.2E-01	9.0E-01	0.0\%	1.01 (0.96,1.07)	6.1E-01	8.7E-01	0.0\%
6.7E-01	1.02 (0.95,1.10)	5.2E-01	1.7E-01	40.4\%	1.02 (0.95,1.10)	5.4E-01	$1.4 \mathrm{E}-01$	45.0\%
4.7E-01	0.98 (0.90,1.05)	5.2E-01	7.2E-01	0.0\%	0.98 (0.90,1.06)	6.0E-01	7.2E-01	0.0\%
2.6E-01	0.98 (0.92,1.04)	5.2E-01	5.5E-01	0.0\%	0.98 (0.92,1.05)	6.0E-01	5.4E-01	0.0\%
$2.4 \mathrm{E}-01$	0.97 (0.88,1.06)	5.3E-01	3.0E-01	17.8\%	0.97 (0.88,1.07)	5.7E-01	2.7E-01	23.0\%
5.9E-01	1.04 (0.92,1.17)	5.3E-01	8.6E-01	0.0\%	1.02 (0.90,1.16)	7.5E-01	7.3E-01	0.0\%
3.8E-01	1.02 (0.95,1.10)	5.3E-01	1.4E-01	44.4\%	1.02 (0.94,1.10)	6.4E-01	$1.9 \mathrm{E}-01$	36.6\%
5.1E-01	0.99 (0.94,1.03)	5.3E-01	1.5E-01	43.5\%	0.99 (0.95,1.04)	6.7E-01	$1.2 \mathrm{E}-01$	47.9\%
4.8E-01	0.98 (0.90,1.05)	5.3E-01	7.3E-01	0.0\%	0.98 (0.90,1.06)	6.1E-01	$7.2 \mathrm{E}-01$	0.0\%
5.2E-01	0.99 (0.94,1.03)	5.3E-01	1.6E-01	41.8\%	0.99 (0.95,1.04)	6.8E-01	1.3E-01	47.0\%
8.7E-01	1.01 (0.97,1.06)	5.3E-01	3.1E-01	16.4\%	1.03 (0.98,1.07)	2.1E-01	3.0E-01	18.8\%
6.1E-01	1.02 (0.97,1.07)	5.3E-01	9.0E-01	0.0\%	1.01 (0.96,1.07)	6.2E-01	8.7E-01	0.0\%
$2.5 \mathrm{E}-01$	0.98 (0.94,1.03)	5.3E-01	1.6E-01	42.3\%	0.99 (0.94,1.04)	5.8E-01	$1.3 \mathrm{E}-01$	46.9\%
5.6E-01	1.02 (0.97,1.06)	5.3E-01	$1.0 \mathrm{E}+00$	0.0\%	1.02 (0.97,1.07)	4.4E-01	$1.0 \mathrm{E}+00$	0.0\%
9.0E-01	1.01 (0.97,1.06)	5.3E-01	3.0E-01	18.2\%	1.03 (0.98,1.07)	2.1E-01	$2.9 \mathrm{E}-01$	19.1\%
5.5E-01	0.98 (0.93,1.04)	5.4E-01	9.5E-01	0.0\%	0.99 (0.93,1.05)	6.9E-01	8.9E-01	0.0\%
7.1E-01	0.97 (0.86,1.08)	5.4E-01	2.9E-01	20.7\%	0.92 (0.82,1.04)	1.8E-01	2.8E-01	22.0\%
7.0E-01	1.01 (0.97,1.06)	5.4E-01	8.8E-01	0.0\%	1.01 (0.96,1.06)	6.6E-01	8.4E-01	0.0\%
4.8E-01	0.98 (0.91,1.05)	5.4E-01	7.6E-01	0.0\%	0.98 (0.91,1.06)	6.3E-01	7.6E-01	0.0\%
6.7E-01	1.01 (0.97,1.06)	5.4E-01	9.9E-01	0.0\%	1.01 (0.97,1.06)	5.8E-01	9.5E-01	0.0\%
7.8E-02	0.97 (0.90,1.06)	5.4E-01	1.3E-01	47.4\%	0.99 (0.90,1.08)	7.7E-01	2.0E-01	35.1\%
3.4E-01	1.02 (0.96,1.08)	5.5E-01	9.8E-02	52.4\%	1.03 (0.96,1.10)	4.0E-01	8.4E-02	54.9\%
7.7E-01	0.98 (0.94,1.03)	5.5E-01	4.6E-01	0.0\%	0.98 (0.93,1.04)	5.0E-01	5.3E-01	0.0\%
6.8E-01	0.99 (0.94,1.03)	5.5E-01	3.4E-01	9.6\%	0.99 (0.94,1.04)	6.3E-01	3.1E-01	16.7\%
4.7E-01	1.01 (0.97,1.06)	5.5E-01	1.1E-01	49.5\%	1.01 (0.97,1.06)	6.5E-01	9.2E-02	53.3\%
5.3E-01	0.97 (0.87,1.08)	5.5E-01	7.2E-01	0.0\%	0.98 (0.87,1.10)	7.2E-01	8.2E-01	0.0\%
4.7E-01	0.98 (0.93,1.04)	5.5E-01	6.4E-01	0.0\%	0.99 (0.93,1.04)	6.1E-01	7.5E-01	0.0\%
7.7E-01	1.02 (0.96,1.09)	5.5E-01	6.9E-01	0.0\%	1.01 (0.95,1.08)	7.5E-01	7.5E-01	0.0\%
9.7E-01	0.99 (0.94,1.03)	5.5E-01	3.5E-01	7.9\%	0.98 (0.93,1.03)	4.6E-01	4.5E-01	0.0\%
7.3E-01	1.01 (0.97,1.06)	5.5E-01	9.0E-01	0.0\%	1.01 (0.96,1.07)	6.4E-01	8.7E-01	0.0\%
$6.9 \mathrm{E}-01$	0.99 (0.94,1.03)	5.5E-01	3.1E-01	17.0\%	0.99 (0.94,1.04)	6.9E-01	$2.4 \mathrm{E}-01$	28.0\%
4.9E-01	0.99 (0.94,1.03)	5.5E-01	1.4E-01	45.2\%	0.99 (0.95,1.04)	6.6E-01	$1.2 \mathrm{E}-01$	49.3\%
9.6E-01	0.99 (0.94,1.03)	5.5E-01	3.4E-01	11.4\%	0.98 (0.93,1.03)	4.8E-01	4.2E-01	0.0\%
3.4E-01	1.02 (0.96,1.08)	5.5E-01	1.2E-01	48.1\%	1.03 (0.96,1.09)	4.2E-01	1.1E-01	50.6\%
4.6E-01	1.01 (0.97,1.06)	5.5E-01	1.1E-01	50.2\%	1.01 (0.97,1.06)	6.5E-01	9.3E-02	53.3\%
$5.4 \mathrm{E}-01$	0.97 (0.87,1.08)	5.6E-01	7.1E-01	0.0\%	0.98 (0.87,1.10)	7.3E-01	8.2E-01	0.0\%
7.2E-01	1.01 (0.97,1.06)	5.6E-01	9.0E-01	0.0\%	1.01 (0.96,1.06)	6.4E-01	8.7E-01	0.0\%
4.9E-01	0.99 (0.95,1.03)	5.6E-01	1.4E-01	44.5\%	0.99 (0.95,1.04)	6.7E-01	$1.2 \mathrm{E}-01$	49.0\%
5.7E-01	1.01 (0.97,1.06)	5.6E-01	8.1E-01	0.0\%	1.01 (0.97,1.06)	5.5E-01	7.2E-01	0.0\%
4.7E-01	1.03 (0.93,1.15)	5.6E-01	5.3E-01	0.0\%	1.05 (0.93,1.17)	4.4E-01	4.9E-01	0.0\%
7.1E-01	1.01 (0.97,1.07)	5.6E-01	9.9E-01	0.0\%	1.02 (0.97,1.07)	4.5E-01	$1.0 \mathrm{E}+00$	0.0\%
$8.8 \mathrm{E}-01$	1.01 (0.97,1.05)	5.6E-01	2.5E-01	26.9\%	1.03 (0.98,1.07)	2.3E-01	2.2E-01	32.4\%
7.6E-01	1.02 (0.96,1.08)	5.6E-01	1.4E-01	45.2\%	1.02 (0.96,1.08)	5.9E-01	$1.4 \mathrm{E}-01$	44.6\%
8.1E-01	1.01 (0.97,1.06)	5.6E-01	6.8E-01	0.0\%	1.02 (0.97,1.07)	4.2E-01	8.2E-01	0.0\%
6.7E-01	0.99 (0.94,1.03)	5.6E-01	$1.0 \mathrm{E}+00$	0.0\%	0.99 (0.94,1.04)	6.8E-01	$1.0 \mathrm{E}+00$	0.0\%
8.1E-01	1.01 (0.97,1.06)	5.7E-01	6.8E-01	0.0\%	1.02 (0.97,1.07)	4.2E-01	8.2E-01	0.0\%
5.7E-01	1.01 (0.97,1.06)	5.7E-01	7.9E-01	0.0\%	1.01 (0.96,1.06)	7.3E-01	7.6E-01	0.0\%
1.2E-01	1.02 (0.96,1.07)	5.7E-01	1.6E-01	41.6\%	1.01 (0.96,1.07)	6.5E-01	2.0E-01	36.0\%
7.4E-01	1.03 (0.92,1.16)	5.7E-01	8.3E-01	0.0\%	1.02 (0.90,1.15)	7.6E-01	9.4E-01	0.0\%
2.6E-01	1.04 (0.91,1.19)	5.7E-01	8.3E-02	55.1\%	1.06 (0.92,1.23)	4.3E-01	6.8E-02	57.9\%

4.8E-01	1.01 (0.97,1.06)	5.7E-01	5.9E-01	0.0\%	1.00 (0.96,1.05)	8.9E-01	6.2E-01	0.0\%
1.2E-01	1.02 (0.96,1.07)	5.7E-01	1.6E-01	41.5\%	1.01 (0.96,1.07)	6.5E-01	$2.0 \mathrm{E}-01$	36.0\%
4.8E-01	0.98 (0.91,1.06)	5.7E-01	7.0E-01	0.0\%	0.98 (0.91,1.06)	6.6E-01	7.0E-01	0.0\%
7.9E-01	0.99 (0.94,1.03)	5.7E-01	5.4E-01	0.0\%	0.98 (0.94,1.03)	4.5E-01	4.6E-01	0.0\%
$8.6 \mathrm{E}-01$	1.01 (0.97,1.06)	5.7E-01	7.5E-01	0.0\%	1.02 (0.97,1.07)	$4.2 \mathrm{E}-01$	8.6E-01	0.0\%
5.2E-01	1.02 (0.95,1.09)	5.7E-01	1.9E-01	37.5\%	1.01 (0.94,1.09)	$7.9 \mathrm{E}-01$	2.3E-01	30.5\%
4.7E-01	1.03 (0.93,1.15)	5.7E-01	4.8E-01	0.0\%	1.04 (0.93,1.17)	4.5E-01	$4.5 \mathrm{E}-01$	0.0\%
$2.8 \mathrm{E}-01$	0.99 (0.94,1.04)	5.7E-01	8.6E-02	54.6\%	0.99 (0.94,1.04)	6.5E-01	7.5E-02	56.5\%
6.3E-01	0.99 (0.94,1.04)	5.7E-01	9.7E-01	0.0\%	0.99 (0.94,1.04)	6.8E-01	9.4E-01	0.0\%
9.2E-01	0.99 (0.94,1.03)	5.7E-01	6.4E-01	0.0\%	0.99 (0.94,1.04)	7.0E-01	7.1E-01	0.0\%
6.4E-01	1.01 (0.97,1.06)	5.7E-01	9.9E-01	0.0\%	1.01 (0.96,1.06)	6.4E-01	9.3E-01	0.0\%
7.4E-01	1.01 (0.97,1.06)	5.8E-01	9.1E-01	0.0\%	1.01 (0.96,1.06)	6.7E-01	8.9E-01	0.0\%
9.6E-02	0.99 (0.94,1.04)	5.8E-01	1.5E-01	43.9\%	0.99 (0.94,1.04)	$6.6 \mathrm{E}-01$	$1.6 \mathrm{E}-01$	41.7\%
2.8E-01	1.04 (0.91,1.19)	5.8E-01	9.6E-02	52.7\%	1.06 (0.92,1.23)	$4.3 \mathrm{E}-01$	7.9E-02	55.8\%
6.2E-01	1.01 (0.97,1.06)	5.8E-01	8.4E-01	0.0\%	1.02 (0.98,1.07)	3.1E-01	8.2E-01	0.0\%
7.5E-01	0.95 (0.80,1.14)	5.8E-01	1.7E-01	39.6\%	0.95 (0.79,1.15)	6.2E-01	2.4E-01	28.3\%
$9.8 \mathrm{E}-02$	0.99 (0.94,1.04)	5.8E-01	1.5E-01	43.6\%	0.99 (0.94,1.04)	6.6E-01	1.6E-01	.3\%
$2.8 \mathrm{E}-01$	1.04 (0.91,1.19)	5.9E-01	8.2E-02	55.2\%	1.06 (0.91,1.22)	$4.6 \mathrm{E}-01$	7.1E-02	57.2\%
7.6E-01	1.01 (0.97,1.06)	5.9E-01	9.1E-01	0.0\%	1.01 (0.96,1.06)	$6.8 \mathrm{E}-01$	8.8E-01	0.0\%
5.6E-01	0.97 (0.88,1.07)	5.9E-01	4.4E-01	0.0\%	0.99 (0.89,1.10)	9.0E-01	5.9E-01	0.0\%
5.6E-01	0.97 (0.88,1.07)	5.9E-01	4.4E-01	0.0\%	0.99 (0.89,1.10)	9.0E-01	5.9E-01	0.0\%
7.3E-01	1.01 (0.97,1.06)	$5.9 \mathrm{E}-0$	9.1E-01	0.0\%	1.01 (0.96,1.06)	6.7E-01	8.9E-01	0.0\%
$1.1 \mathrm{E}-01$	1.01 (0.96,1.07)	5.9E-01	1.4E-01	45.0\%	1.01 (0.96,1.07)	$6.9 \mathrm{E}-01$	$1.8 \mathrm{E}-01$	38.7\%
6.5E-01	1.01 (0.97,1.06)	5.9E-01	9.6E-01	0.0\%	1.01 (0.96,1.06)	6.4E-01	8.9E-01	0.0\%
5.0E-01	1.01 (0.97,1.06)	5.9E-01	5.9E-01	0.0\%	1.00 (0.95,1.05)	9.2E-01	6.3E-01	0.0\%
$2.8 \mathrm{E}-01$	1.04 (0.91,1.19)	5.9E-01	8.3E-02	55.1\%	1.06 (0.91,1.22)	$4.6 \mathrm{E}-01$	7.2E-02	57.2\%
4.3E-01	1.01 (0.96,1.07)	5.9E-01	1.1E-01	49.5\%	1.02 (0.96,1.07)	5.5E-01	1.1E-01	50.8\%
9.1E-01	1.05 (0.89,1.23)	5.9E-01	8.5E-01	0.0\%	1.03 (0.87,1.22)	7.4E-01	8.3E-01	0.0\%
6.1E-01	1.01 (0.97,1.06)	5.9E-01	$1.0 \mathrm{E}+00$	0.0\%	1.01 (0.96,1.06)	7.1E-01	9.9E-01	0.0\%
7.6E-01	1.01 (0.97,1.06)	5.9E-01	9.3E-01	0.0\%	1.01 (0.96,1.06)	6.8E-01	9.1E-01	0.0\%
$4.5 \mathrm{E}-01$	1.01 (0.96,1.07)	$5.9 \mathrm{E}-0$	1.1E-01	50.3\%	1.02 (0.96,1.08)	5.4E-01	1.1E-01	50.1\%
7.5E-01	1.01 (0.97,1.06)	5.9E-01	9.0E-01	0.0\%	1.01 (0.96,1.06)	$6.9 \mathrm{E}-01$	8.8E-01	0.0\%
2.9E-01	1.04 (0.91,1.19)	5.9E-01	8.3E-02	55.1\%	1.06 (0.91,1.22)	$4.5 \mathrm{E}-01$	7.2E-02	57.2\%
2.8E-01	1.04 (0.91,1.19)	5.9E-01	7.1E-02	57.4\%	1.06 (0.92,1.22)	4.5E-01	6.1E-02	59.3\%
2.9E-01	1.04 (0.91,1.19)	5.9E-01	8.3E-02	55.1\%	1.06 (0.91,1.22)	$4.5 \mathrm{E}-01$	7.2E-02	57.2\%
6.4E-01	1.01 (0.97,1.06)	$6.0 \mathrm{E}-01$	$1.0 \mathrm{E}+00$	0.0\%	1.01 (0.96,1.06)	$6.7 \mathrm{E}-01$	9.8E-01	0.0\%
3.9E-01	0.99 (0.94,1.04)	$6.0 \mathrm{E}-01$	5.9E-02	59.7\%	0.98 (0.93,1.04)	5.8E-01	5.9E-02	59.6\%
7.6E-01	1.01 (0.97,1.06)	$6.0 \mathrm{E}-01$	9.1E-01	0.0\%	1.01 (0.96,1.06)	$6.9 \mathrm{E}-01$	8.8E-01	0.0\%
6.0E-01	0.99 (0.94,1.03)	$6.0 \mathrm{E}-01$	2.7E-01	23.8\%	0.99 (0.94,1.04)	7.6E-01	2.1E-01	34.5\%
8.8E-01	1.01 (0.97,1.05)	$6.0 \mathrm{E}-01$	4.8E-01	0.0\%	1.03 (0.98,1.07)	2.3E-01	4.6E-01	0.0\%
7.6E-01	1.01 (0.97,1.06)	$6.0 \mathrm{E}-01$	8.1E-01	0.0\%	1.01 (0.96,1.06)	6.6E-01	7.8E-01	0.0\%
7.3E-01	1.01 (0.97,1.06)	$6.0 \mathrm{E}-01$	9.1E-01	0.0\%	1.01 (0.96,1.06)	7.1E-01	8.8E-01	0.0\%
6.1E-01	1.01 (0.96,1.07)	$6.0 \mathrm{E}-01$	8.2E-01	0.0\%	1.02 (0.96,1.07)	5.6E-01	8.9E-01	0.0\%
4.0E-01	0.99 (0.94,1.04)	6.1E-01	6.0E-02	59.5\%	0.99 (0.93,1.04)	$6.1 \mathrm{E}-01$	$5.8 \mathrm{E}-02$	60.0\%
3.6E-01	1.01 (0.97,1.06)	6.1E-01	9.9E-02	52.1\%	1.01 (0.97,1.06)	6.2E-01	$1.0 \mathrm{E}-01$	51.6\%
7.3E-01	1.01 (0.97,1.06)	6.1E-01	9.0E-01	0.0\%	1.01 (0.96,1.06)	7.2E-01	8.7E-01	0.0\%
7.3E-01	1.01 (0.97,1.06)	6.1E-01	9.0E-01	0.0\%	1.01 (0.96,1.06)	7.2E-01	8.7E-01	0.0\%
7.3E-01	1.01 (0.97,1.06)	6.1E-01	9.0E-01	0.0\%	1.01 (0.96,1.06)	7.2E-01	8.8E-01	0.0\%
1.1E-01	1.01 (0.96,1.07)	6.1E-01	1.3E-01	47.0\%	1.01 (0.96,1.07)	7.3E-01	$1.6 \mathrm{E}-01$	41.6\%
$6.9 \mathrm{E}-01$	1.01 (0.97,1.06)	6.1E-01	9.7E-01	0.0\%	1.01 (0.96,1.06)	$6.9 \mathrm{E}-01$	9.5E-01	0.0\%

1.1E-01	1.01 (0.96,1.07)	6.2E-01	1.3E-01	47.4\%	1.01 (0.96,1.07)	7.3E-01	1.6E-01	42.2\%
7.3E-01	1.01 (0.97,1.06)	6.2E-01	9.1E-01	0.0\%	1.01 (0.96,1.06)	7.2E-01	8.8E-01	0.0\%
9.6E-01	1.01 (0.97,1.05)	6.2E-01	$2.3 \mathrm{E}-01$	30.0\%	1.03 (0.98,1.07)	2.5E-01	2.1E-01	33.5\%
7.6E-01	1.01 (0.96,1.07)	6.2E-01	$1.0 \mathrm{E}+00$	0.0\%	1.03 (0.97,1.09)	3.4E-01	$1.0 \mathrm{E}+00$	0.0\%
1.2E-01	0.99 (0.94,1.04)	$6.2 \mathrm{E}-01$	1.2E-01	48.4\%	0.99 (0.94,1.05)	7.2E-01	1.5E-01	44.3\%
5.0E-01	1.02 (0.95,1.09)	$6.2 \mathrm{E}-01$	1.7E-01	41.0\%	1.01 (0.94,1.09)	7.2E-01	1.4E-01	45.3\%
8.4E-01	1.03 (0.93,1.13)	6.2E-01	3.0E-01	18.0\%	1.01 (0.91,1.12)	8.7E-01	2.7E-01	23.4\%
7.2E-01	1.01 (0.96,1.06)	6.2E-01	9.0E-01	0.0\%	1.01 (0.96,1.06)	7.3E-01	8.8E-01	0.0\%
7.0E-01	1.03 (0.91,1.16)	$6.2 \mathrm{E}-01$	8.8E-01	0.0\%	1.01 (0.89,1.14)	$9.2 \mathrm{E}-01$	7.8E-01	0.0\%
3.1E-01	1.03 (0.91,1.18)	6.2E-01	7.5E-02	56.5\%	1.05 (0.91,1.22)	$4.8 \mathrm{E}-01$	6.6E-02	58.2\%
5.6E-01	0.99 (0.93,1.04)	$6.2 \mathrm{E}-01$	2.5E-01	26.5\%	0.99 (0.93,1.05)	$6.4 \mathrm{E}-01$	$2.3 \mathrm{E}-01$	30.4\%
6.8E-01	1.01 (0.97,1.06)	$6.2 \mathrm{E}-01$	9.9E-01	0.0\%	1.01 (0.96,1.06)	7.2E-01	9.6E-01	0.0\%
1.2E-01	1.01 (0.96,1.07)	$6.2 \mathrm{E}-01$	1.4E-01	44.7\%	1.01 (0.96,1.07)	7.0E-01	1.8E-01	38.6\%
5.7E-01	1.02 (0.94,1.11)	6.3E-01	$3.9 \mathrm{E}-01$	0.0\%	1.02 (0.93,1.11)	7.3E-01	4.0E-01	0.0\%
1.1E-01	1.01 (0.96,1.07)	$6.3 \mathrm{E}-01$	1.2E-01	48.2\%	1.01 (0.96,1.07)	7.4E-01	1.5E-01	43.2\%
$2.8 \mathrm{E}-01$	1.03 (0.91,1.18)	$6.3 \mathrm{E}-01$	$4.8 \mathrm{E}-02$	62.1\%	1.05 (0.91,1.21)	5.0E-01	4.2E-02	63.4
1.2E-01	1.01 (0.96,1.07)	$6.3 \mathrm{E}-01$	1.4E-01	44.6\%	1.01 (0.96,1.07)	7.1E-01	$1.8 \mathrm{E}-01$	39.4\%
5.1E-01	0.99 (0.95,1.03)	$6.3 \mathrm{E}-01$	2.3E-01	31.1\%	0.99 (0.95,1.04)	7.9E-01	$1.8 \mathrm{E}-01$	38.9\%
9.1E-01	1.01 (0.97,1.05)	6.3E-01	5.0E-01	0.0\%	1.03 (0.98,1.07)	2.5E-01	4.8E-01	0.0\%
7.3E-01	1.01 (0.96,1.06)	6.3E-01	9.0E-01	0.0\%	1.01 (0.96,1.06)	7.4E-01	8.7E-01	0.0\%
4.1E-01	1.01 (0.96,1.07)	6.3E-01	8.5E-02	54.7\%	1.02 (0.97,1.08)	$4.8 \mathrm{E}-01$	1.1E-01	50.3\%
7.1E-01	0.99 (0.94,1.04)	$6.3 \mathrm{E}-01$	9.9E-01	0.0\%	0.99 (0.94,1.04)	7.1E-01	9.7E-01	0.0\%
7.5E-01	1.01 (0.96,1.06)	$6.3 \mathrm{E}-01$	9.2E-01	0.0\%	1.01 (0.96,1.06)	7.5E-01	8.9E-01	0.0\%
3.2E-01	1.03 (0.90,1.18)	6.4E-01	6.3E-02	58.9\%	1.05 (0.91,1.21)	$4.9 \mathrm{E}-01$	5.5E-02	60.4\%
6.5E-01	1.02 (0.95,1.08)	6.4E-01	5.8E-01	0.0\%	1.03 (0.96,1.10)	3.7E-01	7.6E-01	0.0\%
5.7E-01	0.98 (0.89,1.08)	6.4E-01	4.8E-01	0.0\%	1.00 (0.90,1.11)	9.7E-01	6.4E-01	0.0\%
7.5E-01	1.01 (0.96,1.06)	6.4E-01	9.1E-01	0.0\%	1.01 (0.96,1.06)	7.5E-01	8.9E-01	0.0\%
7.3E-01	1.03 (0.91,1.16)	$6.4 \mathrm{E}-01$	8.6E-01	0.0\%	1.00 (0.88,1.14)	9.5E-01	7.5E-01	0.0\%
9.0E-01	0.99 (0.94,1.04)	$6.4 \mathrm{E}-01$	5.0E-01	0.0\%	0.98 (0.93,1.03)	$4.3 \mathrm{E}-01$	5.3E-01	0.0\%
$1.2 \mathrm{E}-01$	1.01 (0.96,1.07)	$6.4 \mathrm{E}-01$	1.2E-01	48.3\%	1.01 (0.95,1.07)	7.5E-01	$1.5 \mathrm{E}-01$	43.6\%
3.4E-01	0.99 (0.94,1.04)	6.5E-01	1.1E-01	49.9\%	0.99 (0.94,1.04)	6.9E-01	9.8E-02	52.3\%
6.6E-01	1.01 (0.95,1.08)	6.5E-01	5.9E-01	0.0\%	1.03 (0.96,1.10)	3.9E-01	7.8E-01	0.0\%
8.1E-01	1.03 (0.90,1.18)	6.5E-01	5.3E-01	0.0\%	1.04 (0.90,1.21)	5.6E-01	6.6E-01	0.0\%
6.1E-01	1.01 (0.97,1.05)	6.5E-01	8.4E-01	0.0\%	1.02 (0.98,1.07)	3.6E-01	7.8E-01	0.0\%
3.0E-01	1.03 (0.90,1.18)	6.5E-01	5.0E-02	61.7\%	1.05 (0.91,1.21)	5.1E-01	4.4E-02	63.0\%
7.5E-01	1.02 (0.94,1.11)	$6.6 \mathrm{E}-01$	6.7E-01	0.0\%	1.01 (0.93,1.11)	7.5E-01	6.7E-01	0.0\%
7.6E-01	1.01 (0.96,1.06)	6.6E-01	9.1E-01	0.0\%	1.01 (0.96,1.06)	7.7E-01	8.8E-01	0.0\%
$4.5 \mathrm{E}-01$	0.99 (0.95,1.03)	6.6E-01	1.8E-01	39.2\%	0.99 (0.95,1.04)	8.2E-01	1.4E-01	45.8\%
5.2E-01	1.02 (0.94,1.10)	6.6E-01	2.0E-01	34.6\%	1.01 (0.94,1.10)	7.3E-01	$2.6 \mathrm{E}-01$	25.9\%
1.2E-01	1.01 (0.96,1.07)	$6.6 \mathrm{E}-01$	1.1E-01	49.7\%	1.01 (0.95,1.07)	7.7E-01	1.4E-01	44.4\%
7.7E-01	1.01 (0.96,1.06)	$6.6 \mathrm{E}-01$	9.1E-01	0.0\%	1.01 (0.96,1.06)	7.8E-01	8.9E-01	0.0\%
7.6E-01	1.02 (0.94,1.11)	$6.6 \mathrm{E}-01$	6.9E-01	0.0\%	1.01 (0.93,1.11)	7.7E-01	6.9E-01	0.0\%
5.6E-01	0.98 (0.89,1.08)	6.7E-01	5.2E-01	0.0\%	1.00 (0.90,1.11)	9.7E-01	7.1E-01	0.0\%
6.3E-01	1.01 (0.95,1.08)	6.7E-01	5.9E-01	0.0\%	1.03 (0.96,1.10)	3.9E-01	7.6E-01	0.0\%
7.5E-01	1.02 (0.94,1.11)	6.7E-01	6.8E-01	0.0\%	1.01 (0.93,1.11)	7.7E-01	6.8E-01	0.0\%
8.5E-01	1.01 (0.96,1.06)	6.7E-01	8.8E-01	0.0\%	1.01 (0.96,1.06)	7.3E-01	8.6E-01	0.0\%
1.3E-01	1.01 (0.96,1.07)	6.7E-01	1.2E-01	49.2\%	1.01 (0.95,1.06)	8.0E-01	1.5E-01	44.3\%
7.1E-01	1.01 (0.96,1.06)	$6.7 \mathrm{E}-01$	9.9E-01	0.0\%	1.01 (0.96,1.06)	7.6E-01	9.4E-01	0.0\%
1.3E-01	1.01 (0.96,1.07)	6.7E-01	1.3E-01	46.7\%	1.01 (0.95,1.07)	7.6E-01	$1.6 \mathrm{E}-01$	42.2\%
4.1E-01	0.99 (0.93,1.05)	6.7E-01	1.0E-01	51.9\%	0.99 (0.93,1.06)	7.7E-01	$9.2 \mathrm{E}-02$	53.5\%

6.5E-01	1.01 (0.96,1.06)	6.7E-01	7.1E-01	0.0\%	1.01 (0.96,1.07)	6.3E-01	8.2E-01	0.0\%
1.2E-01	1.01 (0.96,1.07)	6.7E-01	1.0E-01	51.5\%	1.01 (0.95,1.07)	7.9E-01	1.3E-01	46.9\%
6.4E-01	1.01 (0.95,1.08)	6.7E-01	$6.0 \mathrm{E}-01$	0.0\%	1.03 (0.96,1.10)	4.1E-01	7.8E-01	0.0\%
1.2E-01	1.01 (0.96,1.06)	6.8E-01	1.1E-01	50.8\%	1.01 (0.95,1.06)	7.9E-01	1.4E-01	45.8\%
1.3E-01	1.01 (0.96,1.07)	6.8E-01	1.2E-01	48.8\%	1.01 (0.95,1.07)	$7.8 \mathrm{E}-01$	1.5E-01	43.9\%
1.3E-01	1.01 (0.96,1.07)	$6.8 \mathrm{E}-01$	1.2E-01	48.8\%	1.01 (0.95,1.07)	7.8E-01	1.5E-01	43.9\%
5.1E-01	1.02 (0.94,1.11)	$6.8 \mathrm{E}-01$	3.9E-01	0.7\%	1.01 (0.93,1.10)	8.1E-01	3.9E-01	\%
1.3E-01	1.01 (0.96,1.06)	$6.8 \mathrm{E}-01$	1.2E-01	49.0\%	1.01 (0.95,1.06)	7.9E-01	1.5E-01	44.1\%
1.5E-01	0.99 (0.94,1.04)	6.8E-01	1.3E-01	46.7\%	0.99 (0.94,1.05)	8.0E-01	$1.6 \mathrm{E}-01$	41.9\%
1.2E-01	1.01 (0.96,1.07)	6.8E-01	1.1E-01	50.0\%	1.01 (0.95,1.07)	7.9E-01	1.4E-01	45.0
8.3E-01	1.01 (0.97,1.05)	$6.8 \mathrm{E}-01$	7.1E-01	0.0\%	1.02 (0.98,1.06)	$3.9 \mathrm{E}-01$	7.4E-01	0.0\%
8.4E-01	1.01 (0.97,1.05)	$6.8 \mathrm{E}-01$	7.2E-01	0.0\%	1.02 (0.98,1.06)	3.9E-01	7.5E-01	0.0\%
7.2E-01	1.02 (0.93,1.11)	$6.8 \mathrm{E}-01$	6.5E-01	0.0\%	1.01 (0.92,1.11)	7.8E-01	$6.5 \mathrm{E}-01$	0.0\%
9.4E-01	0.99 (0.95,1.04)	$6.9 \mathrm{E}-01$	3.3E-01	11.7\%	0.98 (0.94,1.03)	$4.6 \mathrm{E}-01$	$4.6 \mathrm{E}-01$	0.0\%
1.2E-01	1.01 (0.96,1.06)	$6.9 \mathrm{E}-01$	1.0E-01	51.5\%	1.01 (0.95,1.06)	8.0E-01	1.3E-01	46.8\%
1.3E-01	1.01 (0.96,1.07)	6.9E-01	1.3E-01	46.2\%	1.01 (0.95,1.07)	7.6E-01	1.7E-01	40.4\%
$6.0 \mathrm{E}-01$	1.01 (0.95,1.08)	6.9E-01	5.7E-01	0.0\%	1.03 (0.96,1.10)	4.3E-01	7.4E-01	0.0\%
$1.3 \mathrm{E}-01$	1.01 (0.96,1.06)	$6.9 \mathrm{E}-01$	1.2E-01	49.1\%	1.01 (0.95,1.06)	7.9E-01	1.5E-01	44.3\%
1.3E-01	1.01 (0.96,1.06)	$6.9 \mathrm{E}-01$	1.2E-01	49.1\%	1.01 (0.95,1.06)	8.0E-01	1.5E-01	44.3\%
8.1E-01	1.01 (0.96,1.06)	$6.9 \mathrm{E}-01$	9.0E-01	0.0\%	1.01 (0.96,1.06)	$7.9 \mathrm{E}-01$	8.8E-01	0.0\%
1.2E-01	1.01 (0.96,1.06)	6.9E-01	1.0E-01	51.3\%	1.01 (0.95,1.06)	8.0E-01	1.3E-01	46.8\%
7.1E-01	1.02 (0.93,1.11)	$6.9 \mathrm{E}-0$	6.6E-01	0.0\%	1.01 (0.93,1.11)	$7.8 \mathrm{E}-01$	6.6E-01	0.0\%
5.8E-01	1.01 (0.95,1.07)	7.0E-01	9.7E-01	0.0\%	1.01 (0.95,1.08)	6.4E-01	9.6E-01	0.0\%
1.2E-01	1.01 (0.96,1.07)	7.0E-01	5.4E-02	60.7\%	1.01 (0.95,1.07)	$7.9 \mathrm{E}-01$	$6.3 \mathrm{E}-02$	59.0\%
8.5E-01	1.01 (0.96,1.06)	7.0E-01	$1.0 \mathrm{E}+00$	0.0\%	1.02 (0.97,1.08)	4.0E-01	$1.0 \mathrm{E}+00$	0.0\%
8.7E-01	0.99 (0.95,1.04)	7.0E-01	5.6E-01	0.0\%	1.00 (0.95,1.04)	8.8E-01	$6.4 \mathrm{E}-01$	0.0\%
5.9E-01	0.98 (0.89,1.08)	7.0E-01	5.0E-01	0.0\%	1.00 (0.90,1.12)	9.3E-01	6.9E-01	0.0\%
7.8E-01	1.01 (0.96,1.06)	7.0E-01	$1.0 \mathrm{E}+00$	0.0\%	1.01 (0.96,1.06)	7.6E-01	9.6E-01	0.0\%
3.2E-01	0.99 (0.94,1.04)	7.1E-01	6.5E-02	58.6\%	0.99 (0.94,1.05)	7.1E-01	6.2E-02	59.1\%
8.4E-01	1.01 (0.96,1.06)	7.1E-01	9.9E-01	0.0\%	1.01 (0.96,1.07)	6.5E-01	$1.0 \mathrm{E}+00$	0.0\%
1.4E-01	1.01 (0.96,1.0	7.1E-01	1.2E-01	48.1\%	1.01 (0.95,1.06)	8.1E-01	1.5E-01	43.6\%
4.2E-01	0.99 (0.92,1.06)	7.1E-01	8.1E-01	0.0\%	0.98 (0.90,1.05)	5.2E-01	8.0E-01	0.0\%
6.1E-01	1.01 (0.95,1.08)	7.2E-01	5.9E-01	0.0\%	1.03 (0.96,1.10)	4.4E-01	7.6E-01	0.0\%
6.1E-01	1.01 (0.95,1.08)	7.2E-01	6.0E-01	0.0\%	1.03 (0.96,1.10)	4.4E-01	7.7E-01	0.0\%
6.1E-01	1.01 (0.96,1.06)	7.2E-01	6.1E-01	0.0\%	1.00 (0.95,1.06)	9.9E-01	6.4E-01	0.0\%
9.1E-01	0.99 (0.95,1.04)	7.2E-01	5.3E-01	0.0\%	0.99 (0.95,1.04)	7.6E-01	5.9E-01	0.0\%
7.8E-01	1.01 (0.96,1.06)	7.2E-01	$1.0 \mathrm{E}+00$	0.0\%	1.01 (0.96,1.06)	7.7E-01	9.7E-01	0.0\%
8.1E-01	0.99 (0.95,1.04)	7.2E-01	9.3E-01	0.0\%	0.99 (0.94,1.04)	7.3E-01	9.4E-01	0.0\%
1.2E-01	1.01 (0.96,1.06)	$7.2 \mathrm{E}-01$	$6.8 \mathrm{E}-02$	58.0\%	1.01 (0.95,1.06)	8.2E-01	8.1E-02	55.4\%
7.8E-01	1.01 (0.96,1.06)	7.2E-01	$1.0 \mathrm{E}+00$	0.0\%	1.01 (0.96,1.06)	7.7E-01	9.7E-01	0.0\%
7.8E-01	1.01 (0.96,1.06)	7.2E-01	$1.0 \mathrm{E}+00$	0.0\%	1.01 (0.96,1.06)	7.7E-01	9.7E-01	0.0\%
$6.6 \mathrm{E}-01$	0.98 (0.89,1.08)	$7.2 \mathrm{E}-01$	$4.8 \mathrm{E}-01$	0.0\%	1.00 (0.90,1.12)	9.3E-01	6.3E-01	0.0\%
8.6E-01	1.01 (0.96,1.06)	7.2E-01	$1.0 \mathrm{E}+00$	0.0\%	1.02 (0.97,1.08)	$4.2 \mathrm{E}-01$	$1.0 \mathrm{E}+00$	0.0\%
1.2E-01	1.01 (0.96,1.06)	7.2E-01	6.7E-02	58.1\%	1.01 (0.95,1.06)	8.3E-01	8.1E-02	55.5\%
5.1E-01	0.99 (0.92,1.06)	7.3E-01	8.4E-01	0.0\%	1.00 (0.92,1.07)	9.1E-01	7.0E-01	0.0\%
1.2E-01	1.01 (0.96,1.06)	7.3E-01	7.6E-02	56.3\%	1.01 (0.95,1.06)	8.0E-01	9.5E-02	53.0\%
6.0E-01	0.99 (0.94,1.04)	7.3E-01	8.7E-01	0.0\%	0.99 (0.93,1.04)	5.9E-01	8.4E-01	0.0\%
7.9E-01	1.01 (0.96,1.06)	7.3E-01	$1.0 \mathrm{E}+00$	0.0\%	1.01 (0.96,1.06)	7.8E-01	9.7E-01	0.0\%
6.0E-01	1.01 (0.95,1.08)	7.3E-01	3.4E-01	11.0\%	1.02 (0.95,1.10)	5.2E-01	4.1E-01	0.0\%
3.2E-01	0.99 (0.94,1.04)	7.3E-01	6.5E-02	58.6\%	0.99 (0.94,1.05)	7.4E-01	6.0E-02	59.5\%

5.1E-01	1.01 (0.95,1.07)	7.3E-01	4.9E-01	0.0\%	1.01 (0.95,1.08)	6.6E-01	4.1E-01	0.0\%
6.2E-01	1.01 (0.95,1.07)	7.3E-01	9.7E-01	0.0\%	1.01 (0.95,1.08)	6.7E-01	9.6E-01	0.0\%
5.8E-01	0.99 (0.92,1.06)	7.3E-01	8.1E-01	0.0\%	1.00 (0.92,1.08)	9.3E-01	7.2E-01	0.0\%
1.6E-01	1.01 (0.96,1.06)	7.4E-01	1.5E-01	44.0\%	1.01 (0.95,1.06)	8.6E-01	1.8E-01	38.5\%
1.2E-01	1.01 (0.96,1.06)	7.4E-01	$9.5 \mathrm{E}-02$	52.9\%	1.01 (0.95,1.06)	$8.4 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	47.8\%
1.3E-01	1.01 (0.96,1.06)	7.4E-01	8.1E-02	55.4\%	1.01 (0.95,1.06)	8.3E-01	9.9E-02	52.2\%
5.7E-01	1.01 (0.95,1.07)	7.4E-01	9.6E-01	0.0\%	1.01 (0.95,1.08)	6.9E-01	9.5E-01	0.0\%
7.9E-01	1.01 (0.94,1.10)	7.4E-01	2.5E-01	26.7\%	1.01 (0.93,1.10)	7.9E-01	2.4E-01	28.3\%
2.0E-01	0.99 (0.95,1.04)	7.4E-01	2.9E-01	19.9\%	0.99 (0.95,1.04)	7.2E-01	2.7E-01	22.7\%
7.6E-01	1.01 (0.94,1.09)	7.5E-01	2.0E-01	34.8\%	1.01 (0.93,1.10)	7.6E-01	1.7E-01	40.2\%
4.5E-01	1.01 (0.96,1.06)	7.5E-01	6.3E-01	0.0\%	1.01 (0.96,1.07)	5.8E-01	5.5E-01	0.0\%
$1.5 \mathrm{E}-01$	1.01 (0.96,1.06)	7.5E-01	1.1E-01	50.1\%	1.01 (0.95,1.06)	8.2E-01	1.4E-01	46.0\%
7.9E-01	1.01 (0.96,1.05)	7.5E-01	$1.0 \mathrm{E}+00$	0.0\%	1.01 (0.96,1.06)	8.1E-01	9.7E-01	0.0\%
7.6E-01	1.01 (0.94,1.10)	7.5E-01	1.8E-01	37.9\%	1.01 (0.93,1.10)	7.7E-01	1.6E-01	42.3\%
1.3E-01	1.01 (0.96,1.06)	7.5E-01	8.6E-02	54.5\%	1.01 (0.95,1.06)	8.4E-01	1.1E-01	51.1\%
6.4E-01	0.98 (0.86,1.11)	7.5E-01	9.0E-01	0.0\%	0.98 (0.86,1.13)	8.1E-01	8.8E-01	0.0\%
7.9E-01	1.01 (0.96,1.06)	7.5E-01	$1.0 \mathrm{E}+00$	0.0\%	1.01 (0.96,1.07)	6.4E-01	$1.0 \mathrm{E}+00$	0.0\%
7.6E-01	1.01 (0.94,1.09)	7.5E-01	1.8E-01	38.4\%	1.01 (0.93,1.10)	7.7E-01	$1.6 \mathrm{E}-01$	42.7\%
8.7E-01	0.99 (0.95,1.04)	7.5E-01	5.2E-01	0.0\%	0.99 (0.95,1.04)	8.1E-01	5.7E-01	0.0\%
9.1E-01	1.01 (0.96,1.06)	7.5E-01	9.4E-01	0.0\%	1.01 (0.96,1.06)	8.0E-01	9.4E-01	0.0\%
9.0E-01	1.02 (0.90,1.16)	7.5E-01	9.3E-01	0.0\%	1.00 (0.87,1.14)	$1.0 \mathrm{E}+00$	8.3E-01	0.0\%
1.6E-01	1.01 (0.96,1.06)	7.6E-01	1.0E-01	51.5	1.00 (0.95,1.06)	8.7E-01	1.3E-01	47.7\%
1.4E-01	1.01 (0.96,1.06)	7.6E-01	1.0E-01	51.5\%	1.01 (0.95,1.06)	8.3E-01	$1.3 \mathrm{E}-01$	47.4\%
3.5E-01	0.99 (0.95,1.04)	7.6E-01	2.1E-01	34.3\%	0.99 (0.95,1.04)	7.8E-01	2.1E-01	34.4\%
7.6E-01	1.01 (0.94,1.09)	7.6E-01	2.0E-01	35.4\%	1.01 (0.93,1.10)	7.8E-01	1.7E-01	40.8\%
3.6E-01	1.02 (0.90,1.16)	7.6E-01	3.7E-01	5.0\%	1.04 (0.91,1.19)	5.6E-01	$2.2 \mathrm{E}-01$	32.6\%
6.7E-01	1.01 (0.93,1.10)	7.6E-01	1.7E-01	39.7\%	1.02 (0.93,1.11)	6.9E-01	$1.6 \mathrm{E}-01$	41.4\%
7.2E-01	1.01 (0.94,1.09)	7.6E-01	5.4E-01	0.0\%	1.03 (0.95,1.11)	5.0E-01	4.9E-01	0.0\%
5.7E-01	1.01 (0.95,1.07)	7.6E-01	9.5E-01	0.0\%	1.01 (0.95,1.08)	7.2E-01	9.4E-01	0.0\%
1.2E-01	1.01 (0.96,1.06)	7.6E-01	8.4E-02	54.9\%	1.01 (0.95,1.06)	8.6E-01	1.1E-01	50.9\%
1.2E-01	1.01 (0.96,1.06)	7.6E-0	8.4E-02	54.9\%	1.01 (0.95,1.06)	8.6E-01	1.1E-01	50.9\%
7.9E-01	1.01 (0.97,1.05)	7.6E-01	3.8E-01	3.3\%	1.00 (0.96,1.05)	9.4E-01	3.3E-01	13.1\%
7.9E-01	1.01 (0.96,1.05)	7.6E-01	9.7E-01	0.0\%	1.01 (0.96,1.06)	7.5E-01	8.9E-01	0.0\%
4.0E-01	0.99 (0.95,1.04)	7.7E-01	2.5E-01	27.8\%	1.00 (0.95,1.04)	$8.4 \mathrm{E}-01$	2.3E-01	31.1\%
8.1E-01	1.01 (0.94,1.09)	7.7E-01	2.0E-01	35.8\%	1.01 (0.93,1.10)	7.8E-01	$1.7 \mathrm{E}-01$	39.5\%
1.3E-01	1.01 (0.96,1.06)	7.7E-01	8.0E-02	55.6\%	1.01 (0.95,1.06)	8.5E-01	$9.8 \mathrm{E}-02$	52.3\%
$1.3 \mathrm{E}-01$	1.01 (0.96,1.06)	7.7E-01	7.9E-02	55.8\%	1.01 (0.95,1.06)	8.6E-01	9.7E-02	52.5\%
2.8E-01	0.99 (0.94,1.05)	7.8E-01	6.0E-02	59.5\%	0.99 (0.94,1.05)	7.8E-01	5.6E-02	60.3\%
3.4E-01	0.99 (0.94,1.05)	7.8E-01	1.0E-01	51.2\%	0.99 (0.94,1.05)	7.6E-01	1.1E-01	50.3\%
$1.3 \mathrm{E}-01$	1.01 (0.96,1.06)	7.8E-01	8.3E-02	55.1\%	1.00 (0.95,1.06)	8.6E-01	$1.0 \mathrm{E}-01$	51.9\%
6.2E-01	1.01 (0.95,1.07)	$7.8 \mathrm{E}-01$	9.4E-01	0.0\%	1.01 (0.95,1.08)	7.2E-01	9.3E-01	0.0\%
$2.9 \mathrm{E}-01$	0.99 (0.91,1.07)	$7.9 \mathrm{E}-01$	4.8E-01	0.0\%	0.98 (0.90,1.07)	6.6E-01	$4.6 \mathrm{E}-01$	0.0\%
4.5E-01	0.99 (0.91,1.07)	7.9E-01	4.3E-01	0.0\%	0.99 (0.91,1.08)	7.9E-01	4.2E-01	0.0\%
2.7E-01	0.99 (0.94,1.05)	8.0E-01	2.4E-01	29.0\%	1.00 (0.94,1.05)	9.1E-01	3.3E-01	13.5\%
4.6E-01	0.99 (0.91,1.07)	8.0E-01	4.2E-01	0.0\%	0.99 (0.91,1.08)	7.9E-01	4.1E-01	0.0\%
3.4E-01	0.99 (0.95,1.04)	8.0E-01	2.1E-01	33.1\%	1.00 (0.95,1.05)	8.8E-01	2.0E-01	35.9\%
1.6E-01	0.99 (0.91,1.08)	8.0E-01	1.1E-01	50.9\%	0.99 (0.91,1.09)	8.8E-01	1.1E-01	50.8\%
$7.8 \mathrm{E}-02$	0.99 (0.95,1.04)	8.0E-01	1.9E-02	69.7\%	1.00 (0.95,1.05)	9.4E-01	$3.3 \mathrm{E}-02$	65.5\%
7.2E-01	0.99 (0.95,1.04)	8.0E-01	9.9E-01	0.0\%	1.00 (0.95,1.05)	8.9E-01	9.4E-01	0.0\%
3.3E-01	0.99 (0.95,1.04)	8.0E-01	2.2E-01	32.5\%	1.00 (0.95,1.04)	8.6E-01	2.1E-01	33.9\%

1.3E-01	1.01 (0.95,1.06)	8.0E-01	8.6E-02	54.5\%	1.00 (0.95,1.06)	8.8E-01	1.1E-01	49.9\%
$2.9 \mathrm{E}-01$	0.99 (0.95,1.04)	8.0E-01	1.2E-01	48.2\%	1.00 (0.95,1.04)	8.5E-01	$1.2 \mathrm{E}-01$	49.1\%
7.7E-01	1.01 (0.93,1.09)	8.0E-01	2.8E-01	22.5\%	1.01 (0.93,1.10)	8.2E-01	$2.7 \mathrm{E}-01$	23.4\%
4.9E-01	0.99 (0.95,1.04)	8.1E-01	3.0E-01	18.0\%	0.99 (0.94,1.04)	6.2E-01	3.4E-01	10.5\%
$4.6 \mathrm{E}-01$	0.99 (0.91,1.07)	8.1E-01	4.2E-01	0.0\%	0.99 (0.91,1.08)	8.0E-01	$4.1 \mathrm{E}-01$	0.0\%
9.9E-01	1.01 (0.96,1.05)	8.1E-01	5.8E-01	0.0\%	1.00 (0.96,1.05)	9.9E-01	6.3E-01	0.0\%
3.2E-01	0.99 (0.95,1.04)	8.1E-01	2.1E-01	34.5\%	1.00 (0.95,1.04)	8.4E-01	2.0E-01	35.4\%
6.1E-01	0.99 (0.94,1.05)	8.1E-01	6.0E-01	0.0\%	0.98 (0.92,1.04)	5.3E-01	5.1E-01	0.0\%
7.6E-01	1.01 (0.95,1.07)	8.1E-01	8.5E-01	0.0\%	1.02 (0.96,1.09)	5.5E-01	9.3E-01	0.0\%
6.4E-01	0.99 (0.95,1.04)	8.1E-01	3.1E-01	15.9\%	1.00 (0.95,1.04)	8.5E-01	$3.3 \mathrm{E}-01$	13.1\%
9.9E-01	0.99 (0.95,1.04)	8.1E-01	7.8E-01	0.0\%	0.99 (0.94,1.05)	8.5E-01	7.3E-01	0.0\%
7.9E-01	1.01 (0.93,1.09)	8.1E-01	7.5E-01	0.0\%	0.99 (0.92,1.08)	9.0E-01	8.1E-01	0.0\%
$1.5 \mathrm{E}-01$	0.99 (0.95,1.04)	8.1E-01	1.8E-01	38.0\%	0.99 (0.95,1.04)	8.1E-01	$1.9 \mathrm{E}-01$	36.8\%
8.2E-01	1.01 (0.93,1.09)	8.2E-01	7.6E-01	0.0\%	0.99 (0.91,1.08)	9.0E-01	8.1E-01	0.0\%
$6.8 \mathrm{E}-01$	1.01 (0.93,1.09)	8.2E-01	1.9E-01	37.2\%	1.01 (0.93,1.10)	7.7E-01	$1.7 \mathrm{E}-01$	40.5\%
$1.6 \mathrm{E}-01$	0.99 (0.95,1.04)	8.2E-01	2.0E-01	35.3\%	0.99 (0.95,1.04)	8.2E-01	$2.1 \mathrm{E}-01$	33.9\%
3.2E-01	0.99 (0.95,1.04)	8.2E-01	1.9E-01	37.1\%	1.00 (0.95,1.04)	8.8E-01	$1.8 \mathrm{E}-01$	39.3\%
7.1E-01	0.99 (0.87,1.12)	8.2E-01	8.9E-01	0.0\%	0.98 (0.86,1.13)	8.2E-01	8.6E-01	0.0\%
6.7E-01	1.01 (0.93,1.10)	8.2E-01	7.1E-01	0.0\%	1.01 (0.92,1.10)	8.6E-01	7.2E-01	0.0\%
3.3E-01	0.99 (0.95,1.04)	8.2E-01	2.0E-01	35.5\%	1.00 (0.95,1.04)	8.8E-01	$1.8 \mathrm{E}-01$	38.2\%
$9.8 \mathrm{E}-01$	1.01 (0.95,1.06)	8.2E-01	9.9E-01	0.0\%	1.02 (0.96,1.08)	5.2E-01	$1.0 \mathrm{E}+00$	0.0\%
3.3E-01	0.99 (0.95,1.04)	8.3E-01	2.0E-01	35.2\%	1.00 (0.95,1.04)	8.8E-01	$1.9 \mathrm{E}-01$	37.8\%
3.3E-01	0.99 (0.95,1.04)	8.3E-01	2.0E-01	35.1\%	1.00 (0.95,1.04)	8.8E-01	$1.9 \mathrm{E}-01$	37.7\%
$3.3 \mathrm{E}-01$	0.99 (0.95,1.04)	8.3E-01	$2.0 \mathrm{E}-01$	35.1\%	1.00 (0.95,1.04)	8.8E-01	$1.9 \mathrm{E}-01$	37.7\%
3.3E-01	0.99 (0.95,1.04)	8.3E-01	2.0E-01	35.3\%	1.00 (0.95,1.04)	8.8E-01	1.8E-01	38.0\%
7.3E-01	0.99 (0.94,1.05)	8.3E-01	9.0E-01	0.0\%	0.99 (0.93,1.04)	6.1E-01	9.6E-01	0.0\%
$3.4 \mathrm{E}-01$	1.00 (0.95,1.04)	8.3E-01	2.1E-01	34.2\%	1.00 (0.95,1.05)	9.0E-01	$1.9 \mathrm{E}-01$	37.4\%
$1.9 \mathrm{E}-01$	1.01 (0.95,1.06)	8.3E-01	1.5E-01	43.0\%	1.00 (0.95,1.06)	9.4E-01	$1.9 \mathrm{E}-01$	36.6\%
$3.2 \mathrm{E}-01$	1.00 (0.95,1.04)	8.3E-01	2.1E-01	33.3\%	1.00 (0.95,1.04)	8.8E-01	2.1E-01	34.4\%
3.2E-01	1.00 (0.95,1.04)	8.3E-01	2.0E-01	35.7\%	1.00 (0.95,1.05)	8.8E-01	$1.8 \mathrm{E}-01$	37.9\%
3.3E-01	1.00 (0.95,1.04)	8.3E-01	2.0E-01	35.6\%	1.00 (0.95,1.05)	8.9E-01	$1.8 \mathrm{E}-01$	38.3\%
3.2E-01	1.00 (0.95,1.04)	8.3E-01	2.2E-01	32.0\%	1.00 (0.95,1.05)	8.9E-01	2.1E-01	33.5\%
7.0E-01	1.01 (0.91,1.12)	8.3E-01	5.4E-01	0.0\%	1.03 (0.92,1.15)	6.3E-01	4.9E-01	0.0\%
5.5E-01	1.01 (0.93,1.10)	8.3E-01	5.7E-01	0.0\%	1.00 (0.92,1.10)	9.7E-01	5.5E-01	0.0\%
$1.6 \mathrm{E}-01$	1.00 (0.95,1.04)	8.3E-01	1.9E-01	36.8\%	0.99 (0.95,1.04)	8.3E-01	2.0E-01	35.4\%
3.2E-01	1.00 (0.95,1.04)	8.3E-01	2.2E-01	32.5\%	1.00 (0.95,1.05)	8.9E-01	$2.1 \mathrm{E}-01$	33.6\%
3.1E-01	1.00 (0.95,1.04)	8.3E-01	2.1E-01	34.0\%	1.00 (0.95,1.05)	8.9E-01	2.0E-01	34.9\%
$1.6 \mathrm{E}-01$	1.00 (0.95,1.04)	8.4E-01	1.9E-01	37.3\%	0.99 (0.95,1.04)	8.3E-01	$2.0 \mathrm{E}-01$	36.0\%
$1.6 \mathrm{E}-01$	1.00 (0.95,1.04)	8.4E-01	1.9E-01	37.4\%	0.99 (0.95,1.04)	8.3E-01	2.0E-01	36.1\%
7.5E-01	0.99 (0.94,1.05)	8.4E-01	9.4E-01	0.0\%	0.99 (0.93,1.04)	6.1E-01	9.8E-01	0.0\%
7.4E-01	0.99 (0.95,1.04)	8.4E-01	9.8E-01	0.0\%	1.00 (0.95,1.05)	8.8E-01	9.6E-01	0.0\%
$1.6 \mathrm{E}-01$	1.00 (0.95,1.04)	8.4E-01	1.8E-01	39.0\%	0.99 (0.95,1.04)	8.3E-01	$1.8 \mathrm{E}-01$	37.9\%
7.1E-01	1.01 (0.91,1.12)	8.4E-01	5.5E-01	0.0\%	1.03 (0.92,1.15)	6.4E-01	4.9E-01	0.0\%
$1.8 \mathrm{E}-01$	1.00 (0.96,1.05)	8.4E-01	1.7E-01	39.6\%	1.01 (0.96,1.06)	7.9E-01	1.6E-01	41.6\%
8.1E-01	1.00 (0.95,1.04)	8.4E-01	$1.0 \mathrm{E}+00$	0.0\%	1.00 (0.95,1.05)	9.1E-01	9.8E-01	0.0\%
9.3E-01	1.00 (0.96,1.04)	8.4E-01	3.6E-01	7.3\%	0.99 (0.95,1.03)	5.8E-01	4.5E-01	0.0\%
5.2E-01	1.01 (0.93,1.10)	8.4E-01	5.4E-01	0.0\%	1.00 (0.92,1.10)	9.6E-01	5.2E-01	0.0\%
3.3E-01	1.01 (0.92,1.10)	8.4E-01	1.4E-01	44.9\%	1.01 (0.92,1.11)	8.2E-01	$1.4 \mathrm{E}-01$	45.8\%
7.3E-01	0.99 (0.87,1.12)	8.4E-01	8.8E-01	0.0\%	0.99 (0.86,1.13)	8.3E-01	8.6E-01	0.0\%
$9.8 \mathrm{E}-02$	1.00 (0.95,1.04)	8.4E-01	2.6E-02	67.8\%	1.00 (0.95,1.05)	9.7E-01	$3.8 \mathrm{E}-02$	64.4\%

7.5E-01	0.99 (0.94,1.05)	8.4E-01	9.4E-01	0.0\%	0.99 (0.93,1.04)	6.2E-01	9.8E-01	0.0\%
3.2E-01	1.00 (0.95,1.04)	8.4E-01	2.3E-01	30.7\%	1.00 (0.95,1.05)	8.9E-01	$2.2 \mathrm{E}-01$	31.6\%
7.4E-01	0.99 (0.90,1.09)	8.4E-01	2.7E-01	23.4\%	0.99 (0.89,1.09)	8.0E-01	$2.7 \mathrm{E}-01$	23.1\%
3.1E-01	1.00 (0.95,1.04)	8.4E-01	2.2E-01	32.5\%	1.00 (0.95,1.05)	9.0E-01	2.1E-01	33.5\%
3.1E-01	1.00 (0.95,1.04)	8.4E-01	2.2E-01	32.5\%	1.00 (0.95,1.05)	9.0E-01	$2.1 \mathrm{E}-01$	33.4\%
7.3E-01	0.99 (0.87,1.12)	8.5E-01	$8.9 \mathrm{E}-01$	0.0\%	0.99 (0.86,1.13)	8.3E-01	8.6E-01	0.0\%
7.9E-01	0.99 (0.94,1.05)	8.5E-01	9.4E-01	0.0\%	0.99 (0.93,1.04)	6.1E-01	$9.8 \mathrm{E}-01$	0.0\%
3.1E-01	1.00 (0.95,1.04)	8.5E-01	2.1E-01	34.1\%	1.00 (0.95,1.05)	9.1E-01	2.0E-01	36.1\%
7.5E-01	0.99 (0.94,1.05)	8.5E-01	9.4E-01	0.0\%	0.99 (0.93,1.04)	6.2E-01	$9.7 \mathrm{E}-01$	0.0\%
7.2E-01	0.99 (0.94,1.05)	8.5E-01	9.3E-01	0.0\%	0.99 (0.93,1.04)	6.2E-01	$9.7 \mathrm{E}-01$	0.0\%
3.2E-01	1.00 (0.95,1.04)	8.5E-01	2.3E-01	31.0\%	1.00 (0.95,1.05)	9.0E-01	2.2E-01	32.5\%
3.1E-01	1.00 (0.95,1.04)	8.5E-01	2.2E-01	32.7\%	1.00 (0.95,1.05)	9.0E-01	$2.1 \mathrm{E}-01$	33.5\%
3.1E-01	1.00 (0.95,1.04)	8.5E-01	2.2E-01	31.9\%	1.00 (0.95,1.05)	9.0E-01	$2.1 \mathrm{E}-01$	32.9\%
3.1E-01	1.00 (0.95,1.04)	8.5E-01	2.2E-01	31.9\%	1.00 (0.95,1.05)	9.0E-01	2.2E-01	32.9\%
7.5E-01	0.99 (0.87,1.12)	8.5E-01	8.9E-01	0.0\%	0.99 (0.86,1.13)	8.6E-01	8.6E-01	0.0\%
3.3E-01	0.99 (0.91,1.08)	8.5E-01	2.2E-01	31.9\%	0.99 (0.91,1.08)	8.1E-01	2.1E-01	33.2\%
7.4E-01	1.00 (0.95,1.04)	8.5E-01	5.6E-01	0.0\%	1.00 (0.95,1.05)	$1.0 \mathrm{E}+00$	4.6E-01	0.0\%
5.6E-01	1.01 (0.93,1.09)	8.5E-01	2.0E-01	35.9\%	1.01 (0.93,1.10)	8.5E-01	$2.0 \mathrm{E}-01$	34.6\%
4.5E-01	0.99 (0.92,1.07)	8.5E-01	3.8E-01	3.4\%	0.99 (0.92,1.08)	8.8E-01	3.7E-01	4.5\%
7.9E-01	0.99 (0.94,1.05)	8.5E-01	9.4E-01	0.0\%	0.99 (0.93,1.04)	6.1E-01	9.8E-01	0.0\%
$6.7 \mathrm{E}-01$	1.01 (0.95,1.07)	8.5E-01	9.5E-01	0.0\%	1.01 (0.95,1.07)	8.0E-01	9.5E-01	0.0\%
6.9E-01	1.00 (0.96,1.05)	8.5E-01	9.2E-01	0.0\%	1.01 (0.96,1.06)	6.7E-01	8.3E-01	0.0\%
7.6E-01	0.99 (0.94,1.05)	8.5E-01	8.9E-01	0.0\%	0.99 (0.93,1.04)	6.3E-01	9.5E-01	0.0\%
7.4E-01	1.00 (0.94,1.05)	8.5E-01	9.0E-01	0.0\%	0.99 (0.93,1.04)	6.3E-01	9.5E-01	0.0\%
7.2E-01	1.00 (0.94,1.05)	8.5E-01	9.3E-01	0.0\%	0.99 (0.93,1.04)	6.2E-01	9.7E-01	0.0\%
1.7E-01	1.00 (0.95,1.04)	8.5E-01	2.0E-01	35.4\%	1.00 (0.95,1.04)	8.5E-01	2.1E-01	33.5\%
7.7E-01	1.00 (0.95,1.05)	8.5E-01	9.8E-01	0.0\%	1.00 (0.95,1.05)	9.8E-01	$9.8 \mathrm{E}-01$	0.0\%
3.2E-01	1.00 (0.95,1.04)	8.5E-01	$2.4 \mathrm{E}-01$	29.3\%	1.00 (0.95,1.05)	9.2E-01	$2.3 \mathrm{E}-01$	31.0\%
4.2E-01	0.99 (0.92,1.07)	8.6E-01	2.7E-01	23.5\%	1.00 (0.92,1.09)	9.6E-01	3.0E-01	17.6\%
5.1E-01	0.99 (0.91,1.08)	8.6E-01	4.6E-01	0.0\%	0.99 (0.91,1.08)	8.5E-01	$4.5 \mathrm{E}-01$	0.0\%
1.8E-01	1.00 (0.95,1.04)	8.6E-01	2.1E-01	33.7\%	1.00 (0.95,1.04)	8.6E-01	$2.2 \mathrm{E}-01$	32.6\%
1.8E-01	1.00 (0.95,1.04)	8.6E-01	2.1E-01	33.7\%	1.00 (0.95,1.04)	8.6E-01	2.2E-01	32.6\%
7.6E-01	1.00 (0.94,1.05)	8.6E-01	9.5E-01	0.0\%	0.99 (0.93,1.04)	6.2E-01	$9.8 \mathrm{E}-01$	0.0\%
3.2E-01	1.01 (0.92,1.10)	8.6E-01	$1.4 \mathrm{E}-01$	45.0\%	1.01 (0.92,1.10)	8.8E-01	$1.3 \mathrm{E}-01$	46.9\%
7.2E-01	1.00 (0.95,1.04)	8.7E-01	9.8E-01	0.0\%	1.00 (0.95,1.05)	9.0E-01	9.5E-01	0.0\%
1.6E-01	1.00 (0.95,1.04)	8.7E-01	1.6E-01	41.4\%	1.00 (0.95,1.04)	8.6E-01	1.7E-01	40.4\%
6.6E-01	1.02 (0.82,1.26)	8.7E-01	8.9E-01	0.0\%	1.02 (0.81,1.28)	8.6E-01	6.1E-01	0.0\%
7.7E-01	0.99 (0.87,1.12)	8.7E-01	8.6E-01	0.0\%	0.99 (0.86,1.13)	8.8E-01	$8.4 \mathrm{E}-01$	0.0\%
5.0E-01	1.01 (0.93,1.10)	8.7E-01	5.5E-01	0.0\%	1.00 (0.91,1.09)	9.8E-01	5.2E-01	0.0\%
8.2E-01	1.00 (0.95,1.04)	8.8E-01	9.9E-01	0.0\%	1.00 (0.95,1.05)	9.3E-01	9.7E-01	0.0\%
4.6E-01	0.99 (0.92,1.07)	8.8E-01	2.5E-01	27.6\%	1.00 (0.92,1.09)	9.8E-01	$2.3 \mathrm{E}-01$	29.7\%
2.9E-01	1.00 (0.94,1.06)	8.8E-01	1.4E-01	45.2\%	0.99 (0.93,1.06)	8.1E-01	$1.8 \mathrm{E}-01$	38.6\%
8.4E-01	1.00 (0.96,1.04)	8.8E-01	8.5E-01	0.0\%	1.01 (0.96,1.05)	7.4E-01	7.2E-01	0.0\%
7.8E-01	1.00 (0.94,1.05)	8.8E-01	9.1E-01	0.0\%	0.99 (0.93,1.04)	6.4E-01	9.6E-01	0.0\%
3.1E-01	1.00 (0.95,1.04)	8.8E-01	2.4E-01	28.2\%	1.00 (0.95,1.05)	9.5E-01	$2.3 \mathrm{E}-01$	30.4\%
3.1E-01	1.00 (0.95,1.04)	8.8E-01	$2.4 \mathrm{E}-01$	28.2\%	1.00 (0.95,1.05)	9.5E-01	2.3E-01	30.4\%
3.1E-01	1.00 (0.95,1.04)	8.8E-01	$2.4 \mathrm{E}-01$	28.2\%	1.00 (0.95,1.05)	9.5E-01	$2.3 \mathrm{E}-01$	30.4\%
6.7E-01	1.00 (0.94,1.06)	8.9E-01	6.0E-01	0.0\%	0.98 (0.92,1.05)	6.0E-01	5.1E-01	0.0\%
8.0E-01	1.00 (0.94,1.05)	8.9E-01	9.7E-01	0.0\%	1.01 (0.96,1.07)	7.1E-01	9.9E-01	0.0\%
1.1E-01	1.00 (0.95,1.06)	8.9E-01	4.1E-02	63.6\%	1.00 (0.94,1.06)	$1.0 \mathrm{E}+00$	5.3E-02	61.0\%

3.1E-01	1.01 (0.92,1.10)	8.9E-01	1.3E-01	46.4\%	1.01 (0.92,1.10)	9.0E-01	1.2E-01	47.9\%
3.0E-01	1.00 (0.95,1.04)	8.9E-01	2.2E-01	32.1\%	1.00 (0.95,1.05)	$9.5 \mathrm{E}-01$	2.1E-01	34.3\%
6.5E-01	1.00 (0.95,1.07)	8.9E-01	7.4E-01	0.0\%	1.02 (0.95,1.08)	6.3E-01	8.6E-01	0.0\%
9.2E-01	1.00 (0.96,1.04)	8.9E-01	6.1E-01	0.0\%	1.01 (0.97,1.06)	5.3E-01	6.7E-01	0.0\%
8.6E-01	1.00 (0.95,1.05)	9.0E-01	1.0E+00	0.0\%	1.00 (0.95,1.05)	$9.4 \mathrm{E}-01$	9.8E-01	0.0\%
3.3E-01	1.00 (0.95,1.04)	$9.0 \mathrm{E}-01$	2.9E-01	20.2\%	1.00 (0.95,1.05)	$9.9 \mathrm{E}-01$	2.6E-01	24.7\%
9.4E-01	1.00 (0.96,1.04)	9.0E-01	6.3E-01	0.0\%	1.01 (0.97,1.06)	5.3E-01	6.8E-01	0.0\%
9.7E-01	0.99 (0.89,1.11)	9.0E-01	$1.1 \mathrm{E}-01$	50.3\%	0.97 (0.87,1.09)	$6.2 \mathrm{E}-01$	1.7E-01	40.4\%
3.6E-01	1.00 (0.95,1.04)	9.0E-01	3.1E-01	15.4\%	1.00 (0.95,1.05)	$9.8 \mathrm{E}-01$	2.9E-01	20.1\%
7.0E-01	1.00 (0.94,1.06)	9.0E-01	6.2E-01	0.0\%	0.98 (0.92,1.05)	6.1E-01	5.3E-01	0.0\%
3.1E-01	1.00 (0.95,1.05)	9.0E-01	4.5E-01	0.0\%	1.00 (0.94,1.06)	$9.7 \mathrm{E}-01$	4.5E-01	0.0\%
9.1E-01	1.00 (0.96,1.04)	9.0E-01	6.2E-01	0.0\%	1.01 (0.97,1.06)	5.3E-01	6.8E-01	0.0\%
7.0E-01	1.00 (0.94,1.06)	9.0E-01	6.2E-01	0.0\%	0.98 (0.92,1.05)	6.1E-01	5.3E-01	0.0\%
8.4E-01	0.99 (0.87,1.13)	9.0E-01	9.2E-01	0.0\%	0.99 (0.86,1.14)	8.8E-01	8.9E-01	0.0\%
8.4E-01	0.99 (0.87,1.13)	9.0E-01	9.2E-01	0.0\%	0.99 (0.86,1.14)	$8.8 \mathrm{E}-01$	8.9E-01	0.0\%
3.3E-01	1.00 (0.95,1.04)	9.1E-01	2.9E-01	20.3\%	1.00 (0.95,1.05)	9.9E-01	2.6E-01	24.8\%
3.3E-01	1.00 (0.95,1.04)	9.1E-01	2.9E-01	20.4\%	1.00 (0.95,1.05)	9.9E-01	2.6E-01	24.8\%
5.8E-01	1.00 (0.95,1.07)	9.1E-01	$1.6 \mathrm{E}-01$	41.9\%	0.99 (0.93,1.06)	$8.8 \mathrm{E}-01$	1.9E-01	36.7\%
8.2E-01	0.99 (0.87,1.13)	9.1E-01	9.0E-01	0.0\%	0.99 (0.86,1.14)	8.8E-01	8.7E-01	0.0\%
8.4E-01	0.99 (0.87,1.13)	9.1E-01	9.2E-01	0.0\%	0.99 (0.86,1.14)	8.9E-01	8.9E-01	0.0\%
9.9E-01	1.00 (0.96,1.04)	9.1E-01	3.8E-01	2.2\%	0.99 (0.95,1.03)	$6.1 \mathrm{E}-01$	4.7E-01	0.0\%
9.0E-01	1.00 (0.96,1.04)	9.1E-01	8.9E-01	0.0\%	0.99 (0.95,1.03)	6.2E-01	7.9E-01	0.0\%
2.4E-01	1.00 (0.96,1.05)	9.1E-01	1.7E-01	40.5\%	1.00 (0.96,1.05)	$8.5 \mathrm{E}-01$	1.4E-01	45.1\%
8.5E-01	1.00 (0.95,1.05)	9.1E-01	9.2E-01	0.0\%	0.99 (0.93,1.04)	6.6E-01	9.6E-01	0.0\%
7.7E-01	1.00 (0.96,1.04)	9.1E-01	4.3E-01	0.0\%	0.98 (0.94,1.03)	$4.3 \mathrm{E}-01$	4.0E-01	0.0\%
5.6E-01	1.00 (0.95,1.06)	9.1E-01	6.9E-01	0.0\%	1.01 (0.95,1.07)	$8.5 \mathrm{E}-01$	6.3E-01	0.0\%
4.7E-01	1.00 (0.95,1.05)	$9.1 \mathrm{E}-01$	3.4E-01	10.2\%	1.00 (0.95,1.06)	$9.3 \mathrm{E}-01$	2.8E-01	22.4\%
5.5E-01	1.00 (0.95,1.06)	9.2E-01	6.6E-01	0.0\%	1.01 (0.95,1.07)	$8.5 \mathrm{E}-01$	6.1E-01	0.0\%
$1.0 \mathrm{E}+00$	1.01 (0.85,1.20)	9.2E-01	2.3E-01	30.2\%	0.96 (0.80,1.15)	6.3E-01	2.0E-01	34.7\%
7.3E-01	1.00 (0.95,1.05)	9.2E-01	9.7E-01	0.0\%	1.00 (0.95,1.06)	$9.6 \mathrm{E}-01$	9.4E-01	0.0\%
$4.8 \mathrm{E}-01$	1.00 (0.92,1.08)	$9.2 \mathrm{E}-01$	$2.5 \mathrm{E}-01$	27.4\%	1.01 (0.92,1.09)	$9.1 \mathrm{E}-01$	2.8E-01	22.6\%
9.0E-01	1.00 (0.96,1.04)	9.2E-01	6.6E-01	0.0\%	1.01 (0.97,1.06)	$5.4 \mathrm{E}-01$	7.2E-01	0.0\%
8.8E-01	1.00 (0.95,1.05)	9.2E-01	$1.0 \mathrm{E}+00$	0.0\%	1.00 (0.95,1.05)	9.6E-01	9.8E-01	0.0\%
7.7E-01	0.99 (0.86,1.14)	9.2E-01	9.4E-01	0.0\%	0.99 (0.85,1.15)	8.8E-01	9.2E-01	0.0\%
9.8E-01	1.00 (0.96,1.05)	9.2E-01	8.9E-01	0.0\%	0.99 (0.94,1.04)	$6.7 \mathrm{E}-01$	8.4E-01	0.0\%
9.9E-01	1.00 (0.96,1.04)	9.2E-01	3.8E-01	2.6\%	0.99 (0.95,1.03)	$6.3 \mathrm{E}-01$	4.7E-01	0.0\%
8.7E-01	1.00 (0.95,1.05)	9.2E-01	9.9E-01	0.0\%	1.00 (0.95,1.05)	$9.7 \mathrm{E}-01$	9.7E-01	0.0\%
8.8E-01	1.00 (0.95,1.05)	9.2E-01	$1.0 \mathrm{E}+00$	0.0\%	1.00 (0.95,1.05)	$9.7 \mathrm{E}-01$	9.8E-01	0.0\%
1.9E-01	1.00 (0.96,1.05)	9.2E-01	$1.5 \mathrm{E}-01$	43.5\%	1.00 (0.96,1.05)	8.6E-01	1.4E-01	45.4\%
8.9E-01	1.00 (0.96,1.04)	9.2E-01	6.2E-01	0.0\%	1.01 (0.97,1.06)	5.5E-01	6.8E-01	0.0\%
2.5E-01	1.00 (0.95,1.04)	9.2E-01	1.3E-01	46.6\%	1.00 (0.95,1.05)	9.7E-01	1.2E-01	48.2\%
9.7E-01	1.00 (0.96,1.04)	9.2E-01	$3.8 \mathrm{E}-01$	2.6\%	0.99 (0.95,1.03)	$6.3 \mathrm{E}-01$	4.7E-01	0.0\%
$8.8 \mathrm{E}-01$	1.00 (0.96,1.04)	9.3E-01	6.7E-01	0.0\%	1.01 (0.97,1.06)	5.5E-01	7.4E-01	0.0\%
9.4E-01	1.00 (0.95,1.04)	9.3E-01	9.8E-01	0.0\%	1.01 (0.96,1.05)	8.3E-01	9.6E-01	0.0\%
9.4E-01	1.00 (0.95,1.05)	$9.3 \mathrm{E}-01$	5.8E-01	0.0\%	1.01 (0.96,1.06)	$7.8 \mathrm{E}-01$	5.7E-01	0.0\%
9.0E-01	1.00 (0.96,1.04)	$9.3 \mathrm{E}-01$	6.8E-01	0.0\%	1.01 (0.97,1.06)	5.6E-01	7.4E-01	0.0\%
3.1E-01	1.00 (0.95,1.04)	$9.3 \mathrm{E}-01$	2.8E-01	22.0\%	1.00 (0.95,1.05)	9.9E-01	2.6E-01	24.7\%
9.8E-01	1.00 (0.96,1.04)	9.4E-01	3.7E-01	4.6\%	0.99 (0.95,1.03)	6.3E-01	4.6E-01	0.0\%
5.6E-01	1.00 (0.93,1.08)	$9.4 \mathrm{E}-01$	$2.8 \mathrm{E}-01$	21.3\%	1.00 (0.93,1.09)	$9.5 \mathrm{E}-01$	2.7E-01	24.2\%
8.7E-01	1.00 (0.96,1.04)	$9.4 \mathrm{E}-01$	6.6E-01	0.0\%	1.01 (0.97,1.06)	5.6E-01	7.2E-01	0.0\%

2.6E-01	1.00 (0.95,1.04)	9.4E-01	1.6E-01	41.9\%	1.00 (0.95,1.05)	9.9E-01	1.5E-01	43.9\%
8.1E-01	1.00 (0.96,1.05)	$9.4 \mathrm{E}-01$	9.0E-01	0.0\%	1.02 (0.97,1.06)	5.1E-01	7.8E-01	0.0\%
3.0E-01	1.00 (0.95,1.04)	$9.4 \mathrm{E}-01$	$2.9 \mathrm{E}-01$	19.9\%	1.00 (0.95,1.05)	9.9E-01	$2.9 \mathrm{E}-01$	20.7\%
$5.4 \mathrm{E}-01$	1.00 (0.95,1.06)	$9.4 \mathrm{E}-01$	6.7E-01	0.0\%	1.01 (0.95,1.07)	8.7E-01	6.1E-01	0.0\%
8.7E-01	1.00 (0.96,1.04)	9.4E-01	6.5E-01	0.0\%	1.01 (0.97,1.05)	6.2E-01	7.2E-01	0.0\%
8.6E-01	1.00 (0.95,1.05)	9.4E-01	9.7E-01	0.0\%	1.01 (0.96,1.06)	7.9E-01	$9.6 \mathrm{E}-01$	0.0\%
8.8E-01	1.00 (0.96,1.04)	9.4E-01	6.3E-01	0.0\%	1.01 (0.97,1.06)	5.7E-01	6.8E-01	0.0\%
8.1E-01	1.00 (0.94,1.07)	9.4E-01	2.9E-01	20.2\%	1.01 (0.94,1.08)	$8.4 \mathrm{E}-01$	$2.8 \mathrm{E}-01$	21.9\%
8.1E-01	1.00 (0.96,1.04)	$9.4 \mathrm{E}-01$	3.7E-01	4.5\%	1.00 (0.95,1.04)	9.0E-01	3.7E-01	4.5\%
6.0E-01	1.00 (0.93,1.08)	9.4E-01	$3.0 \mathrm{E}-01$	18.1\%	1.00 (0.92,1.09)	9.6E-01	$2.9 \mathrm{E}-01$	20.8\%
$5.0 \mathrm{E}-01$	1.00 (0.88,1.13)	9.4E-01	$4.8 \mathrm{E}-01$	0.0\%	1.00 (0.87,1.15)	9.6E-01	4.2E-01	0.0\%
5.4E-01	1.00 (0.95,1.06)	9.4E-01	6.8E-01	0.0\%	1.01 (0.95,1.07)	8.6E-01	$6.4 \mathrm{E}-01$	0.0\%
8.7E-01	1.00 (0.93,1.08)	9.5E-01	8.3E-02	55.0\%	0.97 (0.90,1.05)	$4.6 \mathrm{E}-01$	5.7E-02	60.1\%
2.7E-01	1.00 (0.95,1.04)	9.5E-01	1.7E-01	39.7\%	1.00 (0.95,1.05)	9.9E-01	$1.6 \mathrm{E}-01$	42.1\%
$1.0 \mathrm{E}+00$	1.00 (0.95,1.06)	9.5E-01	$1.0 \mathrm{E}+00$	0.0\%	1.02 (0.97,1.08)	$4.8 \mathrm{E}-01$	9.7E-01	0.0\%
5.7E-01	1.00 (0.93,1.08)	9.5E-01	$2.8 \mathrm{E}-01$	21.7\%	1.00 (0.93,1.08)	9.7E-01	2.6E-01	24.7\%
3.0E-01	1.00 (0.95,1.04)	9.5E-01	2.7E-01	23.7\%	1.00 (0.95,1.05)	9.9E-01	2.6E-01	26.1\%
9.0E-01	1.00 (0.96,1.04)	9.5E-01	6.8E-01	0.0\%	1.01 (0.97,1.06)	5.8E-01	7.3E-01	0.0\%
7.8E-01	1.00 (0.93,1.07)	9.5E-01	1.0E-01	51.1\%	0.97 (0.90,1.04)	$3.8 \mathrm{E}-01$	7.0E-02	57.6\%
5.6E-01	1.00 (0.93,1.08)	9.5E-01	$2.8 \mathrm{E}-01$	22.6\%	1.00 (0.92,1.09)	9.6E-01	$2.6 \mathrm{E}-01$	25.2\%
8.4E-01	1.00 (0.95,1.05)	9.5E-01	9.8E-01	0.0\%	1.00 (0.95,1.06)	$9.4 \mathrm{E}-01$	$9.8 \mathrm{E}-01$	0.0\%
5.5E-01	1.00 (0.93,1.08)	9.6E-01	2.7E-01	22.9\%	1.00 (0.92,1.09)	9.6E-01	$2.6 \mathrm{E}-01$	25.5\%
8.3E-01	1.00 (0.96,1.04)	9.6E-01	6.6E-01	0.0\%	1.01 (0.97,1.06)	5.9E-01	7.4E-01	0.0\%
7.2E-01	1.00 (0.94,1.06)	9.6E-01	5.1E-01	0.0\%	0.99 (0.93,1.05)	7.7E-01	$4.1 \mathrm{E}-01$	0.0\%
7.3E-01	1.00 (0.94,1.07)	9.6E-01	2.6E-01	25.4\%	1.01 (0.94,1.08)	8.7E-01	$2.6 \mathrm{E}-01$	26.1\%
5.9E-01	1.00 (0.96,1.05)	9.6E-01	5.1E-01	0.0\%	1.01 (0.96,1.05)	8.0E-01	5.7E-01	0.0\%
9.9E-01	1.00 (0.95,1.05)	9.6E-01	$1.0 \mathrm{E}+00$	0.0\%	1.00 (0.95,1.06)	9.2E-01	$9.8 \mathrm{E}-01$	0.0\%
2.6E-01	1.00 (0.96,1.04)	9.7E-01	1.8E-01	39.3\%	1.00 (0.95,1.05)	9.9E-01	1.6E-01	41.5\%
7.9E-01	1.00 (0.96,1.05)	9.7E-01	9.2E-01	0.0\%	1.01 (0.96,1.06)	7.6E-01	7.9E-01	0.0\%
7.7E-01	1.00 (0.95,1.05)	9.8E-01	9.7E-01	0.0\%	1.00 (0.95,1.06)	9.1E-01	9.3E-01	0.0\%
$5.4 \mathrm{E}-01$	1.00 (0.93,1.08)	9.8E-01	$2.8 \mathrm{E}-01$	22.4\%	1.00 (0.92,1.08)	9.8E-01	2.6E-01	24.6\%
4.0E-01	1.00 (0.92,1.08)	9.8E-01	5.3E-01	0.0\%	0.99 (0.91,1.08)	8.5E-01	5.1E-01	0.0\%
$2.5 \mathrm{E}-01$	1.00 (0.96,1.05)	9.8E-01	1.6E-01	41.8\%	1.00 (0.96,1.05)	9.1E-01	$1.4 \mathrm{E}-01$	45.1\%
3.9E-01	1.00 (0.92,1.08)	9.9E-01	5.2E-01	0.0\%	0.99 (0.91,1.08)	8.5E-01	$4.9 \mathrm{E}-01$	0.0\%
2.4E-01	1.00 (0.96,1.05)	9.9E-01	1.5E-01	44.4\%	1.00 (0.96,1.05)	9.3E-01	$1.3 \mathrm{E}-01$	47.6\%
3.4E-01	1.00 (0.95,1.05)	9.9E-01	$2.8 \mathrm{E}-01$	22.1\%	1.00 (0.95,1.05)	$9.8 \mathrm{E}-01$	$2.6 \mathrm{E}-01$	25.7\%
9.7E-01	1.00 (0.87,1.15)	9.9E-01	$9.4 \mathrm{E}-01$	0.0\%	1.00 (0.86,1.16)	9.6E-01	9.0E-01	0.0\%
9.7E-01	1.00 (0.87,1.15)	9.9E-01	$9.4 \mathrm{E}-01$	0.0\%	1.00 (0.86,1.16)	9.6E-01	9.1E-01	0.0\%
9.2E-01	1.00 (0.95,1.05)	$1.0 \mathrm{E}+00$	$1.0 \mathrm{E}+00$	0.0\%	1.00 (0.95,1.06)	9.2E-01	9.9E-01	0.0\%
7.5E-01	1.00 (0.96,1.04)	$1.0 \mathrm{E}+00$	5.7E-01	0.0\%	0.99 (0.95,1.04)	8.0E-01	6.3E-01	0.0\%

[^0]
es separately.

Non-endometriod histology

Combined analysis

OR (95\% CI)	P-value	P(het)	12
0.85 (0.77,0.95)	2.4E-03	3.2E-01	0.0\%
0.85 (0.77,0.94)	$1.7 \mathrm{E}-03$	2.7E-01	18.9\%
0.85 (0.77,0.94)	$1.7 \mathrm{E}-03$	2.9E-01	9.2
0.85 (0.77,0.94)	$1.3 \mathrm{E}-03$	4.7E-01	0.0\%
0.85 (0.77,0.94)	$2.1 \mathrm{E}-03$	2.3E-01	29.3\%
0.86 (0.78,0.95)	$3.9 \mathrm{E}-03$	3.0E	7.9\%
0.86 (0.78,0.96)	5.0E-03	2.7E-01	16.7\%
0.87 (0.79,0.96)	$5.6 \mathrm{E}-03$	6.4E-01	.0\%
0.88 (0.79,0.97)	9.5E-03	5.5E-01	0.0\%
0.87 (0.79,0.96)	$7.4 \mathrm{E}-03$	5.3E-01	0.0\%
0.87 (0.79,0.96)	$5.5 \mathrm{E}-03$	6.9 E	\%
0.87 (0.79,0.96)	7.0E-03	6.7E-01	0.0\%
0.89 (0.80,0.99)	$2.7 \mathrm{E}-02$	2.1E-01	36.6\%
0.88 (0.79,0.97)	9.5E-03	7.7E-01	0.0\%
0.88 (0.79,0.97)	$1.2 \mathrm{E}-02$	3.6E-01	0.0\%
0.90 (0.81,1.00)	$5.2 \mathrm{E}-02$	2.9	\%
0.89 (0.80,0.99)	$2.6 \mathrm{E}-02$	2.0E-01	38.2\%
0.89 (0.80,0.99)	$2.7 \mathrm{E}-02$	2.0E-01	38.1\%
0.90 (0.81,0.99)	$3.6 \mathrm{E}-02$	8.3E-01	0.0\%
0.91 (0.82,1.02)	9.4E-02	3.0E-01	6.7\%
0.95 (0.86,1.05)	$3.3 \mathrm{E}-01$	1.7E-01	47.2\%
0.90 (0.81,1.00)	6.0E-02	2.6E-01	20.4\%
0.91 (0.81,1.01)	6.9E-02	6.6E-01	. $\%$
$0.94(0.85,1.04)$	$2.6 \mathrm{E}-01$	4.6E-01	0.0\%
0.90 (0.79,1.02)	8.9E-02	7.6E-01	0.0\%
0.87 (0.77,0.97)	$1.6 \mathrm{E}-02$	2.5E-01	25.2\%
0.84 (0.75,0.95)	$5.8 \mathrm{E}-03$	4.6E-01	0.0\%
0.80 (0.67,0.94)	7.2E-03	$4.2 \mathrm{E}-01$	0.0\%
1.04 (0.93,1.15)	5.0E-01	1.9E-01	41.7\%
0.85 (0.76,0.96)	$1.0 \mathrm{E}-02$	9.4E-01	0.0\%
0.86 (0.75,0.97)	$1.6 \mathrm{E}-02$	5.5E-01	0.0\%
0.86 (0.76,0.97)	$1.6 \mathrm{E}-02$	4.6E-01	0.0\%
0.88 (0.79,0.99)	2.7E-02	2.2E-01	34.6\%
0.88 (0.78,0.98)	2.3E-02	4.1E-01	0.0\%
0.88 (0.79,0.98)	$2.5 \mathrm{E}-02$	4.2E-01	0.0\%
0.88 (0.78,0.98)	$2.1 \mathrm{E}-02$	3.8E-01	0.0\%
0.88 (0.79,0.98)	2.6E-02	4.3E-01	0.0\%
0.88 (0.79,0.99)	2.7E-02	4.2E-01	0.0\%
0.88 (0.79,0.99)	2.8E-02	4.4E-01	0.0\%
0.84 (0.70,1.01)	7.0E-02	7.8E-01	0.0\%
0.86 (0.76,0.96)	$1.0 \mathrm{E}-02$	5.3E-01	0.0\%
0.88 (0.79,0.99)	$2.7 \mathrm{E}-02$	1.8E-01	43.3\%
0.93 (0.81,1.06)	2.6E-01	6.5E-01	0.0\%
0.85 (0.76,0.96)	9.2E-03	$4.9 \mathrm{E}-01$	0.0\%

0.86 (0.76,0.97)	$1.2 \mathrm{E}-02$	5.	0.0\%
0.86 (0.76,0.97)	1.2	5.2E-01	\%
0.86 (0.76,0.97)	1.3	5.	
0.86 (0.76,0.97)	1.2	5.	\%
0.8			
0.8	1.2	5.	0.0\%
0.86 (0.76,0.97)			0.0\%
0.8	1.3	5.	0.0\%
1.19 (0.97,1.46)	9.7	5.	0.0\%
1.	9.		0.0\%
1.18 (0.97,1.44)	1.0E-01	4.9	0.0\%
1.18 (0.97,1.44)			0.0\%
0.93 (0.81,1.06)	2.8E-01	5.5	0.0
1.18 (0.97,1.44)	1.0	4.	0.0\%
(81,1.06)	2.8	5.5	0.0\%
0.90 (0.81,1.00)	$5.0 \mathrm{E}-02$	$4.3 \mathrm{E}-0$	0.0\%
0.9	$4.6 \mathrm{E}-02$		0.0\%
0.90 (0.81,1.00)	$4.6 \mathrm{E}-02$	3.8E-01	0.0\%
0.90 (0.81,1.00)	4.4	3.8	0.0\%
0.	$6.2 \mathrm{E}-$	4.9	0.0\%
0.90 (0.81,1.00)	$4.2 \mathrm{E}-02$	3.9	0.0\%
1.19 (0.97,1.45)	9.7E-02		0.0\%
0.90 (0.81,1.00)	4.8E-02	$4.8 \mathrm{E}-0$	0.0
1.17 (0.96,1.43)	1.1	5.	0.0\%
)	$2.0 \mathrm{E}-02$	4.6E-01	0.0\%
0.90 (0.80,1.01)	6.4	9.	0.0
0.89 (0.79,0.99)	2.9	5.	0.0\%
1.17 (0.96,1.43)	1.3	4.9	0.0\%
1.21 (0.99,1.49)	6.5		0.0\%
0.86 (0.74,1.00)	$4.6 \mathrm{E}-02$	7.9E-01	0.0\%
1.16 (0.95,1.41)	1.4		0.0\%
0.89 (0.79,1.01)	7.9E-02	8.6E-01	0.0
0.86 (0.77,0.97)	1.3 E	2.1E-02	81.2\%
0.86 (0.76,0.96)	1.1	3.6	0.0\%
0.86 (0.76,0.97)	1.1 E	$3.9 \mathrm{E}-0$	0.0\%
1.	6.4	7.6	0.0\%
0.90 (0.81,1.00)	$4.0 \mathrm{E}-02$	9.2E-01	0.0
1.07 (0.89,1.27)	4.8 E	7.5E	0.0
0.79 (0.67,0.93)	$3.7 \mathrm{E}-03$	$6.8 \mathrm{E}-0$	0.0
(0.6.97)	$1.2 \mathrm{E}-0$	9.2E-0	0.0
8 (0.65,1.11)	2.4	1.3	57.0\%
0.91 (0.72,1.16)	$4.7 \mathrm{E}-01$	2.0E-01	38.
0.92 (0.72,1.17)	$4.8 \mathrm{E}-0$	2.1	37.6\%
1.12 (1.01,1.25)	3.1E-02	5.9E-01	0.0
0.92 (0.73,1.17)	5.1E-01	2.2E-01	33.6\%
0.88 (0.79,0.98)	2.4 E	9.5	\%
0.88 (0.79,0.98)	$2.4 \mathrm{E}-02$	9.5E-01	0.0\%
0.88 (0.79,0.98)	1.8E-02	9.7E-0	0.0\%
0.91 (0.82,1.02)	1.1E-01	4.3E-01	0.0\%
0.94 (0.80,1.10)	4.6E-01	6.0E-01	0.0\%

2)	1.1E-01	5.2E-01	0.0
)	4.7	5.0E-01	0.0\%
9)			68
0.89 (0.80,0.99)	2.9		0.0\%
0.75 (0.54,1.05)	9.5		68.6\%
1.07 (0.91,1.26)	3.9	8.5	
(1)			
0.88 (0.79,0.98)	2.4	9.9	
0.88 (0.79,0.98)	2.4	9.8	0.0\%
0.89 (0.80,0.98)			0.0\%
0.89 (0.79,0.99)	$3.5 \mathrm{E}-02$	1.	46.
0.95 (0.82,1.10)	5.0		58.8\%
0.89 (0.80,0.99)	$2.8 \mathrm{E}-02$	9.6	.0\%
0.89 (0.80,0.99)	2.8	9.6	\%
)	2.		0.0\%
0.91 (0.81,1.02)	1.2E-01	2.0	38.
0.9	4.9		.0\%
(0.7,1.07)	$2.6 \mathrm{E}-01$	7.0E-01	0.0
0.	4.6E-01		61.1\%
(45,1.08)	1.1		.0\%
0.93 (0.85,1.03)	1.8	3.3	0.0
0.89 (0.80,1.00)	5.0	1.	81.7\%
)	9.7E-01	5.0E-01	0.0\%
2)	7.3	3.	.0\%
1.01 (0.84,1.21)	9.4	5.2	0.0\%
0.91 (0.82,1.01)	7.4	7.0	0.0\%
(0.85,1.05)			65.6\%
0.91 (0.82,1.01)	8.0E-02	7.1E-01	.0\%
0.96 (0.86,1.07)	4.7		60.9\%
1.	$2.7 \mathrm{E}-0$	2.4E-01	27
(0.90,1.15)	7.7	3.0	. 4
0.81 (0.54,1.21)	3.0		
0.83 (0.68,1.00)	$4.8 \mathrm{E}-02$	1.0	62.8\%
0.94 (0.84,1.04)	2.4	9.5	
1.06 (0.96,1.18)	$2.1 \mathrm{E}-01$	3.6E-02	77.2\%
(0.86,1.07)	4.3 E	1.0	62.1
1.01 (0.73,1.40)	9.4E-01	6.2E-0	0.0
0.96 (0.86,1.07)	$4.4 \mathrm{E}-0$	1.0 E	62.3\%
0.98 (0.86,1.12)	8.1	6.5	.0\%
0.91 (0.82,1.02)	9.1E-02	7.6E-01	0.0\%
0.	$8.1 \mathrm{E}-01$	6.0	0.0
0.96 (0.86,1.07)	$4.5 \mathrm{E}-01$	1.0	
0.96 (0.86,1.07)	$4.5 \mathrm{E}-0$	1.1	
0.89 (0.67,1.18)	4.1E-01	2.	
0.96 (0.86,1.07)	$4.5 \mathrm{E}-01$	1.1E-0	\%
0.95 (0.86,1.06)	4.0E-01	1.0	62.
0.96 (0.86,1.07)	4.5E-01	1.1E-01	61.6\%
1.00 (0.84,1.20)	$9.9 \mathrm{E}-01$	5.1E-01	0.0\%
0.86 (0.77,0.97)	$1.1 \mathrm{E}-02$	1.5E-01	51.5\%
1.02 (0.80,1.30)	$8.9 \mathrm{E}-01$	1.0E-01	62.7\%

0.95 (0.85,1.05)	2.	8.	65.3\%
,	8.0E-01	1.0E-01	62
0.97 (0.87,1.09)	6.	6.	
1.06 (0.96,1.18)	2.2	6.	70.4\%
1.07 (0.85,1.35)			
1.0	9.		61.3\%
1.06 (0.96,1.18)			
0.95 (0.85,1.06)	3.9	9.4E-02	
0.83 (0.68,1.02)			
)	5.3	7.0	69.6\%
90 (0.81	5.6E-02	8.4E-01	\%
1.05 (0.88,1.24)			0.0\%
)	4.7	9.4	64.3
(0.80,1.00)	5.2	8.	.0\%
)	5.2	8.2	0.0\%
68	5.5	1.2	58.9
0.82 (0.68,1.00)	$4.8 \mathrm{E}-02$		
0.83 (0.68,1.01)	$5.8 \mathrm{E}-02$	1.1E-01	60.
	5.7	1.2	
(0.87,	5.6	7.1	69
)	5.8	1.2	59.6\%
)	5.		59.6\%
0.83 (0.68,1.01)	5.8	1.1	60.2\%
68	5.8		60.5\%
1.03 (0.81,1.30)	8.4	1.0	62.
)	5.1	1.2	59.
(88,1.01)	5.9	1.1E-01	59.9\%
(0.87,1.08)	5.6	5.3	73.2
0.90,1.13)	8.7	3.	0.0\%
0.82 (0.68,1.00)	4.7E	9.4E-02	64
0.83 (0.68,1.01)	5.9	9.9	63.2\%
(91,1.20)	5.2 E	7.2E	0.0
(0.68,1.01)	5.7	1.1	59.8
(0.91,1.20)	5.2	7.0	0.0\%
0.83 (0.68,1.01)	5.8	9.7E-02	63
0.83 (0.68,1.01)	5.9 E	9.4	64.
.68,1.01)	5.9E-0	9.7E-02	63.8
1.01)	5.9	9.6E-02	63.8
0.83 (0.68,1.01)	6.1	$9.2 \mathrm{E}-$	64.
(0.88,1.09)	7.3E-0	4.7E-0	0.0\%
(0.68,1.01)	6.1 E	9.7E-02	63.7
3 (0.68,1.0	6.1E-02	9.7E-02	63.8\%
1.03 (0.93,1.14)	5.9 E		0.0\%
1.12 (1.01,1.25)	$4.0 \mathrm{E}-0$	2.1E-01	37.2\%
1.01 (0.90,1.13)	8.4E-0	3.8E-01	0.0\%
1.11 (0.99,1.24)	7.3E-02	$2.8 \mathrm{E}-$	13
$2(0.68,0.99)$	$4.2 \mathrm{E}-02$	8.3E-02	66.7\%
1.16 (1.01,1.32)	$3.5 \mathrm{E}-02$	3.7E-01	0.0\%
0.91 (0.69,1.19)	$4.9 \mathrm{E}-01$	$4.3 \mathrm{E}-01$	0.0\%
1.01 (0.72,1.42)	$9.4 \mathrm{E}-01$	6.3E-01	0.0

1.02 (0.80,1.30)	8.6	1.2E-01	
0.87 (0.71,1.06)	1.6	1.	59.3\%
0	5.3E-01		
	2.0	8.6	0.0\%
1.10 (0.95,1.26)			
	5.3	4.7E-01	
			0.0\%
1.15 (1.02,1.29)			
1.	9.0	1	0.0\%
0.86 (0.66,1.10)			
0.87 (0.77,0.97)	1.1	8.4E-01	0.0\%
(1.00)			
1.09	2.1	8.	0.0\%
0.86 (0.66,	2.3E-01	$1.8 \mathrm{E}-01$	45
1.01 (0.91,1.11)			
1.01 (0.92,1.12)	7.8E-01	$4.2 \mathrm{E}-01$.0\%
(1.08)	5.7E-01	1	.0\%
0.96 (0.86,1.08)	4.9	8.	0.0\%
0.89 (0.77,1.04)	1.4E-01	7.1E-01	0.0\%
1.01 (0.91,1.12)			0\%
1.03 (0.90,1.18)	6.2	6.5E-01	.0\%
			.0\%
0.91 (0.79,1.05)	1.9	7.	0.0\%
1.00 (0.87,1.16)	9.6	5.0E-01	.0\%
0.96 (0.87,1.07)		6.	0.0\%
1.02 (0.91,1.15)	7.0	4.8E-01	0.0
0.86 (0.70,1.05)	1.4		58.5\%
1.02 (0.91,1.14)	7.6E-0	$4.8 \mathrm{E}-01$	0.0\%
0.86 (0.70,		1.2	57.9\%
0.	1.5	1.2E-01	
0.85 (0.70,1.05)	1.3	1.2E-01	
7,1.03)			0\%
1.01 (0.92,1.12)	8.0E	4.2E-01	0.0
0.86 (0.70,1.05)		1.0	
(0.83,1.10)	5.1E-0	7.9E-01	0.0\%
0.83 (0.69,1.01)	$5.8 \mathrm{E}-0$	1.1	60.9\%
(0.69,1.01)	5.7E		
0.97 (0.83,1.14)	7.4E-0	9.3E-01	.0\%
1.	4.6 E	8.8	.0\%
. 02 (0.92,1.13)	6.9E-01	4.6E-02	
)	7.0E-0	6.3E-02	
0.91 (0.79,1.04)	$1.7 \mathrm{E}-0$	8.1E-01	.0\%
80,1.06)	$2.4 \mathrm{E}-0$	7.7E-01	.0\%
0.99 (0.87,1.13)	9.2		.0\%
0.90 (0.79,1.04)	$1.4 \mathrm{E}-01$	5.4E-02	73.1\%
1.02 (0.92,1.14)	6.7E-01	6.0E-02	
0.91 (0.81,1.03)	1.2E-01	4.6E-02	75.0
1.03 (0.89,1.20)	7.0E-01	3.3E-01	0.0\%
1.02 (0.92,1.13)	7.2E-01	4.6E-02	75.0\%
1.06 (0.96,1.17)	$2.9 \mathrm{E}-01$	7.1E-01	0.0\%

1.05 (0.92,1.21)	4.6	8.	0.0\%
0.	$4.7 \mathrm{E}-01$	8.5E-01	
0.92 (0.81,1.05)	2.0E-01	3.9	0.0\%
(1.16)	5.		70.0\%
1.05 (0.92,1.20)	$4.8 \mathrm{E}-01$	8.	
1.10 (0.97,1.26)			
1.12 (0.98,1.29)			
0.98 (0.88,1.09)	6.7E-01	4.	74.
)			
0.91 (0.79,1.04)	$1.8 \mathrm{E}-01$	7.3	0.0\%
0.85 (0.68,1.06)			73.7\%
1.12 (0.92,1.37)	2.7E-01	9.	.0\%
0.97 (0.87,1.07)	5.5E-01	6.0E-01	\%
1.02 (0.92,1.13)			
0.95 (0.83,1.08)	$4.2 \mathrm{E}-01$	1.2	58.
,	3.8E-01	7.	0.0\%
1.09 (0.96,1.25)	1.		0.0\%
0.91 (0.80,1.05)	$1.9 \mathrm{E}-01$	7.	.0\%
0.98 (0.88,1.09)	7.3		75.0\%
0.88 (0.71,1.10)	2.7E-01	2.1E-01	36.
95,1.16)	3.1E-01	7.2	0.0\%
1.02 (0.92,1.14)	6.8	4.	76.1\%
1.02 (0.88,1.19)	$7.6 \mathrm{E}-01$	3.3	.0\%
1.02 (0.92,1.13)			74.3\%
1.03 (0.88,1.19)	7.4E-01	3.0E-01	.2\%
6)	3.4	7.0	.0\%
0.93 (0.80,1.07)	2.9E-01	7.5E-01	0.0
(0.68,0.9)	3.7E-02	9.6	63
0.96 (0.82,1.13)	6.6	9.	0.0\%
0.97 (0.83,1.14)	$7.4 \mathrm{E}-01$	9.7	.0\%
0.91 (0.79,1.04)	1.7	7.5	0.0\%
0.	3.1E-01	7.4E-01	0.0
(0.71,1.12)	$3.1 \mathrm{E}-01$	2.2	32
0.85 (0.68,1.06)	$1.4 \mathrm{E}-01$	$4.8 \mathrm{E}-02$	74.4\%
(0.89,1.11)	8.7E-01	6.3E-0	0.0\%
1.06 (0.90,1.25)	4.7	8.8	65.6\%
(0.67,1.12)	2.8E-01	1.9E-01	43.0
0.96 (0.84,1.08)	$4.8 \mathrm{E}-01$	5.7E	0.0\%
0.93 (0.81,1.07)	$3.3 \mathrm{E}-01$	7.2E-01	.0\%
1.09 (0.98,1.21)	$1.2 \mathrm{E}-01$	4.7E-01	0.0
0.83 (0.69,1.01)	$6.2 \mathrm{E}-02$	1.	
7,1.12)	$2.8 \mathrm{E}-01$	$1.8 \mathrm{E}-0$	43.2\%
(0.91,	3.7E-01	8.9E	.0\%
0 (0.88,1.13)	9.4E-01	3.5E-01	0.0\%
0.95 (0.85,1.07)	3.8E-01	7.2E-0	0.0\%
1.00 (0.89,1.13)	$1.0 \mathrm{E}+00$	3.7E-01	0.0
1.01 (0.91,1.12)	$8.5 \mathrm{E}-01$	5.5E-02	72.8\%
0.90 (0.72,1.13)	3.7E-01	2.2E-01	33.7\%
1.11 (0.96,1.27)	$1.5 \mathrm{E}-01$	5.3E-01	0.0\%
0.97 (0.86,1.11)	6.9E-01	9.9E-01	0.0\%

1.05 (0.93,1.19)	4.0E-01	5.4E-01	0.0\%
)	5.3	1.	53.0\%
)			
1.1	1.8	7.	0.0\%
)			0.0\%
1.11 (0.96,1.27)	1.5	5.	
0.99 (0.88,1.12)			0.0\%
0.99 (0.70,1.39)			0.0\%
1.02 (0.91,1.13)	7.6	4.	74.
0.94 (0.82,1.09)			
1.15 (0.91,1.44)	2.5	7.	0.0\%
(1.07)	1.7		74.9\%
0.99	9.5	3.0	78.7\%
1.11 (0.97,1.27)	1.4	5.6E-01	.0\%
1.11 (0.97,1.27)			0.0\%
)	9.6 E	4.7	0.0\%
(0.87,1.09)		7.3E-01	0.0\%
(0.7.27)	1.4	5.6	0.0\%
0.82 (0.65,1.05)	1.2	1.	60.
1.00 (0.90,1.12)			
0.83 (0.66,1.04)	1.1	5.8E-02	72.1\%
	7.0		
)	1.6 E	5.5	0.0\%
1.01 (0.91,1.12)	8.6	5.	72.
0.84 (0.66,1.06)	1.		0.0\%
0.92 (0.79,1.06)	2.3 E	9.	0.0\%
1.00 (0.88,1.13)	9.9		0.0\%
0.76 (0.58,1.00)	$5.3 \mathrm{E}-$	6.4E-02	70.
(0.6,1.01)	7.1 E		49.
0.96	5.3 E	5.3 E	0.0\%
0.90 (0.79,1.04)	1.6	5.	0.0\%
1.00 (0.88,1.13)	9.8		.0\%
3,1	$4.2 \mathrm{E}-01$	$5.4 \mathrm{E}-01$	0.0
0.94 (0.85,1.05)	2.6 E	7.	.0\%
0.78 (0.61,1.01)	6.0E-02	9.3E-01	0.0
1.00 (0.89,1.13)	9.7	4.9	0.0
0.83 (0.66,1.05)	1.1 E	5.1	73.7\%
82,1.13)	6.2E-01	8.8E-01	0.0\%
0.97 (0.86,1.10)	6.2E-01	6.8E	.0\%
1.10 (0.96,1.27)	$1.7 \mathrm{E}-0$	5.5E-0	0.0\%
1.00 (0.89,1.13)	9.6 E	3.7	0.0\%
1.07 (0.93,1.24)	$3.3 \mathrm{E}-01$	7.1	0.0
1.00 (0.89,1.13)	9.8E-0	3.6E-0	.0\%
1.10 (0.96,1.27)	1.6		.0\%
0 (0.96,1.27)	1.6E-01	6.2E-01	0.0
(67,1.04)	1.1E-01	5.0E-02	73.9
0.97 (0.87,1.09)	6.5E-01	7.1E-01	0.0\%
0.85 (0.71,1.03)	$9.7 \mathrm{E}-02$	2.0E-01	40.2\%
0.78 (0.60,1.01)	5.9E-02	9.5E-01	0.0\%
1.00 (0.89,1.13)	9.9E-01	4.3E-01	0.0

1.00 (0.89,1.13)	9.	4.	0.0\%
0.	6.5	7.2E-01	0.0\%
0.78 (0.60,1.00)	5.5	9.	0.0\%
(0.60,1.01)	5.		0.0\%
0.78 (0.60,1.01)	5.9	9.5E-01	
)	9.7		0.0\%
0.84 (0.67,1.05)			75.6\%
0.94 (0.70,1.24)	6.4	6.	0.0\%
)	1.0		84.7\%
0.97 (0.67,1.40)	8.7 E	9.8	0.0\%
0.97 (0.67,1.40)	8.7	9.	0.0\%
1.00 (0.89,1.13)	9.		0.0\%
1.00 (0.88,1.13)	9.6E-01	6.9E-01	.0\%
)	2.2	9.2E-01	0.0\%
0.84 (0.67,1.05)	1.3	4.3	75.
(0.88,1.13)	9.8	5.	0.0\%
1.00 (0.89,1.13)	9.		0.0\%
0.91 (0.82,1.02)	1.1	1.1E-02	84.6\%
1.00 (0.89,1.13)	9.6		.0\%
1.01 (0.90,1.15)	8.3E-01	3.2E-01	0.0
88,1.13)	9.8	5.0	0.0\%
(0.62,1.00)	5.0 E	4.5	75.1\%
0.95 (0.81,1.12)	5.7E-01	7.7	0.0\%
1.01 (0.89,1.13)	9.3		0.0\%
0.78 (0.61,1.01)	$5.5 \mathrm{E}-02$	9.4E-01	0.0
2)	9.5		.0\%
1.00 (0.89,1.13)	9.9	$4.2 \mathrm{E}-01$	0.0\%
(0.1.01)	5.7	9.	0.0
1.00 (0.89,1.13)	9.5		0.0\%
0.99 (0.88,1.12)	9.3	4.	.0\%
0.99 (0.89,1.11)	9.3	4.	0.0\%
1.01 (0.89,1.14)	8.8E-01	6.7E-01	0.0
(0.8,1.13)	9.6	5.2E	.0\%
1.00 (0.89,1.13)	9.9E-0	4.3 E	0.0\%
(0.89,1.14)	9.2E-01	3.6E-01	0.0
1.07 (0.95,1.21)	2.6	9.9	63.4\%
0.99 (0.88,1.12)	9.1E-01	4.4E-01	0.0
0.96 (0.85,1.09)	5.5 E	3.3	0.0
1.01 (0.91,1.11)	$8.8 \mathrm{E}-01$	1.2	58
1.02 (0.92,1.13)	$7.5 \mathrm{E}-0$	2.5E-0	23.7\%
0.84 (0.68,1.05)	$1.3 \mathrm{E}-01$	4.	75.2\%
89,1.13)	$9.4 \mathrm{E}-01$	$4.4 \mathrm{E}-0$	0.0\%
0.84 (0.70,1.00)	$4.8 \mathrm{E}-02$	3.	.0\%
1.00 (0.89,1.13)	9.4E-01	$4.5 \mathrm{E}-0$	0.0\%
82,1.08)	3.9E-01	$5.9 \mathrm{E}-01$	0.0\%
1.04 (0.91,1.20)	5.6E-01	5.7E-01	0.0
0.84 (0.68,1.05)	$1.3 \mathrm{E}-01$	4.4E-02	75.3\%
0.84 (0.68,1.05)	$1.3 \mathrm{E}-01$	4.4E-02	75.3\%
0.84 (0.68,1.05)	$1.4 \mathrm{E}-01$	4.5E-02	75.2\%
0.78 (0.61,1.01)	5.7E-02	9.2E-01	0.0\%

1.01 (0.89,1.14)	8.7E-01	6.6	0.0\%
1.00 (0.88,1.14)	9.4	7.6E-01	0.0\%
0.96 (0.85,1.09)	5.5	3.	0.0\%
(0.89,1.13)	9.		0.0\%
0.97 (0.86,1.11)	6.7	6.	
0.9			0.0\%
1.09 (0.97,1.23)			22.9\%
0.83 (0.66,1.05)	1.3	5.2	73.
0.99 (0.89,1.11)	8.9		
0.96 (0.72,1.28)	$7.7 \mathrm{E}-0$	4.	0.0\%
)	8.		7.8\%
1.0	9.		0.0\%
1.00 (0.89,1.13)	$9.9 \mathrm{E}-01$	5.0E-01	0.0\%
0.			
1.02 (0.85,1.22)	8.6E-01	2.9	11.0\%
(1.29)	1.9	3.	0.0\%
0.96 (0.84,1.09)	5.	5.	0.0\%
1.09 (0.97,1.22)	1.4	4.9	.0\%
1.00 (0.88,1.14)	9.6		0.0\%
0.78 (0.60,1.01)	$5.6 \mathrm{E}-02$	9.9E-01	0.0
(66,1.05)	1.3		60
0.83 (0.66,1.05)	1.3 E	1.	60
1.01 (0.89,1.14)	9.1	7.0	0.0\%
1.01 (0.89,1.14)	8.8		0.0\%
0.92 (0.81,1.06)	$2.4 \mathrm{E}-01$	5.8E-02	72.3
10)	2.8	8.0	.0\%
1.01 (0.90,1.14)	8.6 E	$3.2 \mathrm{E}-01$	0.0\%
(1)	4.8	3.9	0.0\%
1.02 (0.90,1.15)	7.8	4.7E-01	0.0\%
0.98 (0.86,1.11)	7.4	7.0	.0\%
0.98 (0.87,1.10)	7.2	8.6	0.0\%
1.00 (0.89,1.13)	9.9E-01	4.7E-01	0.0
(0.90,1.15)	8.4	3.8	0.0\%
1.01 (0.89,1.14)	8.5E	3.7E-01	0.0
$1.01(0.89,1.14)$	$9.0 \mathrm{E}-01$	7.3E-01	0.0
1.01 (0.89,1.14)	8.6	4.9	0.0\%
$(0.93,1.22)$	3.3E-01	8.4E-01	0.0
1.18 (1.00,1.39)	4.7E-02	8.2E	67.
0.99 (0.88,1.12)	$9.1 \mathrm{E}-01$	6.8E-01	0.0\%
1.01 (0.89,1.14)	$9.0 \mathrm{E}-0$	7.3E-01	0.0\%
1.01 (0.89,1.14)	8.9 E	6.	0.0\%
88,1.14)	9.6E-01	7.3E-01	0.0\%
1.01 (0.90,1.14)	$8.5 \mathrm{E}-01$	5.3	.0\%
1.01 (0.89,1.14)	8.9E-01	6.4E-01	0.0\%
1.01 (0.89,1.14)	8.8E-01	6.5E-01	0.0\%
1.06 (0.90,1.26)	4.9E-01	7.9E-01	0.0\%
1.01 (0.89,1.14)	$9.3 \mathrm{E}-01$	7.4E-01	0.0\%
0.93 (0.81,1.06)	2.7E-01	6.5E-02	70.6\%
1.02 (0.91,1.15)	7.2E-01	7.4E-01	0.0\%
0.78 (0.61,1.01)	$6.1 \mathrm{E}-02$	9.8E-01	0.0\%

0.78 (0.60,1.00)	5.	9.5E-01	0.0\%
0.97 (0.87,1.09)	$6.4 \mathrm{E}-01$	5.6E-02	72.6\%
0.95 (0.85,1.06)		1.6E-01	
1.00 (0.90,1.11)	9.	3.	
1.01 (0.89,1.15)			
	8.4E-01		
1.10 (0.78,1.55)			
0.9	6.2E-01	5.	
1.01 (0.64,1.58)	$9.8 \mathrm{E}-01$	3.	
1.11 (0.80,1.56)			66.7\%
1.02	$8.1 \mathrm{E}-01$	7.5	\%
0.93 (0.81,1.06)			70.6\%
0.94 (0.85,1.05)	$2.7 \mathrm{E}-01$	4.	0.0\%
(1.15)	8.		0.0\%
1.01(0.91,1.12)	9.0E-01		35
89	$8.2 \mathrm{E}-01$	7.	.0\%
(0.1.15)			
)	8.0E-01	6.5	0.0\%
	$9.5 \mathrm{E}-01$.0\%
1.02 (0.90,1.15)	8.0E-01	6.5	0.0\%
0.93 (0.78,1.10)	4.0E-01	7.5	0.0\%
1.00 (0.89,1.12)			0.0\%
)	7.9E-01	9.5	0.0
0.93 (0.81,1.06)	2.5	6.	70.3\%
0.93 (0.81,1.06)	2.6E-01	6.9E-02	69.
0.78 (0.61,1.01)	5.5E-02	9.9	0.0\%
1.00 (0.88,1.13)	9.8	4.	0.0\%
0.83 (0.66,1.05)	1.1	6.	70.3\%
0.97 (0.68,1.38)	8.5		0.0\%
1.19 (0.83,1.70)	3.5E-01	7.2E-0	0.0\%
1.01 (0.89,1.15)	8.6	6.2	.0\%
1.	$5.8 \mathrm{E}-01$	3.2	0.0\%
0.98 (0.88,1.10)	7.6	9.6	0.0
0.83 (0.66,1.05)	1.1	6.5	70.6\%
0.93 (0.83,1.04)	$1.8 \mathrm{E}-01$	$5.8 \mathrm{E}-0$	0.0\%
)	$6.3 \mathrm{E}-01$	4.5	.0\%
1.02 (0.90,1.15)	7.9E-01	9.3E-01	0.0
1.07 (0.90,1.26)	4.5	5.8	0.0
1.18 (1.00,1.38)	5.3E-02	8.7E-0	65
(0.89,1.13)	$9.8 \mathrm{E}-01$	4.0E-01	0.0
0.83 (0.66,1.05)	1.1		70.9
0.83 (0.66,1.05)	$1.1 \mathrm{E}-01$	6.4E-02	70
0.83 (0.66,1.05)	$1.1 \mathrm{E}-01$	6.3 E	
0.83 (0.66,1.05)	$1.1 \mathrm{E}-01$	6.3E-02	71.2\%
0.97 (0.87,1.08)	$5.7 \mathrm{E}-01$	1.1E-01	59.8\%
0.93 (0.78,1.10)	$4.0 \mathrm{E}-01$	7.5	0.0\%
1.04 (0.94,1.15)	$4.4 \mathrm{E}-01$	6.8E-01	0.0\%
1.01 (0.77,1.32)	$9.5 \mathrm{E}-01$	4.7E-0	0.0\%
1.00 (0.88,1.12)	9.5E-01	3.9E-01	0.0\%
1.01 (0.89,1.15)	8.8E-01	7.0E-01	0.0

09)	5.2E-01	7.4E-01	
)	2.6	6.8	70
0.93 (0.78,1.10)			
0.9			0.0\%
0.93 (0.81,1.06)			
0.95 (0.86,1.06)	3.8	6.	
(1)			
0.9	3.2		70.6\%
0.92	2.8	9.6	0.0\%
0.9			69.9\%
1.04 (0.94,1.14)	4.9	7.6	0.0\%
0.94 (0.82,1.08)			
)	2.8	5.9	71.9\%
	9.1	6.6	0.0\%
)			66.6\%
1.00 (0.88,1.13)	9.5	4.	0.0\%
	2.		
)	5.2 E	7.	0.0\%
1.05 (0.94,1.16)	4.0	1.	42.1\%
0.99 (0.89,1.10)	8.	6.	.0\%
1.01 (0.77,1.33)	9.3	4.	0.0\%
4)	1.0	3.	0.0\%
)	6.5	6.3	0.0
)			69.
1.00 (0.89,1.13)	9.9	3.5	0.0\%
0.97 (0.85,1.10)	6.1	5.6	0.0\%
1.15 (0.98,1.35)			69.2\%
1.02 (0.90,1.15)	$7.6 \mathrm{E}-01$	3.1	4.9\%
0.93 (0.81,1.06)	2.8		68
1.01 (0.89,1.14)	8.7	5.2E-01	0.0\%
(0.91,1.17)	6.0	2.9	9.8\%
1.02 (0.89,1.16)	7.8	6.	0.0\%
0.93 (0.83,1.03)	1.8 E	5.8	0.0
(82,1.12)	5.9	2.	35.3\%
0.97 (0.87,1.08)	5.4E-01	$1.2 \mathrm{E}-0$	59
0.96(0.86,1.07)	4.9	8.3	
0.96 (0.86,1.06)	4.1 E	1.9	
(0.94,1.21)	$3.0 \mathrm{E}-0$	6.5E-0	70.
7 (0.86,1.10)		4.3	
81,1.08)	3.8E-01	4.6E-02	4.8
0.97 (0.85,1.10)	$6.1 \mathrm{E}-0$	5.6	0.0\%
6 (0.94,1.42)	1.6 E	$4.7 \mathrm{E}-0$	0.0\%
1.02 (0.92,1.13)	7.1	5.9 E	0.0\%
0.99 (0.88,1.12)	8.8	4.	0.0
$7(0.94,1.21)$	$3.1 \mathrm{E}-01$	6.6E-02	70.5\%
(1.00,1.85)	$5.3 \mathrm{E}-02$	3.6E-01	0.0\%
0.97 (0.85,1.10)	6.1E-01	5.7E-01	0.0\%
0.99 (0.88,1.11)	8.6E-01	4.4E-01	0.0\%
1.00 (0.89,1.13)	9.8E-01	3.6E-01	0.0\%
0.99 (0.88,1.12)	8.7E-01	4.1E-01	0.0\%

0.93 (0.78,1.10)	4.0	7.7E-01	0.0\%
1.	$7.0 \mathrm{E}-03$	2.9	79
1.0	9.8	4.	
(0.86,1.06)	4.		39.2\%
0.97 (0.85,1.10)	6.2	6.	
)			
0.			
1.12 (0.96,1.30)	1.4	5.	0.0\%
0.93 (0.78,1.10)	4.		
0.97 (0.85,1.10)	6.3 E	4.5	0.0\%
0.97 (0.87,1.08)	5.		0.0\%
0.93	2.6		71.5\%
1.07 (0.94,1.21)	3.0	6.4E-02	70.8\%
0.	4.2E-01		
1.10 (0.81,1.49)	$5.5 \mathrm{E}-01$	4.0	0.0\%
(97,1.30)	1.4	3.5E-01	0.0\%
0.96 (0.86,1.07)	4.		33.4\%
0.	$5.0 \mathrm{E}-01$	5.	.0\%
1.0	8.0		0.0\%
0.96 (0.86,1.06)	4.0E-01	1.9E-01	40.7\%
0.99 (0.88,1.12)	8.8 E	4.	0.0\%
(0.8,1.47)	8.6	3.0	78.9\%
1.00 (0.89,1.12)	$9.6 \mathrm{E}-0$	3.8	0.0\%
1.12 (0.90,1.39)			0.0\%
1.07 (0.94,1.22)	2.8E-01	$4.0 \mathrm{E}-01$	0.0\%
1)	8.6	4.	.0\%
0.	5.8	5.7E-	0.0\%
(0.88,11)	8.6	4.7	0.0\%
1.01 (0.89,1.14)	9.3	7.	0.0\%
1.00 (0.89,1.13)	9.9	3.8	0.0
(8,1.09)	6.4	1.3	56.
0.93 (0.78,1.10)	3.9E-01	7.7E-01	0.0
0.כ. 0 (0.88,1.12)	8.9 E	4.2	.0\%
1.00 (0.89,1.13)	9.9 E	$3.8 \mathrm{E}-0$	0.0\%
0.9.(0.88,1.11)	8.6E-01	4.7E-01	0.0\%
1.04 (0.92,1.18)	5.3 E		2.4\%
(98,1.32)	8.8E-02	4.2E-01	0.0\%
1.00 (0.88,1.12)	9.6 E		0.0\%
1.04 (0.91,1.18)	5.7E-01	$5.5 \mathrm{E}-0$	0.0
0.94 (0.79,1.11)	$4.7 \mathrm{E}-0$	7.9E-0	0.0
0.95 (0.85,1.07)	$4.2 \mathrm{E}-01$	9.1	64.9\%
(90,1.26)	4.6E-01	5.7E-01	.0\%
1.00 (0.88,1.14)	$9.8 \mathrm{E}-01$	7.8	0.0\%
1.01 (0.84,1.22)	8.9E-01	$1.9 \mathrm{E}-0$	41.1\%
1.07 (0.94,1.22)	$2.8 \mathrm{E}-01$	6.7E-02	70.1\%
1.02 (0.90,1.16)	7.9E-01	3.9E-01	0.0
1.01 (0.83,1.21)	$9.4 \mathrm{E}-01$	1.5E-01	51.3\%
0.99 (0.87,1.13)	9.1E-01	3.8E-01	0.0\%
1.06 (0.89,1.25)	5.2E-01	5.5E-01	0.0\%
0.95 (0.80,1.12)	5.2E-01	5.5E-01	0.0\%

	5.2	01	0.0\%
0	5.2	5.	0.0\%
1.36 (0.94,1.95)			
	5.0	3.3	
0.99 (0.88,1.12)			
0.96 (0.85,1.09)	5.2	7.	
1.03 (0.92,1.14)			
1.00 (0.90,1.11)			
1.	9.4	1	
0.96 (0.85,1.09)			
1.06 (0.96,1.17)	2.5	3.9	0.0\%
)			0.0\%
1.01 (0.84,1.22)	9.0		
0.	8.7E-01	4.1E-01	0.0\%
0.96 (0.85,1.09)			
1.13 (0.97,1.31)	1.1	3.5E-01	0.0
0.99 (0.88,1.11)	8.7		.0\%
0.99 (0.88,1.12)		3.6	0.0
1.07 (0.94,1.21)			
1.00 (0.89,1.12)	9.6	2.6E-01	21.3\%
	2.7	3.9E-01	
0.99 (0.88,1.11)	8.6	4.	
0.99 (0.88,1.11)	8.6	4.7E-01	0.0\%
0.94 (0.83,1.06)	3.2		
0.99 (0.88,1.12)	8.7	4.	0.0\%
8,1	8.8		
1.12 (0.97,1.30)	1.2 E	3.8E-01	0.0\%
1.00 (0.89,1.13)	9.8		
0.	5.0	8.2E-01	
(1)	8.	4.	0.0\%
)			0.0\%
1.07 (0.94,1.22)	2.8 E	7.4E-02	68
1.09 (0.94,1.27)	2.5	4.1	
0.99 (0.88,1.11)	8.6E-0	4.1E-01	0.0
0.95 (0.86,1.05)	3.4	2.8E-02	79.2\%
$99(0.88,1.12)$	8.7	4.0	
0.92 (0.81,1.05)	$2.1 \mathrm{E}-0$	4.2E-02	
0.	8.7 E		
90,1.14)	8.0E-0	$4.2 \mathrm{E}-01$	0.0\%
0.99 (0.88,1.11)	8.6	4.1	
1.01 (0.91,1.12)	$8.5 \mathrm{E}-0$	4.3E-01	0.0\%
1.07 (0.97,1.18)	$2.0 \mathrm{E}-0$	8.7E-01	.0\%
(0.77,1.09)	3.2	6.0	
$38(1.02,1.87)$	3.9E-02	3.3E-01	0.0\%
0.99 (0.89,1.10)	8.3E-0	7.7E-02	67.
0.99 (0.88,1.11)	8.3E-01	4.0E-01	0.0\%
1.01 (0.90,1.14)	8.3E-01	3.7E-01	0.0
1.11 (1.00,1.23)	5.8E-02	4.4E-01	0.0\%
1.03 (0.91,1.16)	6.4E-01	3.2E-01	0.5\%

0.97 (0.82,1.15)	7.3E-01	5.	0.0\%
)	7.4E-01	6.0E-01	\%
0.98 (0.88,1.10)	7.	6.6E-02	
1.07 (0.95,1.21)	2.8	2.	
0.96 (0.86,1.07)			
1.	9.7E-01		
0.98 (0.87,1.11)			
0.	7.1E-01	7.2	
1.12 (0.97,1.30)	$1.2 \mathrm{E}-01$	3.	0.0\%
0.98 (0.87,1.11)	8.		0.0\%
1.08 (0.95,1.22)	$2.6 \mathrm{E}-01$	6.7E-02	70.2\%
0.97 (0.85,1.10)			.0\%
1.06 (0.93,1.22)	3.5E-01	2.0	37.8\%
7,1.09)	3.2	5.	0.0\%
)	$2.7 \mathrm{E}-01$	4.9	74.2\%
0.96 (0.86,1.08)	5.3E-01	8.4	.0\%
0.9	2.		71.9\%
1.02 (0.90,1.16)	$7.2 \mathrm{E}-01$	6.7E-01	0.0\%
)	7.4		.0\%
0.99 (0.88,1.12)	$8.8 \mathrm{E}-01$	3.8	0.0\%
1.11 (1.00,1.23)	5.7E-02	4.7	0.0\%
0.98 (0.87,1.11)	7.8		0.0\%
)	7.8E-01	4.0	0.0
1.00 (0.88,1.12)	$9.5 \mathrm{E}-01$		
)	8.3E-01	7.1E-02	69.
(0,1.11)	8.0 E	3.5	0.0\%
0.99 (0.89,1.10)	8.		
0.99 (0.89,1.11)	8.7E-01	1.	60.9\%
. 93 (0.82,1.06)	2.8		74.8\%
0.98 (0.88,1.10)	7.4E-01	7.7E-02	68.
1.01 (0.90,1.14)	8.6		.0\%
0.98 (0.88,1.11)	7.9E-01	3.	0.0\%
1.39(1.01,1.90)	$4.4 \mathrm{E}-02$	3.2E	0.0\%
1.39 (1.01,1.90)	4.3E-02		0.0\%
0.93 (0.82,1.06)	$2.7 \mathrm{E}-01$	4.9 E	74
10)	8.4	8.5	66
0.93 (0.82,1.06)	$3.1 \mathrm{E}-01$	3.8E-02	76.8
1.39 (1.01,1.90)	$4.3 \mathrm{E}-02$	3.2	0.0\%
1.39 (1.01,1.90)	$4.3 \mathrm{E}-02$	3.2	0.0\%
(1)	3.7E-01	5.2E-0	.0\%
(0.88,1.11)	$7.9 \mathrm{E}-01$	3.5	0.0\%
(0.89,1.13)	$9.9 \mathrm{E}-01$	$4.4 \mathrm{E}-01$.0\%
0.97 (0.75,1.25)	$8.2 \mathrm{E}-01$		0.0\%
1.10 (0.99,1.22)	$7.8 \mathrm{E}-02$	$5.0 \mathrm{E}-01$	0.0\%
0.97 (0.87,1.10)	6.7E-01	6.8E-01	0.0\%
1.04 (0.82,1.32)	7.6E-01	6.4	0.0\%
(0.90,1.14)	$8.6 \mathrm{E}-01$	4.6E-01	0.0\%
1.00 (0.86,1.15)	$9.6 \mathrm{E}-01$	9.0E-01	0.0\%
1.01 (0.90,1.14)	8.6E-01	4.4E-01	0.0\%
0.98 (0.85,1.13)	8.2E-01	7.0E-01	0.0\%

1)	4.	3.2E-01	0.4\%
(1.17)	6.6	6.	71
1.40 (1.01,1.93)	4.	3.0E-01	
1.02 (0.85,1.22)	8.2		0.0\%
1.01 (0.90,1.14)			
1.0	8.7	4.	0.0\%
0.92 (0.77,1.10)			
0.97 (0.87,1.09)	6.3		24
1.0	7.7		.0\%
1.02 (0.82,1.27)	8.7E-01		0.0\%
0.94 (0.79,1.11)	4.5	7.6	.0\%
1.04 (0.81,1.33)	7.7E-01		0.0\%
1.39 (1.01,1.91)	$4.0 \mathrm{E}-0$	3.2	0.6\%
2,1.92)	3.8		2.0\%
(1)	7.3	6.2	0.0\%
2)	$9.0 \mathrm{E}-01$	1.0	62.8\%
0.9	5.		
1.01 (0.90,1.14)	8.6E-01	4.5	.0\%
)	8.6		0.0\%
0.	4.1	1.8	43
0.96 (0.86,1.06)	$4.2 \mathrm{E}-0$	9.	0.0\%
(1.14)	8.7E-01		0.0\%
)	8.8E-01	3.	0.0\%
0.99 (0.88,1.11)	8.0		0.0\%
)	8.6E-01	3.0E-01	8.5
)	7.3	6.9	0.0
0.97 (0.74,1.28)	8.5	2.	23.3\%
0.97 (0.75,1.25)	8.1	5.	0.0\%
0.99 (0.88,1.11)	8.1	5.	0.0\%
0.98 (0.87,1.11)	7.8 E	4.0E-01	0.0
0.97 (0.75,1.25)	8.1		0.0\%
0.97 (0.75,1.25)	8.1	5.5	0.0
0.97 (0.75,1.25)	8.1 E	5.5	0.0
0.97 (0.75,1.25)	8.1	5.5	0.0\%
0.98 (0.87,1.11)	7.6 E	3.7E-0	0.0
5)	8.1 E	5.5	.0\%
0.97 (0.75,1.25)	8.1E-01	5.5E-01	0.0
0.97 (0.75,1.25)	8.1 E	5.5E	0.0
0.98 (0.88,1.11)	$8.0 \mathrm{E}-0$	5.5E-01	0.0
86,1.06)	$3.7 \mathrm{E}-0$	$8.0 \mathrm{E}-0$	0.0\%
.90,	8.7 E	4.5	0.0\%
13 (0.83,1.55)	4.3E-01	3.9E-01	0.0\%
2)	$9.4 \mathrm{E}-0$	4.5	0.0
0.90 (0.72,1.14)	$4.0 \mathrm{E}-01$	5.3E-02	73.
0.98 (0.87,1.11)	$8.0 \mathrm{E}-01$	3.1E-01	.1\%
0.99 (0.88,1.11)	8.3E-01	3.7 E	0.0\%
0.99 (0.88,1.11)	8.3E-01	3.7E-01	0.0\%
0.99 (0.88,1.11)	8.3E-01	3.7E-01	0.0\%
1.01 (0.91,1.13)	8.2E-01	9.3E-02	64.6\%
0.99 (0.89,1.10)	8.3E-01	7.6E-02	68.

0.99 (0.88,1.11)	8.	3.	0.0\%
0.	$6.8 \mathrm{E}-01$	5.3E-01	0.0\%
0.95 (0.79,1.14)	5.	9.7E-01	
0.	5.0		0.0\%
0.			
1.	$4.3 \mathrm{E}-01$		0.0\%
1.00 (0.83,1.20)			
0.	7.8E-01	6.	
0.		9.8	0.0\%
0.98 (0.88,1.10)			69.6\%
0.97 (0.88,1	5.5E-01	6.3E-01	0.0\%
0.			0.0\%
1.	9.6E-01	5.9	0.0\%
(1.13)		4.7E-01	
0.	5.	6.	0.0\%
0.92 (0.80,	$2.7 \mathrm{E}-01$	5.6	0.0\%
1.33 (0.98,1.82)			26.4\%
0.99 (0.88,1.12)	9.2E-01	3.8	0.0\%
0.94 (0.79,1.13)		$1.0 \mathrm{E}+00$	0.0\%
1.	6.5	1.9	41
0.	7.2	3.	2.4\%
0.99 (0.86,1.15)	9.		10.7\%
0	5.6E-01	3.5	0.0\%
1.00 (0.89,1.12)		6.	0.0\%
1.	8.6E-01	8.9E-02	65
0.		2.	17.7\%
0.93 (0.82,1.07)	3.1	3.	
1.09 (0.92,1.28)	3.1	5.1	0.0
0.98 (0.87,1.10)			
0.	7.9E-0	3.8E-01	0.0\%
0.99 (0.88,1.10)	7.9	9.3	0.0
0.99 (0.89,1.10)	8.5	7.5E-02	68
0.98 (0.87,1.10)	7.5	2.8	14
1.00 (0.86,1.15)	9.6	2.	
1.	8.9	7.0E-02	69.
0.97 (0.74,1.28)	8.5	2.6	19.6
0.98 (0.88,1.11)	7.8E-01	4.0E-01	0.0
0.99 (0.89,1.10)	8.2E-0	7.9E-02	67.
1.04 (0.94,1.16)	4.5	9.5E-	0.0\%
0.97 (0.75,1.24)	7.9E-0	6.2E-0	0.0\%
1.00 (0.89,1.13)	9.7		0.0\%
0.96 (0.87,1.06)	$4.1 \mathrm{E}-01$	6.2E-01	0.0
1.	9.5	3.9	0.0
0.96 (0.86,1.07)	$4.2 \mathrm{E}-01$	1.8E-01	4.8
0.97 (0.86,1.10)	6.7E-01	4.5E-01	0.0
0.96 (0.86,1.07)	.2E-01	1.8	44.8\%
1.00 (0.89,1.13)	$9.4 \mathrm{E}-01$	4.8E-01	0.0\%
1.06 (0.93,1.20)	3.7E-01	$1.6 \mathrm{E}-0$	50.0
1.14 (0.85,1.54)	$3.8 \mathrm{E}-01$	1.4E-01	54.0\%
0.92 (0.67,1.25)	5.8E-01	6.9E-01	0.0

1.09 (0.97,1.22)	$1.6 \mathrm{E}-01$	8.1E-01	.0\%
1.06 (0.93,1.20)	3.7	1.	50.0\%
0			
1.01 (0.91,1.13)			36.3\%
0			
	6.3	3.8E-01	.0\%
0.97 (0.75,1.25)			
1.00 (0.89,1.12)			
0.	7.1	2.6E-01	22.6\%
0			
1.03 (0.92,	6.0	$1.8 \mathrm{E}-01$	45.4\%
0.98 (0.88,1.11)			
1.00 (0.89,1.13)	9.9	5.7E-01	.0\%
		7.1E-01	.0\%
1.			0.0\%
1.	9.9	$1.9 \mathrm{E}-01$	41.5\%
1.00 (0.89,1.13)			
0.92 (0.68,1.25)	6.01	6.3E-01	0.0\%
0.99 (0.88,1.11)	8.0	01	0.0\%
0.90 (0.71,1.14)	3.		68.7\%
0.90 (0.71,1.14)	3.7	7.4E-02	68.7\%
0.98	7.9		0.0\%
1.06 (0.94,1.21)	$3.5 \mathrm{E}-0$	1.4E-01	54.0\%
1.03 (0.92,1.16)	6.2	$4.9 \mathrm{E}-02$	
1.	1.7	8.6E-01	.0\%
0.92 (0.67,1.25)	5.7E-01	6.3E-01	0.0\%
4,1.08)			0\%
1.25 (0.82,1.91)	3.0 E	9.0E-01	0.0
1.04 (0.93,1.17)	4.6		59.3\%
0.98 (0.88,1.11)	7.9	4.2E-01	0.0\%
(82,1.07)	3.	5.5E-01	0.0\%
0.99 (0.88,1.11)		3.7E-01	
0.91 (0.67,1.24)	5.5	6.3E-01	0.0\%
0.90 (0.66,1.22)	5.1	6.0	.0\%
0.	$5.4 \mathrm{E}-0$	6.3E-01	0.0
1.03 (0.92,1.15)	6.3		52.1\%
1.04 (0.92,1.19)	5.3E-0	5.0E-01	.0\%
0.99 (0.88,1.11)	8.0E-01	3.6E-01	.0\%
0.98 (0.88,1.10)	7.8		0\%
7,1.06)	$4.2 \mathrm{E}-01$	8.0E-01	.0\%
0.98 (0.87,1.10)	7.3	3.8	0.0\%
0.99 (0.88,1.11)	$8.3 \mathrm{E}-0$	3.6E-01	0.0
1.06 (0.94,1.21)	3.3 E	2.0E-01	37.9\%
1.04 (0.92,1.19)	5.2E-01	4.9E-01	0.0\%
(0.88,1.11)	8.8E-01	1.0E-01	62.8\%
0.99 (0.88,1.11)	8.5E-01	3.2E-01	.2\%
0.99 (0.88,1.11)	8.5E-01	3.2E-01	0.1\%
0.99 (0.88,1.11)	8.5E-01	3.2E-01	0.7
1.07 (0.94,1.21)	$3.3 \mathrm{E}-01$	1.6E-01	48.8\%
1.03 (0.92,1.15)	6.3E-01	1.0E-01	62.2

1.07 (0.94,1.21)	3.3E-01	1.6E-01	48.9\%
)	8.3E-01	3.7E-01	0.0\%
0.95 (0.86,1.06)	3.	5.4E-01	
0.95 (0.83,1.08)		9.	0.0\%
0.95 (0.83,1.07)			74.5\%
0.9	9.5E-01	8.	
)			
0.	8.4E-01	3.	
1.15 (0.84,1.58)	3.8E-01	6.	
0.90 (0.67,1.22)			0.0\%
1.07 (0.93,1.24)	3.4E-01	7.2	\%
1.03 (0.93,1.16)			
1.05 (0.93,1.20)	$4.3 \mathrm{E}-01$	1.	57.4\%
(0.1.27)	7.8		
1.06 (0.93,1.21)	3.5E-01		49.1\%
0.9	$5.5 \mathrm{E}-01$	5.6	0.0\%
1.0			
0.98 (0.88,1.10)	7.7E-01	7.0E-02	69.5\%
)	$4.3 \mathrm{E}-01$	8.	.0\%
0.	8.5E-01	3.2	0.0\%
0.91 (0.80,1.04)	1.8	3.	0.0\%
11)			0.0\%
)	$8.4 \mathrm{E}-01$	3.8	.0\%
0.90 (0.67,1.22)	5.0	5.	0.0\%
)	$4.7 \mathrm{E}-01$	4.7E-01	0.0
)	$3.5 \mathrm{E}-01$	8.	66.5\%
0.99 (0.88,1.11)	8.3	3.	0.0\%
1.16 (0.85,1.59)	$3.5 \mathrm{E}-01$	5.9	\%
1.03 (0.90,1.17)	6.8		0.0\%
1.06 (0.93,1.21)	3.6E-01	1.7E-01	47.6\%
)	9.0		.0\%
0.95 (0.81,1.11)	5.2E-01	4.	0.0\%
(0.72,1.43)	$9.3 \mathrm{E}-01$	3.3	0.0\%
0.99 (0.89,1.11)	9.2	5.	0.0\%
0.91 (0.67,1.23)	5.2E-01	5.7E-0	.0\%
1.02 (0.83,1.27)	$8.3 \mathrm{E}-01$		0.0\%
0.99 (0.88,1.11)	8.5E-01	3.3E-01	0.0
0.99 (0.88,1.10)	$7.9 \mathrm{E}-01$	7.4	68.7\%
0.98 (0.82,1.17)	8.2E-0	2.2	
4,1.21)	$3.4 \mathrm{E}-01$	$1.5 \mathrm{E}-0$	51.7\%
0.99 (0.88,1.11)	8.5E-01	3.	.0\%
$2(0.83,1.27)$	8.2E-01	$4.6 \mathrm{E}-01$	0.0\%
2)	3.2E-01	7.3 E	69.
0.94 (0.80,1.11)	$4.7 \mathrm{E}-01$	5.0E-01	.0\%
1.03 (0.83,1.27)	$8.1 \mathrm{E}-01$	$4.6 \mathrm{E}-0$.0\%
0.98 (0.87,1.10)	$6.9 \mathrm{E}-01$	3.3E	0.0
1.07 (0.94,1.22)	$3.1 \mathrm{E}-01$	1.7E-01	.3\%
1.03 (0.92,1.16)	5.7E-01	2.1E-0	37.
1.06 (0.93,1.21)	3.8E-01	1.8E-01	43.2\%
1.03 (0.89,1.20)	6.7E-01	$2.4 \mathrm{E}-0$	27.

1.05 (0.93,1.19)	4.	5.0E-02	74.0\%
)	3.4E-01	$1.6 \mathrm{E}-01$	50
0.9	4.	4.5E-01	
1.06 (0.94,1.21)			50
1.			
1.0	$3.5 \mathrm{E}-01$		
1.04 (0.84,1.28)			
1.	3.5		
0.9			
1.	3.		
0.99 (0.90,1.10)	9.0E-01	4.0	0.0\%
0.	9.		
1.	$8.2 \mathrm{E}-01$	4.	0.0\%
1.01 (0.90,1.12)	9.0		
1.06 (0.93,1.21)	3.5		
1.05 (0.92,1.20)	$4.6 \mathrm{E}-01$	1.2	58.
0.9			
1.06 (0.93,1.21)	3.6E-01	1.7	46.
0.	7.6	3.1	1.4\%
1.06 (0.93,1.21)	3.7		50.
1.02 (0.82,1.26)			0.0\%
0.99 (0.86,1.14)	$8.9 \mathrm{E}-01$	2.9	11.4\%
1.06 (0.93,1.20)	4.2		
0.	4.4E-01	9.3E-01	0.0
0.	2.7		50.9\%
0.89 (0.70,1.13)	3.2	6.	
1.02 (0.91,1.14)	7.0	2.2	32.9\%
1.04 (0.92,1.18)	5.3	4.7E-0	.0\%
1.01 (0.90,1.14)	8.3E-01	7.7E-01	0.0
1.06 (0.94,1.21)			
1.	5.2	3.8 E	0.0\%
0.94 (0.81,1.11)	4.8	4.5	0.0\%
0.94 (0.80,1.11)	4.7		
)	$4.0 \mathrm{E}-0$	9.9E-0	0.0
0.9	4.7	1.8	
1.02 (0.91,1.14)	7.2E-01	2.3E-01	31
0.95 (0.85,1.07)	4.3 E	3.8 E	0.0
1.06 (0.93,1.20)	4.1	2.3	
(1.14)	7.2E-01	2.2E-0	32.3\%
1.02 (0.91,1.14)	7.2	2.3	
0.90 (0.71,1.13)	3.6E-01	7.2E-02	69.
0.	4.5	9.1	.0\%
1.06 (0.93,1.20)	$4.1 \mathrm{E}-01$	2.3	30.4\%
0.90 (0.75,1.07)	2.3E-01	8.1E-03	85.7\%
1.05 (0.92,1.19)	$4.8 \mathrm{E}-01$	1.5	50.7\%
1.01 (0.89,1.15)	8.8E-01	3.9E-01	0.0\%
1.02 (0.91,1.14)	7.2E-01	2.2E-0	33.3
0.89 (0.76,1.03)	$1.2 \mathrm{E}-01$	$4.2 \mathrm{E}-01$	0.0\%
1.04 (0.92,1.18)	$5.5 \mathrm{E}-01$	5.4E-01	0.0\%

9)	3.9E-01	5.0E-01	
)	8.7E-01	$2.9 \mathrm{E}-01$	10
0.94 (0.78,1.13)			
	3.6	1.9E-01	
1.06 (0.93,1.20)			
1.			
			6.2\%
1.04 (0.86,1.26)			
1.0	7.1E-01	4.	0.0\%
1.02 (0.84,1.23)			
0.95 (0.85,1.07)	4.1	8.6	0.0\%
(1.20)			
1.02	7.2		
1.02 (0.84,1.24)	8.3E-01	9.8	.0\%
1.			
1.08 (0.78,1.49)	6.5E-01	9.9E-0	0.0\%
(0.1.12)		5.	
1.02 (0.84,1.24)	8.3	9.	0.0\%
0.	4.3	1.8	43.2
1.03 (0.91,1.16)			
1.14 (0.82,1.59)	$4.4 \mathrm{E}-01$	3.6	0.0
1.05 (0.93,1.20)	4.3		53.4\%
0.98 (0.88,1.10)	$7.4 \mathrm{E}-01$	4.3	0.0\%
1.02 (0.84,1.23)	8.		0.0\%
0.	$7.6 \mathrm{E}-01$	7.8	7.
1.01 (0.83,1.23)	9.2	8.	.0\%
0.86 (0.73,1.02)	9.1E-02	6.2E-01	0.0\%
0.9)(0.85,1.15)	8.7	3.0	5.5
1.05 (0.92,1.20)	4.3	1.5	
1.05 (0.92,1.20)	4.3	1.5	51.8\%
1.02 (0.92,1.13)	6.9		.0\%
1.00 (0.90,1.12)	$9.7 \mathrm{E}-01$	2.0E-01	39.
0.	6.0		.0\%
1.02 (0.84,1.23)	8.5E-01	9.9E-01	0.0
$1.05(0.92,1.20)$	4.6	1.8	43
1.05 (0.92,1.20)	4.6	1.8	
92,1.19)	$5.1 \mathrm{E}-01$	$4.8 \mathrm{E}-0$.0\%
1.04 (0.91,1.18)	5.8 E	3.6	0.0
1.05 (0.92,1.20)	$4.7 \mathrm{E}-01$	1.9	43.0
)	9.2 E	3.5	0.0\%
1.02 (0.84,1.25)	$8.3 \mathrm{E}-01$	3.8 E	0.0\%
0.97 (0.80,1.19)	8.0E-01	7.2E-0	0.0\%
1.00 (0.88,1.14)	9.9		27.8\%
0.98 (0.80,1.19)	$8.1 \mathrm{E}-01$	7.1E-0	0.0
0.	6.0E-01	2.5E	3.
0.90 (0.73,1.11)	3.1E-01	5.2E-01	0.0\%
0.95 (0.84,1.07)	3.7E-01	6.9E-03	86.3
0.98 (0.87,1.11)	8.0E-01	2.2E-01	3.9
0.97 (0.87,1.09)	6.4E-01	3.6E-01	0.0\%

	4.8E-01	1.1E-01	60.9\%
0.	6.3E-01	3.5E-01	0.0\%
	7.8	7.4E-01	
1.07 (0.96,1.19)		6.3E-01	
0.9			
1.			0.0\%
0.98 (0.87,1.09)			
1.07 (0.92,1.24)	3.8	$7.3 \mathrm{E}-01$	
0.95 (0.82,			
0.	6.3		59.1\%
0.	5.8E-01	$4.5 \mathrm{E}-01$	0.0\%
1.11 (0.91,1.36)			
1.	7.7E-01	2.5E-01	25
1.11 (0.91,1.36)			
1.	9.3	9.6E-01	0.0\%
1.	7.9E-01	$2.8 \mathrm{E}-01$	14.
0.			
1.	5.3E-01	9.1E-01	0.0\%
		1	
0.97 (0.87,1.09)	6.5	3.9E-01	0.0\%
0	4.8	9.0	0.0\%
0.97 (0.87,1.09)	6.		0.0\%
0	$6.5 \mathrm{E}-01$	3.9E-01	0.0
0.	6.5		0.0\%
0	$6.5 \mathrm{E}-01$	3.9E-01	0.0
1.05 (0.91,1.20)	5.2	2.1E-01	36
0.97 (0.87,1.09)	6.1	3.0E-01	5.9\%
1.06 (0.93,1.20)	4.2	1.7E-01	46.8
0.97 (0.87,1.09)			3.8\%
0.	6.3E-0	$2.9 \mathrm{E}-01$	9.9
0.	6.5	4.0	0.0\%
0.97	6.3	3.2E-01	0.0\%
0.	6.2	6.8E-01	0.0
1.03 (0.83,1.28)	7.7		0.0\%
1.02 (0.91,1.14)	7.7	$2.4 \mathrm{E}-01$	26.
0.97 (0.87,1.09)	6.4	2.9	
0.97 (0.87,1.09)	6.4E-01	2.7E-01	
1.02 (0.91,1.14)	7.7E-01	2.4	26.
1.02 (0.91,1.14)	7.7	2.4	
1,1.1	$5.4 \mathrm{E}-0$	$2.3 \mathrm{E}-01$	31.3
1.00 (0.89,1.12)	9.8	6.1	.0\%
1.02 (0.91,1.14)	7.7E-01	$2.5 \mathrm{E}-01$	25.5
0.	6.3 E	6.7E-0	0.0\%
0.98 (0.87,1.10)	$6.9 \mathrm{E}-01$	3.0E-01	7.9
0.99 (0.88,1.12)	8.8E-01	5.3E-01	0.0\%
1.07 (0.97,1.18)	.9E	3.8	.0\%
1.03 (0.83,1.26)	8.2E-01	$4.4 \mathrm{E}-01$	0.0\%
0.95 (0.77,1.18)	6.5E-01	6.2E-01	0.0\%
1.12 (0.80,1.56)	5.0E-01	9.0E-01	0.0\%
0.95 (0.84,1.07)	3.7E-01	$1.4 \mathrm{E}-02$	83.

1.04 (0.91,1.19)	5.4E-01	2.3E-01	32.0\%
)	$6.5 \mathrm{E}-01$	3.	2.2\%
1.02 (0.81,1.28)	$8.7 \mathrm{E}-01$	6.	
0.97 (0.87,1.09)	6.5E-01		
0.97			
1.1	$5.0 \mathrm{E}-01$	9.	
1.05 (0.92,1.20)			
0.97 (0.87,1.09)	6.3E-01	3.	
1.04 (0.91,1.19)	$5.4 \mathrm{E}-01$	$2.2 \mathrm{E}-01$	\%
1.04 (0.91,1.19)			
0.97 (0.87,1.09)	$6.4 \mathrm{E}-01$	2.8	
0.97 (0.87,1.09)			
0.97 (0.87,1.09)	6.5E-01	2.9	
(1.0)	6.		
1.10(0.79,1.54)	$5.6 \mathrm{E}-01$	9.	.0\%
0.97 (0.79,1.18)	7.3E-01	4.9	0.0\%
1.01 (0.90,1.12)			
0.98 (0.81,1.19)	8.8E-01	4.8	.0\%
)	9.8		0.0\%
1.05 (0.92,1.20)	$4.9 \mathrm{E}-01$	2.5	23.5\%
0.99 (0.85,1.14)	8.6E-01	2.8	\%
1.0			0.0\%
)	5.1E-01	2.1	35.4\%
1.04 (0.91,1.19)	5.4		
)	5.2E-01	2.2	33.2\%
)	7.7	2.3	
0.98 (0.87,1.11)	7.6		28.8\%
0.97 (0.87,1.09)	6.2E-01	2.9	\%
. 98 (0.81,1.19)	8.7	6.	0.0\%
0.98 (0.80,1.20)	8.2E-01	7.5E-01	0.0
1.02 (0.91,1.14)	7.7		
1.02 (0.91,1.14)	7.7E-01	2.8	
(0.92,1.20)	4.7E-01	2.5	25.7\%
0.96 (0.78,1.19)	7.3	6.	.0\%
1.00 (0.89,1.13)	$1.0 \mathrm{E}+00$	6.1	0.0
5)	7.1	2.3	
1.16 (0.67,2.01)	6.0E-01	2.5E-01	23.
$(0.80,1.53)$	$5.5 \mathrm{E}-01$	8.2 E	0.0\%
1.03 (0.83,1.28)	7.8E-01	4.5 E	0.0\%
(0,1.12)	9.5E-01	5.8E-0	.0\%
$(0.81,1.18)$	8.4		0.0
5 (0.91,1.22)	$4.8 \mathrm{E}-01$	1.2E-01	57.8\%
0.95 (0.86,1.05)	3.4E-01	8.0	0.0\%
1.04 (0.91,1.20)	5.2E-01	2.2	34.4\%
0.97 (0.87,1.09)	6.1E-01	$3.0 \mathrm{E}-01$.3\%
0.97 (0.87,1.09)	$6.1 \mathrm{E}-01$	3.0 E	5.3\%
0.97 (0.87,1.09)	$6.1 \mathrm{E}-01$	3.0E-01	5.2\%
1.07 (0.92,1.24)	3.7E-01	7.2E-0	0.0\%
0.93 (0.81,1.06)	2.7E-01	8.0E-01	0.0\%
1.08 (0.94,1.23)	$2.9 \mathrm{E}-01$	2.0E-01	38.9

0.96 (0.77,1.18)	6.9	6.	0.0\%
0.9	6.8	3.3E-01	0.0\%
0.95 (0.81,1.10)	4.9	4.	0.0\%
(0.90,1.10)	8.		0.0\%
1.00 (0.89,1.12)	9.5	5.	
)	6.0		\%
0.9			0.0\%
1.06 (0.80,1.40)	6.8	2.	30.
0.98 (0.87,1.10)	6.8		30.5\%
1.07 (0.92,1.24)	3.6E-01	7.7	0.0\%
0.9	3.3		0.0\%
0.	8.		0.0\%
1.07 (0.92,1.24)	3.6E-01	7.7E-01	0.0\%
1.13 (0.80,1.58)	4.9E-01		0.0\%
1.13 (0.80,1.58)	$4.9 \mathrm{E}-01$	8.9	0.0
0.96 (0.86,1.08)	5.3	3.	0.0\%
0.96 (0.86,1.08)	5.	3.	0.0\%
1.01 (0.88,1.17)	$8.7 \mathrm{E}-01$	3.0	6.5\%
1.13 (0.81,1.58)			0.0\%
1.13 (0.80,1.58)	4.9E-01	8.9E-01	0.0
7,1.18)	1.7	4.2	0.0\%
1.10 (0.99,1.22)	7.0	8.8	0.0\%
)	8.0	3.8	0.0\%
1.05 (0.92,1.20)			26.3\%
1.12 (1.01,1.24)	$2.8 \mathrm{E}-02$	9.4E-01	.0\%
13)	8.4	9.	0.0\%
0.9	5.7	9.6E-01	0.0
0.98(0.86,1.13)	8.2	9.7	0.0\%
1.51 (0.92,2.48)	9.9		0.0\%
0.98 (0.87,1.11)	7.7	2.2	33.4\%
0.99 (0.82,1.20)	9.1 E	6.5	0.0\%
0.99 (0.90,1.09)	8.7E-01	4.0E-01	0.0
(0.89,1.12)	9.6 E	5.6	.0\%
1.13 (0.78,1.62)	$5.2 \mathrm{E}-0$	9.6E-0	0.
$1.09(0.97,1.21)$	$1.4 \mathrm{E}-0$	2.0 E	38.0
1.07 (0.97,1.18)	1.7 E	4.	.0\%
(09,1.12)	9.7E-01	5.6E-01	0.0\%
2)	9.6 E	5.5	0.0
0.98 (0.87,1.10)	7.0E-01	2.8 E	15.
0.98 (0.89,1.08)	7.0E-01	3.7E-0	.0\%
0.98 (0.87,1.10)	7.2E-01	4.0	0.0\%
(97,1.18)	1.8E-01	$4.2 \mathrm{E}-01$	0.0\%
0.99 (0.90,1.09)	$8.8 \mathrm{E}-01$	4.1	0.0
0.98 (0.88,1.09)	7.2E-01	2.7E-01	17.7\%
1.02 (0.91,1.14)	7.5E-01	$1.0 \mathrm{E}-01$	63.0\%
0.99 (0.90,1.10)	8.9E-01	4.0E-01	0.0
0.97 (0.87,1.09)	$6.5 \mathrm{E}-01$	3.1E-01	3.6\%
1.07 (0.97,1.19)	1.6E-01	4.3E-01	0.0\%
1.01 (0.84,1.22)	9.2E-01	9.2E-01	0.0\%
0.99 (0.90,1.09)	8.8E-01	4.0E-01	0.0\%

0.98 (0.87,1.09)	6.8E-01	3.3E-01	0.0\%
0.93 (0.84,1.03)	$1.8 \mathrm{E}-01$	2.2E-01	34.3\%
0.97 (0.86,1.08)	5.5E-01	$2.8 \mathrm{E}-01$	13
0.98 (0.85,1.13)	8.1E-01	9.8E-01	0.0\%
1.00 (0.91,1.10)	9.9	$4.2 \mathrm{E}-01$	0.0\%
0.98 (0.86,1.10)	6.9 E	$4.6 \mathrm{E}-01$	0.0\%
0.98 (0.89,1.08)	7.0E-01	3.7E-01	0.0\%
0.96 (0.82,1.13)	6.	6.9	0.0\%
1.01 (0.91,1.12)	8.8E-01	8.0E-01	.0\%
1.01 (0.84,1.22)	9.0	8.9E-01	0.0\%
0.88 (0.66,1.18)	4.0E-01	6.8E-01	0.0\%
0.98 (0.85,1.13)	8.0E-01	9.7E-01	0.0\%
1.17 (0.97,1.42)	1.0	3.3	0.0\%
0.98 (0.88,1.10)	7.6E-01	$4.4 \mathrm{E}-01$	0.0\%
0.91 (0.80,1.04)	$1.9 \mathrm{E}-01$	9.5E-01	0.0\%
1.00 (0.84,1.20)	$9.8 \mathrm{E}-0$	8.7E-01	0.0
0.98 (0.87,1.09)	6.7E-01	3.1E-01	2.8\%
0.99 (0.90,1.09)	8.	4.2E-01	0.0\%
1.17 (0.97,1.41)	9.8E-02	3.4E-01	0.0\%
1.01 (0.84,1.21)	$9.3 \mathrm{E}-01$	9.0E-01	0.0\%
0.98	8.0E-01	4.5E-01	0.0
1.01 (0.84,1.21)	$9.3 \mathrm{E}-01$	8.9E-01	0.0\%
0.99 (0.90,1.10)	9.1	3.8E-01	0.0\%
1.07 (0.92,1.24)	$4.0 \mathrm{E}-01$	7.7E-01	0.0\%
0.95 (0.81,1.11)	$5.0 \mathrm{E}-01$	6.3E-01	0.0\%
0.94 (0.85,1.05)	2.7E-01	1.8E-01	44.3
1.00 (0.88,1.12)	9.4E-01	4.2E-01	0.0\%
0.98 (0.87,1.10)	7.2E-01	$3.8 \mathrm{E}-01$	0.0
0.99 (0.89,1.11)	8.8E-01	3.7E-01	0.0\%
0.99 (0.87,1.11)	8.1E-01	2.2E-01	34.2\%
1.00 (0.84,1.21)	9.6E-01	8.8E-01	0.0\%
1.02 (0.84,1.26)	8.2E-01	4.0E-01	0.0\%
0.97 (0.87,1.09)	6.6E-01	3.2E-01	0.0\%
1.03 (0.84,1.26)	8.1E-01	4.1E-01	0.0\%
0.97 (0.87,1.09)	5.9E-01	2.9E-01	11.7\%
0.99 (0.88,1.11)	8.5E-01	7.9E-01	0.0\%
1.13 (0.79,1.62)	5.0E-01	9.5E-01	0.0\%
1.13 (0.79,1.62)	5.1E-01	9.5E-01	0.0\%
0.99 (0.88,1.12)	8.9E-01	4.0E-01	0.0\%
1.05 (0.95,1.16)	3.2E-01	4.3E-01	0.0\%

Supplementary Table 4: Association signal for the top 18 HNF1B region SNPs associated with endom
Unadjusted BMI ${ }^{\text {b }}$

SNP $^{\text {a }}$	Build $\mathbf{3 7}$ Position	Major/minor alleles	OR (95\% Cls)	P-value
rs2005705	36096300	G/A	$0.93(0.87,0.99)$	$2.63 \mathrm{E}-02$
rs11263761	36097775	A/G	$0.91(0.85,0.97)$	$4.35 \mathrm{E}-03$
rs4430796	36098040	A/G	$0.92(0.86,0.98)$	$8.90 \mathrm{E}-03$
rs4239217	36098987	A/G	$0.93(0.87,1.00)$	$3.80 \mathrm{E}-02$
rs11651755	36099840	T/C	$0.91(0.85,0.97)$	$3.27 \mathrm{E}-03$
rs10908278	36099952	A/T	$0.91(0.85,0.97)$	$2.95 \mathrm{E}-03$
rs11657964	36100767	G/A	$0.92(0.86,0.98)$	$1.49 \mathrm{E}-02$
rs7501939	36101156	C/T	$0.92(0.86,0.98)$	$1.30 \mathrm{E}-02$
rs8064454	36101586	C/A	$0.89(0.84,0.95)$	$7.28 \mathrm{E}-04$
rs12601991	36101633	T/G	$0.93(0.87,0.99)$	$3.04 \mathrm{E}-02$
rs11263762	36101926	A/G	$0.93(0.87,0.99)$	$2.18 \mathrm{E}-02$
rs7405696	36102035	C/G	$0.92(0.87,0.99)$	$1.70 \mathrm{E}-02$
rs11651052	36102381	G/A	$0.89(0.84,0.95)$	$6.55 \mathrm{E}-04$
rs757209	36102833	A/G	$0.93(0.87,0.99)$	$2.37 \mathrm{E}-02$
rs9901746	36103149	A/G	$0.93(0.87,0.99)$	$2.91 \mathrm{E}-02$
rs11263763	36103565	A/G	$0.89(0.83,0.95)$	$5.52 \mathrm{E}-04$
rs11658063	36103872	G/C	$0.92(0.86,0.98)$	$1.04 \mathrm{E}-02$
rs12453443	36104121	G/C	$0.93(0.87,0.99)$	$2.46 \mathrm{E}-02$

a.The best genotyped and imputed SNPs in the overall analysis are highlighted in bold.
b.ORs and P-values are for all-histology endometrial cancer in the iCOGS fine-mapping set including the and controls ($\mathrm{N}=14,098$, median BMI 25.4 (range 15.9-67.9)) for whom BMI data were available.
etrial cancer, unadjusted and adjusted for BMI in the iCOGS fine-mapping dataset.

Adjusted BMI OR (95\% CIs)	P-value
$0.93(0.87,0.99)$	$2.83 \mathrm{E}-02$
$0.91(0.85,0.98)$	$7.77 \mathrm{E}-03$
$0.92(0.86,0.98)$	$1.40 \mathrm{E}-02$
$0.93(0.87,1.00)$	$5.48 \mathrm{E}-02$
$0.91(0.85,0.97)$	$6.70 \mathrm{E}-03$
$0.91(0.85,0.97)$	$4.86 \mathrm{E}-03$
$0.92(0.86,0.99)$	$2.46 \mathrm{E}-02$
$\mathbf{0 . 9 2}(0.86,0.99)$	$2.29 \mathrm{E}-02$
$0.89(0.84,0.96)$	$1.22 \mathrm{E}-03$
$0.93(0.87,0.99)$	$3.19 \mathrm{E}-02$
$0.93(0.87,0.99)$	$2.54 \mathrm{E}-02$
$0.92(0.86,0.99)$	$2.02 \mathrm{E}-02$
$0.89(0.84,0.96)$	$1.07 \mathrm{E}-03$
$0.92(0.86,0.99)$	$2.33 \mathrm{E}-02$
$0.93(0.87,0.99)$	$3.10 \mathrm{E}-02$
$\mathbf{0 . 8 9}(0.83,0.95)$	$7.85 \mathrm{E}-04$
$0.92(0.86,0.98)$	$1.61 \mathrm{E}-02$
$0.93(0.87,0.99)$	$2.87 \mathrm{E}-02$

2 subset of cases ($\mathrm{N}=2,858$, median $\mathrm{BMI}=27.9$ (range 15.2-66.6))

Supplementary Table 5. Summary of in silico transcription factor binding predictions using isrSNP* for the five SNPs most strongly associated with endometrial cancer.

SNP	Variation (Ref/Alt) ${ }^{\text {a }}$	Matrix ${ }^{\text {b }}$	$\begin{aligned} & \hline \text { Predicted } \\ & \text { TF }^{\mathbf{c}} \\ & \hline \end{aligned}$	Adjusted P-value ${ }^{\text {d }}$	Evidence of TF implicated in endometrial cancer
$\underline{\text { rs11263763 }}$	G/A	M00157 M00034 M00480 M00188 M01331	RORalpha2 p53 TOPORS AP1 ISX	0.00039 0.00051 0.00055 0.00056 0.00067	Garg et al, Mod Pathol, 2010 Dube et al, Cancer Lett, 2009
rs11651052	A/G	M01408 M00465 M01124 M01469 M01723 M01650	POU4F3 POU6F1 Oct-4 NKX6.1 SATB1 PNR	$\begin{aligned} & 0.00031 \\ & 0.00046 \\ & 0.00052 \\ & 0.00058 \\ & 0.00068 \\ & 0.00088 \end{aligned}$	Wu et al, Cancer, 2011 Mokhtar et al, Cancer Invest, 2012
$\underline{\text { rs8064454 }}$	A/C	$\begin{aligned} & \hline \text { M00457 } \\ & \text { M00459 } \\ & \text { M00184 } \\ & \text { M01823 } \\ & \text { M01476 } \\ & \text { M00225 } \\ & \text { M00804 } \\ & \text { M00414 } \end{aligned}$	STAT5A STAT5B MyoD STAT1 POU2F3 STAT3 E2A ZEB1	$\begin{aligned} & 0.00013 \\ & 0.00025 \\ & 0.00045 \\ & 0.00046 \\ & 0.00071 \\ & 0.00074 \\ & 0.00091 \\ & 0.00092 \end{aligned}$	Sharma et al, Endo Relat Cancer 2006 Spoelstra et al, Cancer Res, 2006
rs10908278	T/A	$\begin{aligned} & \hline \text { M00133 } \\ & \text { M01345 } \\ & \text { M0313 } \\ & \text { M01449 } \\ & \text { M01433 } \\ & \text { M01358 } \\ & \text { M0137 } \\ & \text { M00156 } \\ & \text { M00460 } \\ & \text { M01666 } \\ & \text { M01125 } \end{aligned}$	Tst1 Six6 Six1 Cdx2 Six2 Six3 Cdx1 RORalpha1 STAT5A STAT4 Oct-4	0.00011 0.00015 0.00017 0.00026 0.00042 0.00050 0.00063 0.00073 0.00077 0.00093 0.00096	Wani et al, Hum Pathol, 2008 Wu et al, Cancer, 2011
rs11651755	C/T	$\begin{aligned} & \text { M00225 } \\ & \text { M00224 } \\ & \text { M01299 } \\ & \text { M01001 } \\ & \text { M00420 } \\ & \text { M01112 } \\ & \text { M00034 } \end{aligned}$	STAT3 STAT1 MECP2 DEAF1 HOXA9 RBPJ p53	$\begin{aligned} & 0.000018 \\ & 0.000021 \\ & 0.00041 \\ & 0.00044 \\ & 0.00080 \\ & 0.00085 \\ & 0.00099 \end{aligned}$	Chu et al, Cell Mol Life Sci, 2014 Garg et al, Mod Pathol, 2010

* Macintyre, G et al. Bioinformatics. 26(18):i524-30
${ }^{\text {a }}$ Ref=reference allele, Alt=alternative allele; ${ }^{\mathrm{b}}$ Transcription factor (TF) matrix ID from the TRANSFAC database; ${ }^{\text {c }}$ TF predicted to be disrupted; ${ }^{\mathrm{d}}$ Bonferroni corrected P-value of the observed difference between Ref and Alt allele P-values. Only results that show a significant (BH corrected $P<0.001$) change in TF binding affinity between the alleles are included.

References

Chu, Y et al. Chromatin composition alterations and the critical role of MeCP2 for epigenetic silencing of progesterone receptor-B gene in endometrial cancers. Cell Mol Life Sci. 71(17):3393408. 2014

Dube, C et al. The nuclear receptors SF1 and LRH1 are expressed in endometrial cancer cells and regulate steroidogenic gene transcription by cooperating with AP-1 factors. Cancer Lett. 275(1):127-38. 2009

Garg, K et al. p53 overexpression in morphologically ambiguous endometrial carcinomas correlates with adverse clinical outcomes. Mod Pathol. 23(1):80-92. 2010

Macintyre, G et al. is-rSNP: a novel technique for in silico regulatory SNP detection. Bioinformatics. 26(18):i524-30. 2012

Mokhtar, NM et al. Laser capture microdissection with genome-wide expression profiling displayed gene expression signatures in endometrioid endometrial cancer. 30(2):156-64 Cancer Invest, 2012

Sharma, D et al. Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways. Endo Relat Cancer. 13(2):629-40. 2006

Spoelstra, NS et al. The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res. 66(7):893-902. 2006

Wani, Y et al. Aberrant Cdx2 expression in endometrial lesions with squamous differentiation: important role of Cdx2 in squamous morula formation. Hum Pathol. 39(7):1072-9. 2008

Wu, Y et al, Up-regulation of microRNA-145 promotes differentiation by repressing OCT4 in human endometrial adenocarcinoma cells. Cancer. 117(17):3989-98. 2011

[^0]: - allele frequency (filtered for Info>0.7 and MAF>0.01 in the main text).

