Supplementary Information Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

Supplementary Tables

Supplementary Table 1. Bivariate analyses	2
Supplementary Table 2. Bivariate analysis for SCZ/BPD limiting data sets to those that have been collected totally independently	4
Supplementary Table 3. Genomic partitioning by annotation	5
Supplementary Table 4. Genomic partitioning by minor allele frequency (MAF) of SNPs for SCZ/BPD analysis	6
Supplementary Table 5. Univariate and bivariate analyses for sub-cohorts	7
Supplementary Table 6. Bivariate analyses between psychiatric disorders and CD control	9
Supplementary Table 7. Bivariate analysis for SCZ/BPD and SCZ/MDD excluding SCZ cohorts that include some schizoaffective disorder cases	10
Supplementary Table 8. Bivariate analysis for BPD/MDD excluding MDD community-based samples	10
Supplementary Table 9. Meta-analysis of the relative risk (odds ratio) for schizophrenia and MDD (unipolar disorder) among first-degree relatives of schizophrenic probands in controlled family studies	11

Supplementary Figures

Supplementary Figure 1. Chromosome partitioning of genetic variance	12
Supplementary Figure 2. Principal Component Analysis for each disorder	14

Supplementary Note

Supplementary Acknowledgements	19
Members of the IIBDGC	20
References	22

Abbreviations:

SCZ- schizophrenia, BPD- bipolar disorder, MDD – major depressive disorder, ASD- autism spectrum disorders, ADHD- attention deficit hyperactivity disorder, CD-Crohn's Disease

SUPPLEMENTARY TABLES

		Trait 1/ Trait 2							
	SCZ/BPD		SCZ/ASD	SCZ/ADHD	BPD/MDD				
SNPs	909307	885448	896627	778235	938610				
Cases	9032/6664	9051/8998	9111/3226	9013/4108	6665/8997				
Controls	7980/5258	10385/7823	12146/3308	10115/9936	7408/7680				
SNP-h ² Trait 1 ^a	0.22 (0.01)	0.21 (0.01)	0.23 (0.01)	0.23 (0.01)	0.23 (0.01)				
SNP-h ² Trait 2 ^a	0.22 (0.01)	0.19 (0.02)	0.16 (0.02)	0.23 (0.02)	0.20 (0.02)				
Covariance ^b	0.151 (0.010)	0.087 (0.011)	0.030 (0.011)	0.019 (0.011)	0.102 (0.013)				
SNP-r _g (SE)	0.68 (0.04)	0.43 (0.06)	0.16 (0.06)	0.08 (0.05)	0.47 (0.06)				
λ_{1st} -cov(SE)	1.7 (0.05)	1.2 (0.05)	1.2 (0.03)	1.1 (0.03)	1.2 (0.00)				
λ_{1st} - r_g	4.7	1.6	1.5	1.2	1.6				
p ^c	<e-16< th=""><th>6.0e-15</th><th>0.0071</th><th>0.072</th><th>1.5e-14</th></e-16<>	6.0e-15	0.0071	0.072	1.5e-14				
	M-A: 2.1 ¹ , Offspring ^{2,e} :		Parent ³ : 2.9 Sibling ³ : 2.6	Parent ^{4,g} : > 1					
literature ^d λι _{st}	2.4,5.2,4.5,6.0 Sib ^{2,e} : 3.9.3,7,3,9,5.0	M-A ^f : 1.5	Sibling (ASD/ADHD) ⁶ : 2.4		M-A ^{5,h} : 3.1.2 7				
literature r _g	0.60 ^{2,i}	N/A	N/A	N/A	0.65 ^{7,j}				

Supplementary Table 1. Bivariate analyses

		Trait 1/ Trait 2						
	BPD/ASD	BPD/ADHD	MDD/ASD	MDD/ADHD	ASD/ADHD			
SNPs	952858	834238	927731	813902	827620			
Cases	6704/3207	6656/4099	9031/3239	8936/4098	3156/4181			
Controls	9030/3294	7041/9873	9370/3331	8668/11233	3254/12022			
SNP-h ² Trait 1 ^a	0.24 (0.01)	0.21 (0.01)	0.20 (0.02)	0.19 (0.02)	0.15 (0.03)			
SNP-h ² Trait 2 ^a	0.17 (0.03)	0.26 (0.02)	0.17 (0.03)	0.26 (0.02)	0.25 (0.02)			
Covariance ^b	0.008 (0.013)	0.013 (0.013)	0.010 (0.016)	0.071 (0.016)	-0.026 (0.017)			
$SNP-r_g$ (SE)	0.04 (0.06)	0.05 (0.05)	0.05 (0.09)	0.32 (0.07)	-0.13 (0.09)			
λ _{1st} -cov(SE)	1.0 (0.04)	1.0 (0.05)	1.0 (0.03)	1.2 (0.04)	0.9 (0.04)			
λ_{1st} - r_g	1.1	1.1	1.1	1.3	<1			
p ^c	p = 0.53	p = 0.31	p = 0.53	p = 6.8e-06	p = 0.13			
literature ^d λ_{1st}	parent ³ : 1.9 sibling ³ :2.5	M-A BPD I ^{8,k} : 2.8,2.6,2.2,2.1	N/A	M-A ^{9,I} 1.6, 1.9	N/A			
literature r _g	N/A	N/A	N/A	Q ^{10,m} : 0.78, 0.67	$\begin{array}{c} 0.87^{11} \\ Q^{12}:"56\% \ of \\ phenotypic \\ correlation \ of \\ 0.63 \\ attributable \ to \\ shared \ genetic \\ influences" \\ Q^{13}: \ male \ 0.41 \\ Q^{13}: \ fem \ 0.23 \\ Q^{14}: \ male \ 0.57 \\ Q^{14}: \ fem \ 0.56 \\ Q^{15}: \ 0.72 \end{array}$			

Notes to Supplementary Table 1 on next page

SNP- h^2 SNP-heritability on the liability scale, r_g SNP genetic correlation, λ_{1st} -cov : increased risk to 1st

degree relatives attributable to SNPs calculated from the SNP-coheritability and K values, i.e. genetic covariance = SNP-coheritability, λ_{1st} - r_g increased risk to 1st degree relatives calculated from the SNP- r_g , K values and heritability estimates from family studies listed in Table 1. This provides a benchmark for comparison with literature estimates under the assumption that the genetic correlation is the same across the allelic spectrum.

Abbreviations: M-A: meta-analysis, Q: quantitative scores, N/A to our knowledge.

a: The estimates of SNP- h^2 estimated from the bivariate analyses differ slightly from the univariate

estimates, because the sample sets differ (overlapping samples, removed and QC based on pairwise relationship), SNP sets differ (imputation R2 > 0.6 in all imputation cohorts in the analysis), as well as because the maximum likelihood estimate in the bivariate analysis will optimize based on information from both disorders.

b: Covariance or SNP-coheritability

c: p values of HO: SNP-coheritability = 0.

d: Where possible we have selected meta-analyses or large studies. Note that these estimates may reflect but genetic and environmental factors that increase risk to relatives

e: The four estimates from this study of national records in Sweden are 1) risk of SCZ in relative when proband has BPD 2) risk of BPD in relative when proband has SCZ 3) risk of SCZ in adopted away relatives when proband has BPD, 4) risk of BPD in adopted away relatives when proband has SCZ f: See supplementary Table 9.

g: Small study of 29 children who were 1st-degree relatives of SCZ and 30 healthy controls

h: 3.1= Risk of BPD in relatives of probands with unipolar disorder (MDD)/Risk of BPD in controls 2.2%/0.7%, 2.7=Risk of unipolar disorder(MDD) in relatives of probands with BPD/Risk of MDD in controls 14.1%/5.2%.

i: Swedish national study

j: 67 twin pairs proband with BPD and 177 twin pairs proband with unipolar disorder (MDDD). k: The meta-analysis study considered only bipolar disorder 1 (BPDI). The four estimates are: 1) Risk of ADHD in 1st degree relatives of BPD1 child probands 2) Risk of ADHD in 1st degree relatives of BPD1 adult probands 3) Risk of BPD1 in 1st degree relatives of ADHD adult probands 4) Risk of BPD1 in 1st degree relatives of ADHD child probands

I: 1.6 = 13.2% rate of depression in relatives of ADHD children/ 8.2% rate of depression in relatives of control children. 1.9 = 12.4% of children of depressed parents had ADHD/6.6% of children of control parents had ADHD

m: 645 twin pairs, birth cohort, genetic correlation based on quantitative scores of hyperactivity and mood.

Supplementary Table 2. Bivariate analysis for SCZ/BPD limiting data sets to those that have been collected totally independently.

Trait 1/ trait 2	SNPs	Cases T1/T2	Controls T1/T2	Trait 1 h^2 (SE)	Trait 2 h^2 (SE)	r _g (SE)	covariance OR co- heritability SE)
SCZ/BPD	909307	6968/5589	5392/4445	0.23 (0.01)	0.23 (0.02)	0.59 (0.05)	0.14 (0.01)

 h^2 - SNP-heritability on the liability scale, r_g SNP genetic correlation

SCZ data sets included: ISC- Aberdeen, ISC-Cardiff (Bulgarian), ISC-Dublin, ISC-Edinburgh, ISC-Portugal, ISC-SW1, ISC-SW2, MGS, SGENE-Copenhagen, SGENE-Munich, SGENE-UCLA, Zucker Hillside. SCZ data sets excluded: Cardiff UK, CATIE, ISC-London, SGENE-Bonn, SGENE-TOP3 (data set names as in¹⁶) BPD data sets included: BOMA, GSK, STEP1, STEP2, TOP, UCL, Pritzker, WTCCC BPD data sets excluded: GAIN/BiGS, Dublin, Edinburgh (data set names as in¹⁷)

Supplementary Table 3. Genomic partitioning by annotation

Estimated proportion of variance in liability (SNP-heritability, h^2) explained by SNPs in CNS+ genes other genes and non-genes for the five disorders from univariate analyses and SNP -coheritability from bivariate analyses for the 5 pairs of disorders with significant genome-wide SNP correlations in Supplementary Table 2.

			h^2 (SE) accou					
				No. SNPs				
	Cases	Controls	CNS+	Other	Not	Proportion		
			(2725 genes)	(14804 genes)		in CNS+ (SE)		
						p-value		
SCZ	9087	12171	0.071 (0.005)	0.079 (0.006)	0.076 (0.006)	0.30(0.021)		
			195044	355562	364748	7.6 e-08		
BPD	6704	9031	0.078 (0.007)	0.103 (0.009)	0.065 (0.008)	0.32(0.026)		
			213226	387545	395200	5.4e-06		
MDD	9041	9381	0.053 (0.011)	0.079 (0.014)	0.081 (0.014)	0.25 (0.049)		
			206133	373115	381845	0.32		
ASD	3303	3428	0.055 (0.014)	0.047 (0.017)	0.066 (0.018)	0.33 (0.080)		
			209785	381897	390418	0.10		
ADHD	4163	12040	0.063 (0.013)	0.096 (0.016)	0.122 (0.016)	0.22 (0.041)		
			197342	357278	362446	0.54		
SCZ/BPD	9032/6664	7980/5258	0.055 (0.005)	0.043 (0.006)	0.052 (0.007)	0.37 (0.031)		
			193601	353120	362586	8.5e-08		
SCZ/MDD	9051/8998	10385/7823	0.018 (0.006)	0.029 (0.007)	0.039 (0.008)	0.21 (0.060)		
			188535	343565	353348	0.92		
BPD/MDD	6665/8997	7408/7680	0.028 (0.007)	0.029 (0.009)	0.045 (0.009)	0.27 (0.059)		
			200626	364387	373597	0.23		
SCZ/ASD	9111/3226	12146/3308	0.009 (0.006)	0.013 (0.008)	0.009 (0.008)	0.29 (0.179)		
			190530	348023	358074	0.53		
MDD/ADHD	8936/4098	8668/11233	0.018 (0.008)	0.024 (0.010)	0.028 (0.011)	0.25 (0.105)		
			173665	315210	325027	0.63		
CD	5054	11496	0.033 (0.005)	0.124 (0.006)	0.027 (0.006)	0.19 (0.023)		
			216951	393544	397565	0.40		

The p-values test H0: proportion of variance explained by SNPs in CNS+ genes = v, where v is the proportion of SNPs in the analysis attributed to the CNS+ genes.

Supplementary Table 4. Genomic partitioning by minor allele frequency (MAF) of SNPs for SCZ/BPD
analysis

		h^2	(SE)	<i>r_g</i> (SE)	Covariance OR
					coheritability
					(SE)
MAF	no. SNP	SCZ	BPD		
<0.1	156900	0.02 (0.01)	0.02 (0.01)	0.59 (0.34)	0.004 (0.002)
0.1<<0.2	208042	0.06 (0.01)	0.04 (0.01)	0.62 (0.17)	0.011 (0.003)
0.2<<0.3	190274	0.05 (0.01)	0.05 (0.01)	0.70 (0.15)	0.014 (0.003)
0.3<<0.4	180764	0.05 (0.01)	0.05 (0.01)	0.68 (0.16)	0.013 (0.003)
0.4<<0.5	173327	0.05 (0.01)	0.05 (0.01)	0.77 (0.14)	0.016 (0.002)
sum	909307	0.22	0.21		

 h^2 - SNP-heritability on the liability scale, r_g SNP genetic correlation

Supplementary Table 5. Univariate and bivariate analyses for sub-cohorts A: Univariate analyses for sub-cohorts

Sub-cohort	ib-cohort SNPs Cases Controls h_{cc}^2 (SE)		h^2 (SE)	h^2 (SE)		
				observed	liability scale	liability scale
				scale		
				case/control		
		SCZ			K=0.01	K=0.005
Sub1	915354	3220	3445	0.49 (0.04)	0.27 (0.02)	0.23 (0.02)
Sub2	915354	2571	2419	0.55 (0.06)	0.31 (0.03)	0.26 (0.03)
Sub3	915354	3296	6307	0.44 (0.03)	0.27 (0.02)	0.23 (0.02)
		BPD			K=0.01	K=0.005
Sub1	995971	2465	4058	0.49 (0.05)	0.30 (0.03)	0.25 (0.02)
Sub2	995971	2540	2058	2058 0.44 (0.07) 0.24 (0		0.21 (0.03)
Sub3	995971	1699	2915	0.73 (0.06)	0.43 (0.04)	0.37 (0.03)
		MDD			K=0.15	K=0.07
Sub1	962093	3077	3420	0.22 (0.05)	0.27 (0.06)	0.21 (0.04)
Sub2	962093	3785	3289	0.23 (0.04)	0.27 (0.05)	0.22 (0.04)
Sub3	962093	2179	2672	0.34 (0.06)	0.41 (0.08)	0.32 (0.06)
		ADHD			K=0.05	
Sub1	917066	1736	1766	1766 0.23 (0.09) 0.20 (0.08		
Sub2	917066	2427	10274	0.30 (0.03)	0.41 (0.03)	
		K=0.01				
Sub1	982100	1893	1893 1888 0.31 (0.08)		0.17 (0.05)	
Sub2	982100	1540	1540	0.29 (0.10)	0.16 (0.06)	

K lifetime probability of disorder.

Subset membership using the cohort names given in the primary PGC publications.

SCZ

Sub1: ISC-Aberdeen, ISC-Cardiff, ISC-Dublin, ISC-Edinburgh, ISC-London, ISC-Portugal, ISC-SW1, ISC-SW2 Sub2: MGS

Sub3: SGENE-Bonn, SGENE-CH, SGENE-MUN, SGENE-TOP3, SGENE-UCLA, Cardiff, CATIE, Zucker Hillside BPD

Sub1: BOMA, GSK, TOP, UCL, Edinburgh, Dublin

Sub2: GAIN&BIGS, STEP1, STEP2, Pritzer

Sub3: WTCCC

MDD

Sub1: GAIN, MDD2000-QIMR_610, MDD2000-QIMR_317

Sub2: GenRed, STAR*D, RADIANT(UK)

Sub3: RADIANT(GER)+Bonn/Mann., MPIP, GSK

ADHD

Sub1: CHOP,IMAGE, PUWMa included in¹⁸ and a Canadian cohort¹⁹ (all trio samples used to generate cases and pseudo controls)

Sub2: IMAGEII from¹⁸ and samples from UK²⁰, Germany²¹ and Spain (genotyped on Illumina Omni1 and with clinical cohort described in²²) (all case-control samples).

ASD

Sub1: AGP, AGP2

Sub2: CHOP, Finland, JHU, MonBos, SSC in two imputation cohorts (Illumina Infinium 1Mv3 (duo) and Illumina Infinium 1Mv1).

Trait 1/ trait 2	SNPs	Cases	Controls	Trait 1	Trait 2	<i>r_g</i> (SE)	Covariance
		T1/T2	T1/T2	h^2 (SE)	h^2 (SE)		OR co-
				. ,			heritability
							SE)
			SCZ, K	=0.01			
Sub1/Sub2	915354	3220/2571	3445/2419	0.26 (0.02)	0.29 (0.03)	0.84 (0.09)	0.23 (0.02)
Sub1/Sub3	915354	3220/3296	3445/6307	0.26 (0.02)	0.27 (0.02)	0.89 (0.07)	0.23 (0.02)
Sub2/Sub3	915354	2571/3296	2419/6307	0.30 (0.03)	0.26 (0.02)	0.79 (0.08)	0.22 (0.02)
			BPD <i>, K</i>	=0.01			
Sub1/Sub2	99597	2465/2540	4058/2058	0.30 (0.03)	0.24 (0.04)	0.63 (0.11)	0.17 (0.03)
Sub1/Sub3	99597	2465/1699	4058/2915	0.28 (0.03)	0.42 (0.04)	0.88 (0.09)	0.30 (0.03)
Sub2/Sub3	99597	2540/1699	2058/2915	0.24 (0.04)	0.43 (0.04)	0.55 (0.10)	0.18 (0.03)
			MDD, k	(=0.15			
Sub1/Sub2	962093	3077/3785	3420/3289	0.27 (0.06)	0.27 (0.05)	0.65 (0.16)	0.18 (0.04)
Sub1/Sub3	962093	3077/2179	3420/2672	0.27 (0.06)	0.41 (0.07)	0.63 (0.16)	0.21 (0.05)
Sub2/Sub3	962093	3785/2179	3289/2672	0.27 (0.05)	0.40 (0.07)	0.38 (0.14)	0.12 (0.05)
ADHD, K=0.05							
Sub1/Sub2	917066	1736/2427	1766/10274	0.21 (0.07)	0.41 (0.03)	0.71 (0.17)	0.21 (0.05)
			ASD, K	=0.01			
Sub1/Sub2	982100	1893/1410	1888/1540	0.16 (0.05)	0.15 (0.06)	1.17 (0.34)	0.18 (0.05)

B: Bivariate analyses for sub-cohorts

 h^2 - SNP-heritability on the liability scale, r_g SNP genetic correlation

Trait 1/ trait 2	SNPs	Cases T1/T2	Controls T1/T2	Trait 1 h^2 (SE)	Trait 2 h^2 (SE)	r _g (SE)	covarianceOR co-heritability SE)
CD/SCZ	899550	4793/9074	9125/10224	0.18 (0.01)	0.23 (0.01)	-0.01 (0.03)	0.00 (0.01) p = 0.70
CD/BPD	960646	4810/6688	9143/7091	0.18 (0.01)	0.23 (0.01)	-0.05 (0.04)	-0.01 (0.01) p = 0.22
CD/MDD	942496	4827/9019	10600/8896	0.18 (0.01)	0.20 (0.02)	0.02 (0.05)	0.00 (0.01) p = 0.70
CD/ASD	954950	5019/3180	11491/3271	0.19 (0.01)	0.16 (0.03)	-0.07 (0.06)	-0.011 (0.01) p=0.31
CD/ADHD	843722	4839/4166	9501/10193	0.16 (0.01)	0.26 (0.02)	-0.02 (0.05)	0.00 (0.01) p = 0.71
WCD/BPD ^a	960646	1671/4996	1494/5685	0.24 (0.03)	0.21 (0.02)	0.03 (0.08)	0.01 (0.02) p = 0.74

Supplementary Table 6. Bivariate analyses between psychiatric disorders and Crohn's Disease (CD) control

a: This analysis used the CD sample (WCD) from the Wellcome Trust Case Control Consortium²³ (WTCCC) and Subsets 1 and 2 from BPD. Bipolar subset 3 (BPD3) was the WTCCC BPD sample. Since WCD and BPD3 use the same controls, the significant covariance between BP1 & BP3 and BP2 & BP3 compared to no covariance for BPD1+BPD2 & WCD reflects genome-wide genetic similarity between the BPD cases. In all our analyses highly related individuals are excluded so that in the CD/BPD analysis WTCCC controls are randomly shared between the CD and BPD sets.

Supplementary Table 7. Bivariate analysis for SCZ/BPD and SCZ/MDD excluding SCZ cohorts that include some schizoaffective disorder cases

Trait 1/ trait 2	SNPs	Cases T1/T2	Controls T1/T2	Trait 1 h^2 (SE)	Trait 2 h^2 (SE)	r _g (SE)	covariance OR co- heritability SE)
SCZ/BPD	909307	5308/6664	5623/5258	0.25 (0.01)	0.22 (0.01)	0.68 (0.05)	0.16 (0.01)
SCZ/MDD	909307	5316/8998	7810/7823	0.25 (0.01)	0.22 (0.02)	0.38 (0.06)	0.09 (0.01)

Cohorts excluded from SCZ (cohort names given in the primary PGC publication¹⁶) ISC-Portugal, MGS, SGENE-CH, SGENE-TOP3, Zucker Hillside

Supplementary Table 8. Bivariate analysis for BPD/MDD excluding MDD community-based samples

Trait 1/ trait 2	SNPs	Cases T1/T2	Controls T1/T2	Trait 1 h^2 (SE)	Trait 2 h^2 (SE)	r _g (SE)	covariance OR co- heritability SE)
BPD/MDD	938610	6665/5916	7408/4169	0.23 (0.01)	0.23 (0.04)	0.54 (0.08)	0.12 (0.02)

 h^2 - SNP-heritability on the liability scale, r_g SNP genetic correlation

MDD data sets included: GenRed, GSK, MPIP, RADIANT (GER)+Bonn/Mannheim, RADIANT (UK), STAR*D. MDD data sets excluded: GAIN (partly a community-based sample), MDD2000-QIMR_610, MDD200-QIMR_317. (Data set names as in²⁴).

Supplementary Table 9. Meta-analysis of the relative risk (odds ratio) for schizophrenia and MDD (unipolar disorder) among first-degree relatives of schizophrenic probands in controlled family studies

	MDD
lowa Family Study ²⁵	0.9 (0.6-1.4) ^a
NIMH ²⁶	2.2 (1.2-3.2) ^a
Danish Adoption Study ²⁷	1.8 (0.6-4.9) ^a
Roscommon Family Study ²⁸	1.7 (1.2-2,6) ^a
Mainz Family Study ²⁹	1.7 (1.1-2.6) ^a
Finnish Adoption Study ³⁰	0.6 (0.2-1.6) ^b
New York Study ³¹	1.0 (0.4-1.9) ^c
Bonn-Mainz multi-generation study ³²	2.6 (1.4-4.1) ^d
New York High Risk Study ³³	1.0 (0.5-2.1) ^e
Copenhagen High Risk Study ³⁴	1.3 (0.6-3.0) ^f
Washington University St Louis Study ³⁵	1.1 (0.2-5.9) ^g
Meta-analysis	1.5 (1.2-1.8)

a. As reported in³²

b. Relative risk (RR) based on offspring with either depressive disorder with psychosis or nonpsychotic depression RR=((2+4)/137)/((1+13)/192)

c. RR uses N affected as reported in their Table 1 and age-adjusted N from their footnote. RR= (17/329.2)/(18/337.4) d. RR uses age-adjusted prevalences from their Table 3 and N from their Table 2. RR=(22.4/8.5)

e. RR = (1.2+26.2)/(0+27.2) from their Table 2, psychotic and non-psychotic major depression

f. We used the estimates from the non-hierarchical data since we could not account for censoring in the hierarchical data. From their Table 3 hierarchical diagnosis RR= 11.9/8.9.

Odds ratios and relative risks are considered interchangeable.

SUPPLEMENTARY FIGURES

A. Proportion of variance in liability (SNP-heritability) explained by SNPs from each chromosome for SCZ

B. Proportion of variance in liability (SNP-heritability) explained by SNPs from each chromosome for BPD

from a SCZ/BPD bivariate analysis-

C. Proportion of covariance in liability (SNP-coheritability) explained by SNPs from each chromosome

SCZ/BPD

D. SNP genetic correlation between SCZ/BPD

Supplementary Figure 1. Chromosome partitioning of genetic variance for schizophrenia (A), bipolar disorder (B), genetic covariance between schizophrenia and bipolar disorder (C) and genetic correlation between schizophrenia and bipolar disorder (D) from a bivariate analysis fitting 22 chromosomes.

A. SCZ before relatedness cut-off < 0.05 (9431 cases and 12848 controls). The number of individuals outside the bounds of CEU \pm 6 sd (dotted lines) is 33.

B: SCZ after relatedness cut-off < 0.05 (9087 case and 12171 controls)

C: BPD before relatedness cut-off < 0.05 (8275 cases and 10532 controls). The number of individuals outside the bounds of CEU \pm 6 sd (dotted lines) is 28.

D: BPD after relatedness cut-off < 0.05 (6704 case and 9031 controls)

E: MDD before relatedness cut-off < 0.05 (9322 cases and 10306 controls). The number of individuals outside the bounds of CEU \pm 6 sd (dotted lines) is 43.

F: MDD after relatedness cut-off < 0.05 (9041 cases 9381 controls)

G: ADHD before relatedness cut-off < 0.05 (4607 cases and 12659). The number of individuals outside the bounds of CEU \pm 6 sd (dotted lines) is 38.

H: ADHD after relatedness cut-off < 0.05 4163 cases and 12040 controls)

I: ASD before relatedness cut-off < 0.05 (3661 cases and 4040 controls). Excluding the 144 outliers does not change the estimate of SNP heritability.

J: ASD after relatedness cut-off < 0.05 (3381 cases and 3508 controls)

Supplementary Figure 2. Principal Component Analysis for each disorder. Mapped with HapMap3 samples. Pink: YRI, Blues: CHB and JPT, Yellow and red: SCZ cases and controls, Green: CEU (usually hidden behind cases and controls)

SUPPLEMENTARY NOTE

Supplementary acknowledgements.

Numerous (>100) grants from government agencies along with substantial private and foundation support world-wide enabled the phenotype and genotype data collection without which this research would be not be possible; the grants are listed in the primary PGC publications.

The ADHD Spanish cohort has not yet been included in a PGC publication. Their acknowledgements are: Financial support was received from "Instituto de Salud Carlos III" (PI11/00571, PI11/01629), "Fundació La Marató de TV3" (092330/31, 092010), "Ministerio de Economía y Competitividad, Spain" (SAF2012-33484), "Fundación Alicia Koplowitz" and "Agència de Gestió d'Ajuts Universitaris i de Recerca-AGAUR" (2009GR00971). Marta Ribasés is a recipient of a Miguel Servet contract form the "Instituto de Salud Carlos III", Spain. Genotyping services were provided by the Spanish "Centro Nacional de Genotipado" (CEGEN; www.cegen.org).

Darina Czamara was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) within the framework of the Munich Cluster for Systems Neurology (EXC 1010 SyNergy)

Frank Bellivier acknowledges grant funding from Banque de cellules (Pr Jamel Chelly), APHP, Hopital Cochin, Paris, France

This study makes use of data generated by the Wellcome Trust Case-Control Consortium. A full list of the investigators who contributed to the generation of the WTCCC data is available from www.wtccc.org.uk. Funding for the WTCCC project was provided by the Wellcome Trust under award 076113.

International Inflammatory Bowel Disease Genetics Consortium Members

Clara Abraham¹, Jean-Paul Achkar², Tariq Ahmad³, Leila Amininejad⁴, Ashwin N Ananthakrishnan⁵, Vibeke Andersen⁶, Carl A Anderson⁷, Jane M Andrews⁸, Vito Annese^{9,10}, Leonard Baidoo¹¹, Tobias Balschun¹², Peter A Bampton¹³, Jeffrey C Barrett⁷, Alain Bitton¹⁴, Gabrielle Boucher¹⁵, Stephan Brand¹⁶, Steven R Brant¹⁷, Carsten Büning¹⁸, Judy H Cho¹⁹, Sven Cichon²⁰, Isabelle Cleynen²¹, Ariella Cohain²², Mauro D'Amato²³, Mark J Daly²⁴, Dirk DeJong²⁵, Kathy L Devaney⁵, Martine DeVos²⁶, Marla Dubinsky²⁷, Richard H Duerr^{28,29}, Cathryn Edwards³⁰, David Ellinghaus¹², Jonah Essers³¹, Lynnette R Ferguson³², Denis Franchimont⁴, Andre Franke¹², Karin Fransen^{33,34}, Richard Gearry³⁵, Michel Georges³⁶, Christian Gieger³⁷, Jürgen Glas¹⁴, Philippe Goyette¹⁵, Hakon Hakonarson³⁸, Talin Haritunians³⁹, Ailsa Hart⁴⁰, Chris Hawkey⁴¹, Matija Hedl¹, Xinli Hu⁴², Ken Y Hui¹⁹, Luke Jostins⁷, Tom H Karlsen⁴³, Subra Kugathasan⁴⁴, Limas Kupcinskas⁴⁵, Anna Latiano⁴⁶, Debby Laukens²⁶, Ian C Lawrance⁴⁷, James C Lee⁴⁸, Charlie W Lees⁴⁹, Edouard Louis⁵⁰, Gillian Mahy⁵¹, John Mansfield⁵², Christopher G Mathew⁵³, Dermot P McGovern⁵⁴, Mitja Mitrovic⁵⁵, Angharad R Morgan³², Craig Mowat⁵⁶, William Newman⁵⁷, Kaida Ning¹, Orazio Palmieri⁴⁶, Miles Parkes⁴⁸, Cyriel Y Ponsioen⁵⁸, Uros Potocnik⁵⁹, Natalie J Prescott⁶⁰, Graham Radford-Smith^{61,62}, Soumya Raychaudhuri⁴², Miguel Regueiro¹¹, John D Rioux¹⁵, Stephan Ripke^{63,64}, Jerome I Rotter³⁹, Richard K Russell⁶⁵, Jeremy D Sanderson⁶⁶, Miquel Sans⁶⁷, Jack Satsangi⁴⁹, Eric E Schadt²², Stefan Schreiber⁶⁸, L Philip Schumm⁶⁹, Yashoda Sharma¹, Mark S Silverberg⁷⁰, Lisa A Simms⁶¹, Sarah L Spain⁷¹, Jurgita Sventoraityte⁴⁵, Stephan R Targan⁷², Kent D Taylor⁷², Emilie Theatre⁷³, Mark Tremelling⁷⁴, Severine Vermeire⁵³, Hein W Verspaget⁷⁵, Rinse K Weersma²⁵, Zhi Wei⁷⁶, Cisca Wijmenga³⁴, David C Wilson⁷⁷, Juliane Winkelmann⁷⁸, Ramnik J Xavier⁵, Sebastian Zeissig⁷⁹, Bin Zhang²², Hongyu Zhao⁸⁰

Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA. ¹Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA. ²Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland Clinic, and Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA. ³Peninsula College of Medicine and Dentistry, Exeter, UK. ⁴Erasmus Hospital, Free University of Brussels, Department of Gastroenterology, Brussels, Belgium. ⁵Massachusetts General Hospital, Harvard Medical School, Gastroenterology Unit, Boston, Massachusetts, USA. ⁶Viborg Regional Hospital, Medical Department, Viborg, Denmark. ⁷Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK. ⁸Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, and School of Medicine, University of Adelaide, Adelaide, Australia.⁹Unit of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy.¹⁰Azienda Ospedaliero Universitaria (AOU) Careggi, Unit of Gastroenterology SOD2, Florence, Italy. ¹¹Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. ¹²Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany.¹³Department of Gastroenterology and Hepatology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, Australia.¹⁴Division of Gastroenterology, McGill University Health Centre, Royal Victoria Hospital, Montréal, Québec, Canada.¹⁵Université de Montréal and the Montreal Heart Institute, Research Center, Montréal, Québec, Canada.¹⁶Department of Medicine II, University Hospital Munich-Grosshadern, Ludwig-Maximilians-University, Munich, Germany. ¹⁷Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine, and Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. ¹⁸Department of Gastroenterology, Charit, Campus Mitte, UniversitŠtsmedizin Berlin, Berlin, Germany.¹⁹Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.²⁰Department of Genomics, Life & Brain Center, University Hospital Bonn, Bonn, Germany.²¹Department of Pathophysiology, Gastroenterology section, KU Leuven, Leuven, Belgium. ²²Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York City, New York, USA. ²³Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden. ²⁴Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.²⁵Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands. ²⁶Ghent University Hospital, Department of Gastroenterology and Hepatology, Ghent, Belgium. ²⁷Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA. ²⁸Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine. ²⁹Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA. ³⁰Torbay Hospital, Department of Gastroenterology, Torbay, Devon, UK.³¹Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. ³²School of Medical Sciences, Faculty of Medical & Health Sciences, The University of Auckland, Auckland, New Zealand. ³³Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.³⁴University of Groningen, University Medical Center

Groningen, Department of Genetics, Groningen, The Netherlands.³⁵Department of Medicine, University of Otago, and Department of Gastroenterology, Christchurch Hospital, Christchurch, New Zealand.³⁶ Unit of Animal Genomics, Groupe Interdisciplinaire de Genoproteomique Appliquee (GIGA-R) and Faculty of Veterinary Medicine. University of Liege, Liege, Belgium.³⁷ Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.³⁸Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.³⁹Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA. ⁴⁰St Mark's Hospital, Watford Road, Harrow, Middlesex, HA1 3UJ. ⁴¹Nottingham Digestive Diseases Centre, Queens Medical Centre, Nottingham NG7 1AW, UK.⁴²Division of Rheumatology Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA.⁴³Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.⁴⁴Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.⁴⁵Kaunas University of Medicine, Department of Gastroenterology, Kaunas, Lithuania.⁴⁶Unit of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy.⁴⁷School of Medicine and Pharmacology, The University of Western Australia, Fremantle, Australia. ⁴⁸Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.⁴⁹Gastrointestinal Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK. ⁵⁰Division of Gastroenterology, Centre Hospitalier Universitaire, Universite de Liege, Liege, Belgium. ⁵¹ Department of Gastroenterology, The Townsville Hospital, Townsville, Australia. ⁵²Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK. ⁵³Division of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium. ⁵⁴Cedars-Sinai F.Widjaja Inflammatory Bowel and Immunobiology Research Institute and Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA. ⁵⁵University of Maribor, Faculty of Medicine, Center for Human Molecular Genetics and Pharmacogenomics, Maribor, Slovenia and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands. ⁵⁶Department of Medicine, Ninewells Hospital and Medical School, Dundee, UK. ⁵⁷Genetic Medicine, MAHSC, University of Manchester, Manchester, UK. ⁵⁸ Academic Medical Center, Department of Gastroenterology, Amsterdam, The Netherlands. ⁵⁹ University of Maribor, Faculty of Medicine, Center for Human Molecular Genetics and Pharmacogenomics, Maribor and University of Maribor, Faculty for Chemistry and Chemical Engineering, Maribor, Slovenia. ⁶⁰King's College London School of Medicine, Guy's Hospital, Department of Medical and Molecular Genetics, London, UK. ⁶¹Inflammatory Bowel Diseases, Genetics and Computational Biology, Queensland Institute of Medical Research, Brisbane, Australia.⁶² Department of Gastroenterology, Royal Brisbane and Womens Hospital, and School of Medicine, University of Queensland, Brisbane, Australia.⁶³ Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.⁶⁴Broad Institute of MIT and Harvard, Cambridge, MA, USA. ⁶⁵Royal Hospital for Sick Children, Paediatric Gastroenterology and Nutrition, Glasgow, UK. ⁶⁶Guy's & St. Thomas' NHS Foundation Trust, St Thomas' Hospital, Department of Gastroenterology, London, UK.⁶⁷Department of Gastroenterology, Hospital Clinic/Institut d'Investigaci – Biomedica August Pi i Sunyer (IDIBAPS). ⁶⁸Christian-Albrechts-University, Institute of Clinical Molecular Biology, and Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany. ⁶⁹Department of Health Studies, University of Chicago, Chicago, Illinois, USA. ⁷⁰Mount Sinai Hospital Inflammatory Bowel Disease Centre, University of Toronto, Toronto, Ontario, Canada. ⁷¹Department of Medical and Molecular Genetics, King's College London School of Medicine, Guy's Hospital, London, UK.⁷²Cedars-Sinai F.Widjaja Inflammatory Bowel and Immunobiology Research Institute, Los Angeles, California, USA. ⁷³Unit of Animal Genomics, Groupe Interdisciplinaire de Genoproteomique Appliquee (GIGA-R) and Faculty of Veterinary Medicine, University of Liege, and Division of Gastroenterology, Centre Hospitalier Universitaire, Universite de Liege, Liege, Belgium. ⁷⁴ Norfolk and Norwich University Hospital. ⁷⁵Department of Gastroenterology, Leiden University Medical Center, Leiden, The Netherlands. ⁷⁶Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA. ⁷⁷Royal Hospital for Sick Children, Paediatric Gastroenterology and Nutrition, Glasgow, UK and Child Life and Health, University of Edinburgh, Edinburgh, Scotland, UK.⁷⁸Institute of Human Genetics and Department of Neurology, Technische Universität München, Munich, Germany.⁷⁹Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany. ⁸⁰Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut, USA.

References

- 1 Van Snellenberg, J. X. & de Candia, T. Meta-analytic evidence for familial coaggregation of schizophrenia and bipolar disorder. *Arch. Gen. Psychiatry* **66**, 748-755 (2009).
- 2 Lichtenstein, P. *et al.* Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. *Lancet* **373**, 234-239 (2009).
- 3 Sullivan, P. F. *et al.* Family history of schizophrenia and bipolar disorder as risk factors for autism *Archives of General Psychiatry* **69**, 1099-1103 (2012).
- 4 Keshavan, M. S., Sujata, M., Mehra, A., Montrose, D. M. & Sweeney, J. A. Psychosis proneness and ADHD in young relatives of schizophrenia patients. *Schizophr Res* **59**, 85-92 (2003).
- 5 Smoller, J. W. & Finn, C. T. Family, twin, and adoption studies of bipolar disorder. *Am. J. Med. Genet. C Semin. Med. Genet.* **123**, 48-58 (2003).
- 6 Mortensen, P. B., Pedersen, M. G. & Pedersen, C. B. Psychiatric family history and schizophrenia risk in Denmark: which mental disorders are relevant? *Psychol Med* **40**, 201-210, doi:10.1017/S0033291709990419 (2010).
- 7 McGuffin, P. *et al.* The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. *Arch. Gen. Psychiatry* **60**, 497-502 (2003).
- 8 Faraone, S. V., Biederman, J. & Wozniak, J. Examining the Comorbidity Between Attention Deficit Hyperactivity Disorder and Bipolar Disorder: A Meta-Analysis of Family-Genetic Studies. *American Journal of Psychiatry* **169**, 1256-1266 (2012).
- 9 Faraone, S. V. & Biederman, J. Do attention deficit hyperactivity disorder and major depression share familial risk factors? *The Journal of nervous and mental disease* **185**, 533-541 (1997).
- 10 Cole, J., Ball, H. A., Martin, N. C., Scourfield, J. & McGuffin, P. Genetic overlap between measures of hyperactivity/inattention and mood in children and adolescents. *J. Am. Acad. Child Adol. Psychiatry* **48**, 1094-1101 (2009).
- 11 Lichtenstein, P., Carlstrom, E., Rastam, M., Gillberg, C. & Anckarsater, H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. *Am. J. Psychiatry* **167**, 1357-1363, doi:10.1176/appi.ajp.2010.10020223 (2010).
- 12 Mulligan, A. *et al*. Autism symptoms in Attention-Deficit/Hyperactivity Disorder: a familial trait which correlates with conduct, oppositional defiant, language and motor disorders. *J.*. *Autism Dev. Disord.* **39**, 197-209 (2009).
- 13 Taylor, M. J. *et al.* Developmental associations between traits of autism spectrum disorder and attention deficit hyperactivity disorder: a genetically informative, longitudinal twin study. *Psychol Med*, 1-12, doi:10.1017/S003329171200253X (2012).
- 14 Ronald, A., Simonoff, E., Kuntsi, J., Asherson, P. & Plomin, R. Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. *J. Child Psychol. Psychiatry Allied Disciplines* **49**, 535-542 (2008).
- 15 Reiersen, A. M., Constantino, J. N., Grimmer, M., Martin, N. G. & Todd, R. D. Evidence for shared genetic influences on self-reported ADHD and autistic symptoms in young adult Australian twins. *Twin research and human genetics : the official journal of the International Society for Twin Studies* **11**, 579-585, doi:10.1375/twin.11.6.579 (2008).
- Ripke, S. *et al.* Genome-wide association study identifies five new schizophrenia loci. *Nat. Genet.* 43, 969-976 (2011).
- 17 Sklar, P. *et al.* Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. *Nat. Genet.* **43**, 977-983 (2011).
- 18 Neale, B. M. *et al.* Meta-analysis of genome-wide association studies of attentiondeficit/hyperactivity disorder. *J. Am. Acad. Child Adolesc. Psychiatry* **49**, 884-897 (2010).
- 19 Lionel, A. C. *et al.* Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. *Sci. Transl. Med.* **3**, 95ra75 (2011).
- 20 Hamshere, M. *et al.* Identifying common genetic variants for ADHD that have phenotypic and clinical meaning: are there any? *submitted* (2012).

- 21 Hinney, A. *et al.* Genome-wide association study in German patients with attention deficit/hyperactivity disorder. *Am. J. Med. Genet. B Neuropsychiatr. Genet.* **156B**, 888-897 (2011).
- 22 Ribases, M. *et al.* Exploration of 19 serotoninergic candidate genes in adults and children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB. *Molecular psychiatry* **14**, 71-85, doi:10.1038/sj.mp.4002100 (2009).
- 23 Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature* **447**, 661-678 (2007).
- 24 Psychiatric GWAS Consortium Major Depressive Disorder. A mega-analysis of genome-wide association studies for major depressive disorder. *Mol. Psychiatry* (2012).
- 25 Tsuang, M. T., Winokur, G. & Crowe, R. R. Morbidity Risks of Schizophrenia and Affective-Disorders among 1st Degree Relatives of Patients with Schizophrenia, Mania, Depression and Surgical Conditions. *Brit J Psychiat* **137**, 497-504, doi:Doi 10.1192/Bjp.137.6.497 (1980).
- 26 Gershon, E. S. *et al.* A controlled family study of chronic psychoses. Schizophrenia and schizoaffective disorder. *Arch. Gen. Psychiatry* **45**, 328-336 (1988).
- 27 Kendler, K. S., Gruenberg, A. M. & Kinney, D. K. Independent Diagnoses of Adoptees and Relatives as Defined by Dsm-Iii in the Provincial and National Samples of the Danish Adoption Study of Schizophrenia. *Arch Gen Psychiat* **51**, 456-468 (1994).
- 28 Kendler, K. S. *et al.* The Roscommon Family Study. IV. Affective illness, anxiety disorders, and alcoholism in relatives. *Arch. Gen. Psychiatry* **50**, 952-960 (1993).
- 29 Maier, W. *et al.* Continuity and discontinuity of affective disorders and schizophrenia. Results of a controlled family study. *Archives of general psychiatry* **50**, 871-883 (1993).
- 30 Tienari, P. *et al.* Genetic boundaries of the schizophrenia spectrum: Evidence from the Finnish adoptive family study of schizophrenia. *American Journal of Psychiatry* **160**, 1587-1594, doi:Doi 10.1176/Appi.Ajp.160.9.1587 (2003).
- 31 Baron, M. *et al.* A Family Study of Schizophrenic and Normal Control Probands Implications for the Spectrum Concept of Schizophrenia. *American Journal of Psychiatry* **142**, 447-455 (1985).
- 32 Maier, W. *et al.* The dichotomy of schizophrenia and affective disorders in extended pedigrees. *Schizophr Res* **57**, 259-266 (2002).
- Erlenmeyer-Kimling, L. *et al.* The New York High-Risk Project. Prevalence and comorbidity of axis I disorders in offspring of schizophrenic parents at 25-year follow-up. *Archives of general psychiatry* 54, 1096-1102 (1997).
- 34 Parnas, J. *et al.* Lifetime DSM-III-R diagnostic outcomes in the offspring of schizophrenic mothers. Results from the Copenhagen High-Risk Study. *Archives of general psychiatry* **50**, 707-714 (1993).
- 35 Coryell, W. & Zimmerman, M. The heritability of schizophrenia and schizoaffective disorder. A family study. *Archives of general psychiatry* **45**, 323-327 (1988).