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The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain
measures and genotypes from multiple sites across the world to improve the power to detect genetic variants
that influence the brain. Diffusion tensor imaging (DTI) yields quantitativemeasures sensitive to brain development
and degeneration, and some common genetic variants may be associated with white matter integrity or connectiv-
ity. DTImeasures, such as the fractional anisotropy (FA) ofwater diffusion,may be useful for identifying genetic var-
iants that influence brain microstructure. However, genome-wide association studies (GWAS) require large
populations to obtain sufficient power to detect and replicate significant effects, motivating amulti-site consortium
effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging
sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected
at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template
and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of differ-
ent ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show
that our template is reliable for integrating multiple datasets by combining results through meta-analysis and uni-
fying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are
consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates
are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).
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2 The meta-analysis uses an aggregation of statistics derived from each cohort, but
the mega individually normalizes each cohort, and then pools all data after joining co-
hort kinship structures before estimating heritability; see Methods for more details.
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Introduction

The structure of the human brain is genetically influenced, and
many measures derived from brain images are heritable, i.e., some
proportion of their variance is due to individual differences in the
human genome. The degree of heritability, aswell as the effects of spe-
cific genetic variants, can be mapped using quantitative genetic anal-
ysis of measures derived from brain images (Chen et al., 2012; Glahn
et al., 2010; Thompson et al., 2001; van den Heuvel et al., 2013). Spe-
cific genetic variants affecting cognition or disease risk have been hard
to identify as their individual effects are small, leaving much of the
genetic effect unaccounted for, leading to “missing heritability” (Zuk
et al., 2012). Instead of relating clinical or behavioral measures to
variants in the genome, imaging genetics offers a direct approach to
discover genetic variants that affect brain structure and function. In
this context, brain imaging measures can be considered quantitative
endophenotypes for neurological or psychiatric illness, and identify-
ing genetic variants associated with these measures provides candi-
dates for disease risk (Braskie et al., 2011b; Glahn et al., 2007; Hasler
and Northoff, 2011). The current manuscript focuses on the genetic
properties of diffusion tensor imaging (DTI) (Basser et al., 1994), a rel-
atively less utilized data type in imaging genomics.

As MRI-based studies of the brain expanded to include hundreds
or even thousands of subjects, it recently became feasible to search
the genome for single-base-pair alterations, or polymorphisms, that
are related to identifiable features in brain scans. Recent publications
from the Enhancing Neuroimaging Genetics though Meta-Analysis
(ENIGMA) and Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) Consortia, highlight the potential of large
genome-wide association studies (GWAS) – especially meta-
analyses of multiple studies – to uncover genetic loci associated with
MRI-based phenotypes including hippocampal volumes (Bis et al.,
2012; Stein et al., 2012), intracranial volumes (Ikram et al., 2012;
Stein et al., 2012), and head circumference (Taal et al., 2012). How-
ever, currently these large-scale imaging genomics efforts have been
primarily restricted to phenotypes/endophenotypes derived from
T1-weighted gray matter images. Recently, we created the ENIGMA
Consortium DTI working group to examine the genetic influences on
white matter micro-architecture and integrity, assessed using diffu-
sion tensor imaging (DTI). The goal of the ENIGMA–DTI working
group is to identify and homogenize heritable phenotypes that can
be reliably obtained from images collected with a wide array of imag-
ing parameters and from subjects of varying ages and different ethnic-
ities. Eventually, we hope to discover specific genetic variants
influencing brain DTI. As an initial step towards this goal, it is critical
to determine which brain regions and measures to prioritize, based on
how consistently they can be measured, and the relative evidence for
substantial and consistent genetic influences on them (i.e., heritability).

One of several commonly analyzed scalar maps extracted from
DTI (Basser et al., 1994) – the fractional anisotropy (FA) (Basser and
Pierpaoli, 1996) – evaluates the extent to which water diffusion is
directionally constrained by white matter microstructure. FA reflects
fiber coherence, myelination levels, and axonal integrity, and has been
widely used as an index of white matter integrity (Thomason and
Thompson, 2011). Asmight be expected, FA shows diffuse abnormalities
inmany brain disorders including Alzheimer's disease (AD) (Clerx et al.,
2012; Teipel et al., 2012), it is related to cognitive performance (Penke
et al., 2010a, 2010b) and it is altered in numerous psychiatric disorders
including major depressive disorder (Carballedo et al., 2012), bipolar
disorder (Barysheva et al., 2013; Sprooten et al., 2011a), and schizophre-
nia (Kochunov et al., 2012; Mandl et al., 2012).

The heritability of FA mapped voxel-wise in the brain, or averaged
within specific tracts, has previously been established independently
in various cohorts and also for different ethnic groups (Brouwer et al.,
2010; Chiang et al., 2011b; Kochunov et al., 2011b). A meta-analysis
of neuroimaging measures has found that FA is heritable with
relatively tight confidence intervals, making it extremely promising
for further genetic study (Blokland et al., 2012). More recently, DTI
measures have begun to be used as phenotypes for genome-wide as-
sociation and linkage studies (Chiang et al., 2012; Jahanshad et al.,
2012a; Kochunov et al., 2011b; Lopez et al., 2012; Sprooten et al.,
2012) in the quest to identify novel variants and molecular pathways
associated with white matter microstructure. While these gene dis-
covery studies have great potential, single-site studies have limited
power to discover variants that reliably generalize to other cohorts.
Indeed, GWAS findings are often site-specific andmay not be replicat-
ed in other populations. If the same cohort is imaged with different
scanning protocols or analyzed with different processing streams,
there may be differences in the sets of variants that are declared
to be significant (Jahanshad et al., 2012c). Replication studies and
meta-analyses across various independent study cohorts and imaging
protocols are therefore vital to identify true positives that are robustly
associated with a brain measure.

Before we undertake the task of a GWAS-meta analysis (GWAS-
MA) across sites with FA measures, we must first decide on a set of
phenotypes that can be reliably derived from the images. Even with
rigorous quality control procedures, inter-site measurement variabili-
ty can be quite high, with adverse effects for multi-site studies (Zhu
et al., 2011). To be a useful endophenotype for GWAS, phenotypes
must show high levels of heritability regardless of the population
under study. Heritability is defined as the proportion of the trait vari-
ance in a population that is attributable to genetic factors. While there
is no guarantee that GWAS will find specific genetic variants that influ-
ence highly heritable traits, non-heritable measures are unlikely to be
useful for gene discovery. In this context, phenotype prioritization will
focus studies and make them more efficient. As the goal of phenotypic
prioritization is to reduce the number of traits tested in GWAS, the cor-
rection for multiple testing is reduced, improving the potential to iden-
tify genes.

Here, we use FA images from four different imaging cohorts, scanned
at various resolutions, and with different population structures, to de-
velop a high-resolution target for image registration in the ICBM/MNI
space, in accordance with previously established white matter atlases
(Mori et al., 2008). We provide the FA-based registration target and
white matter skeleton along with a set of protocols for effective collab-
oration in multi-site meta-analytical studies, including GWAS-MA
(provided online at http://enigma.loni.ucla.edu/ongoing/dti-working-
group/). After processing 5 datasets with this protocol, we perform
heritability analysis on a voxel-wise level with a subset of the datasets.
These analyses were a meta-analysis of DTI data from 1) a Caucasian
(Australian) twin sample and 2) a Mexican–American pedigree to
converge on the most reliably heritable features and regions in the
image. Large meta-analytic studies have been widely used to esti-
mate the genetic influence of behavioral traits (Bezdjian et al.,
2011; Malouff et al., 2008), and to reveal the genetic complexity of
disease (Sullivan et al., 2003). This work presented here is the first
of its kind, as it harmonizes images from different cohorts into the
same high-resolution stereotaxic space and performs voxel-wise
meta-analytical tests of heritability along the white matter skeleton,
and in the image space. We additionally examine a mega-analytical
approach,2 in an effort to boost power to estimate the heritability.
We further estimate this heritability on parcellations of the image
for a more traditional assessment of regional estimates of heritability,
in regions of interest. This work from the ENIGMA–DTI working group
lays the foundation to select phenotypes for large future multi-site
joint-analytic genetic association studies with DTI data.

http://enigma.loni.ucla.edu/ongoing/dti-working-group/
http://enigma.loni.ucla.edu/ongoing/dti-working-group/
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Methods

Study subjects and imaging protocols

Four datasets described below (QTIM, GOBS, BFS, LBC1936; the ac-
ronyms are also detailed below) were used for template creation.
Two (QTIM, GOBS) family-based studies were used for the heritability
analyses. A dataset (UMCU) not included in the template creation was
used for additional validation.

The datasets used for this work are subsamples of larger datasets
and information regarding the images used here is listed in Table 1
and described below:

• QTIM — Queensland Twin IMaging study
∘ Subjects: Study subjects included young adult Australian twins
and their siblings, all of European ancestry, between the ages of
21 and 29. 146 twin pairs were used in the heritability analysis:
68 monozygotic (MZ) pairs, and 78 dizygotic (DZ) pairs; 106
Male, 186 Female. Mean age 23.00 yr ± 2.06 SD. More informa-
tion on the cohort, inclusion and exclusion criteria, and the study
goals may be found in (de Zubicaray et al., 2008).

∘ Imaging: A high angular resolution diffusion imaging protocol
was used, consisting of a 14.2-minute, 105-image acquisition,
with a 4-Tesla Bruker Medspec MRI scanner. Imaging parameters
were: TR/TE = 6090/91.7 ms, FOV = 23 cm, with a 128 × 128
acquisition matrix. Each 3D volume consisted of 55 2-mm thick
axial slices with no gap and 1.8 × 1.8 mm2 in-plane resolution.
105 images were acquired per subject: 11 with no diffusion sensi-
tization (i.e., T2-weighted b0 images) and 94 diffusion-weighted
(DW) images (b = 1159 s/mm2) with gradient directions uni-
formly distributed on the hemisphere.

• GOBS — Genetics of Brain Structure and Function study
∘ Subjects: The sample comprised 859 Mexican–American individuals
from 73 extended pedigrees (average size 17.2 people, range =
1–247) form the San Antonio Family Study (Olvera et al., 2011). The
sample was 59% female (351 men/508 women) and had a mean
age of 43.2 (SD = 15.0; range = 19–85). Individuals in this cohort
have actively participated in research for over 18 years andwere ran-
domly selected from the community with the constraints that they
are of Mexican–American ancestry, part of a large family, and live
within the San Antonio region. All participants provided written in-
formed consent before participating in any aspect of the study. All
participants provided written informed consent on forms approved
by the Institutional Review Boards at the University of Texas Health
Science Center San Antonio (UTHSCSA) and Yale University.

∘ Imaging: Diffusion imagingwas performed at the Research Imaging
Center, UTHSCSA, on a Siemens 3 T Trio scanner using an eight-
channel phased array head coil. A single-shot single refocusing
Table 1
Diffusion MR imaging parameters for each site included. All contributed scans are part of lar
sion weighted images obtained, and N-b0 refers to the number of images obtained with no

QTIM GOBS

Relatedness Twins Pedigree
Race/ethnicity Caucasian Mexican–American
#Subjects contributed 292 859
Sex 106M/186F 351M/508F
Age range (years) 21–29 19–85
Healthy Yes Yes
Scanner Bruker Siemens
N-acquisitions 1 1
Field strength 4 T 3 T
Voxel size (mm) 1.8 × 1.8 × 2 1.7 × 1.7 × 3.0
N-gradients 94 55
N-b0 11 3
b-value (s/mm2) 1159 700
Reference de Zubicaray et al. (2008) Kochunov et al. (2011b)
spin-echo, echo-planar imaging sequence was used to acquire
diffusion-weighted data with a spatial resolution of 1.7 × 1.7 ×
3.0 mm. The sequence parameters were: TE/TR = 87/8000 ms,
FOV = 200 mm, 55 isotropically distributed diffusion weighted di-
rections, two diffusionweighting values, b = 0 and 700 s/mm2 and
three b = 0 (non-diffusion-weighted) images.

• BFS — Bipolar Family Study
∘ Subjects: Participants were recruited as part of the Bipolar Family
Study, a sample of young individuals at high genetic risk (HR) for
bipolar disorder (BD) and of demographically matched healthy
controls (HC). Individuals were considered at HR if they had at
least one first-degree, or two second-degree, family members
with bipolar I disorder. Participants were excluded if they fulfilled
SCID criteria for an axis-I mood or psychotic disorder, had a major
neurological disorder, history of head injury, history of learning
disability or metallic implants or other contraindications to MRI
examination. For more details of participant recruitment, screen-
ing and demographics, see (Sprooten et al., 2011a). 150 unrelated
participants provided high quality DTI data and DNA for the gener-
ation of whole-genome data, including 70 HR (34 male; mean
age = 21.6 years) and 80 HC (37 male; mean age = 21.3 years)
subjects, all between the ages of 16–26 years at the time of recruit-
ment. 100 of the adult (aged 18+) subjects' scans were used for
creating the ENIGMA–DTI template.

∘ Imaging: MRI data were collected on a GE Signa Horizon HDX 1.5 T
clinical scanner equipped with a self-shielding gradient set (22 mT/m
maximum gradient strength) and amanufacturer-supplied ‘birdcage’
quadrature head coil. Whole brain diffusion imaging data were
acquired for each subject using a single-shot pulsed gradient
spin-echo echo-planar imaging (EPI) sequence with diffusion gradi-
ents (b = 1000 s/mm2) applied in 64 non-collinear directions, and
seven T2-weighted EPI baseline (b =0 s/mm2) scans. Fifty-three
2.5 mm contiguous axial slices were acquired with a field-of-view
of 240 × 240 mm2, and an acquisition matrix of 96 × 96 (zero-filled
to 128 × 128), giving an acquisition isotropic voxel size of 2.5 mm.

• LBC1936 — Lothian Birth Cohort 1936
∘ Subjects: The LBC1936 is a study of healthy cognitive aging in the
Edinburgh area of Scotland. Study participants were all born in
1936 and most had taken part in the Scottish Mental Survey
1947, which had administered a validated cognitive ability test
to almost all Scottish schoolchildren born in 1936. The LBC1936
were recruited for Wave 1 of cognitive and medical testing
at mean age 70 between 2004 and 2007 (N = 1091). None had
dementia. Their recruitment and testing are described fully
elsewhere (Deary et al., 2007, 2012). At Wave 2, where the
LBC1936 mean age was 73 years, the cognitive and medical exa-
minations were repeated (N = 866), and a detailed structural
brain MRI examination was undertaken (N = 700 consented to
ger cohorts described below and referenced. N-gradients refers to the number of diffu-
diffusion sensitization (T2-weighted).

BFS LBC1936 UMCU

Unrelated Unrelated Unrelated
Caucasian Caucasian Caucasian
100 100 100
50M/50F 50M/50F 50M/50F
18–26 71–74 18–45
Yes Yes No
GE GE Achieva
1 1 2
1.5 T 1.5 T 1.5 T
2.0 × 2.0 × 2.0 2.0 × 2.0 × 2.0 2.0 × 2.0 × 2.0
64 64 32
7 7 8
1000 1000 1000
Sprooten et al. (2011a) Wardlaw et al. (2011) Mandl et al. (2010)
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imaging, with about 650 available formost variables). The imaging
protocol is fully described by Wardlaw et al. (2011). 100 healthy
individuals (50 M/50 F) were used for template creation.

∘ Imaging: Subjects underwent high angular resolution diffusion
MRI using a GE Signa Horizon HDxt 1.5 T clinical scanner (General
Electric, Milwaukee, WI, USA) equipped with a self-shielding
gradient set (33 mT/m maximum gradient strength) and manu-
facturer supplied 8-channel phased-array head coil. The protocol
consisted of 7 T2-weighted (b ~ 0 s/mm2) and sets of diffusion-
weighted (b = 1000 s/mm2) axial single-shot spin-echo EPI vol-
umes acquired with diffusion gradients applied in 64 non-collinear
directions. Imaging parameters were: FOV = 25.6 × 25.6 mm, ac-
quisition matrix 128 × 128 and TR/TE = 16500/98 ms. Each 3D
volume consisted of 72 2 mm thick axial slices with no gap giving
2 mm isotropic voxels.

• UMCU — University Medical Center Utrecht
∘ Subjects: Subjects were recruited as part of a schizophrenia study
at the University Medical Center Utrecht, The Netherlands (Boos
et al., 2013). Patients with schizophrenia and healthy participants
matched for age, sex, handedness, and parental education partic-
ipated in the study all between ages 18 and 45. For this work, DTI
scans from 49 patients with schizophrenia and 51 controls were
used to evaluate template registration.

∘ Imaging: 2 transverse DTI scans were acquired on a 1.5 Philips
AchievaMR scanner (32 diffusion-weighted volumes with different
non-collinear diffusion directionswith b-factor = 1000 s/mm2 and
8 diffusion-unweighted volumeswith b-factor = 0 s/mm2; parallel
imaging SENSE factor = 2.5; flip angle = 90°; 60 slices of 2.5 mm;
no slice gap; 96 × 96 acquisition matrix; reconstruction matrix
128 × 128; FOV = 240 mm; TE = 88 ms; TR = 9822 ms; no car-
diac gating; and total scan duration = 296 s). More information
may be found in (Mandl et al., 2010).

ENIGMA template creation

One hundred (50 male, 50 female) healthy unrelated subjects ran-
domly selected from each of the first four datasets (QTIM, GOBS, BFS,
LBC1936) listed above were used to create a common template. The
fifth sample, UMCU, was excluded from the template creation due to
lower directional resolution and an insufficient number of healthy in-
dividuals, but was used as an external sample to validate the template.
FA images from all subjects were aligned, using FSL's ‘flirt’ (Jenkinson
et al., 2002), to the Johns Hopkins University (JHU) DTI atlas in ICBM
space (ICBM-DTI-81 white matter labels atlas) (Mori et al., 2008)
available with the FSL package to ensure spatial consistency. A target
was created as previously described (Kochunov et al., 2001, 2002)
from these aligned images. Briefly, FA images from the 100 subjects
of each cohort were iteratively registered with nonlinear registration
(Andersson et al., 2008) to create a custom mean atlas, using a target
ICBM space defined by the JHU DTI atlas (ICBM-DTI-81 white-matter
labels atlas) (Mori et al., 2008). Once the target was created, all linear-
ly aligned FA images, including those not used for the template, were
nonlinearly registered to this custom FA atlas image.

Deformation analysis

One goal of creating a custom template from the subjects in a
dataset is to create a target image for non-linear spatial normalization
that requires the least amount of spatial transformation (i.e., distor-
tion) of images from the subjects in the study. Non-linear spatial
registration methods iteratively calculate the parameters of a defor-
mation field from the coarse-to-fine resolution scales and the use of
the custom template reduces some sources of bias in this normaliza-
tion process (Kochunov et al., 2001). To assess the closeness of the
template to the individual data being aligned to it, the average defor-
mation across all voxels was calculated for all subjects in each cohort
for registration to each template. The degree of deformation at each
voxel was quantified as the absolute value of the difference between
the determinant of the deformation field Jacobian matrix (simply
referred to as the Jacobian here) and unity, as one represents no volu-
metric change (although theremay still be deformations, in an incom-

pressible flow). Thismay bewritten as: J k ¼
XNv

v¼1

Jvj j−1j j, where Jv is the

Jacobian matrix at voxel v, from a total of Nv voxels, and k represents
each cohort. Mean deformations to the templates were compared for
each cohort.
Tract-based spatial statistics with reference to a common template

As described in the seminal tract-based spatial statistics (TBSS)
paper (Smith et al., 2006), our template FA image was “skeletonized”
to reveal an estimated structural core of the white matter. Subse-
quently, FA images from all subjects in each cohort were used to pro-
ject voxels onto the same template skeleton, creating a unique FA
skeleton in the same space for each individual in each cohort.
Checking the projection distance

Once all images were projected onto the skeleton, we find the
mean and maximum projection distance across all voxels along the
skeleton. This allows us to quantitatively evaluate the projections
onto the template and search for outliers with extremely high projec-
tion distances, which may suggest poor image quality or failure of im-
ages to register correctly.
Heritability

Typical heritability studies involving related individuals, including
either twin samples (as in QTIM) or pedigrees (as in GOBS), break
down the total observed phenotypic variance, Vp, into a genetic
component, Vg, and an environmental component, Ve, where Vp =
Vg + Ve. These factors may be further broken down into additive ver-
sus dominant sources of genetic influence, as well as shared versus
unique environmental influences on the trait of interest. We carried
out our heritability studies using the full GOBS pedigree sample, and
the paired-twin subsample of the QTIM, i.e., not including singletons
or non-twin siblings.
Heritability calculation using SOLAR
To take into account the more complex structure of the GOBS

pedigree, a variance components method, as implemented in the Se-
quential Oligogenic Linkage Analysis Routines (SOLAR) software pack-
age (http://www.nitrc.org/projects/se_linux) (Almasy and Blangero,
1998) was used. For comparison and combinatory purposes, the
same analysis was also performed for the QTIM twin sample. Methods
used to calculate heritability in SOLAR are detailed elsewhere
(Kochunov et al., 2010; Winkler et al., 2010).

Briefly, the algorithms in SOLAR employ maximum likelihood var-
iance decomposition methods and are an extension of the strategy
developed by (Amos, 1994). The covariance matrix Ω for a pedigree
of individuals is given by the following:

Ω ¼ 2Φσg
2 þ Iσe

2

where σg
2 is the genetic variance due to the additive genetic factors, Φ

is the kinship matrix representing the pair-wise kinship coefficients
among all individuals, σe

2 is the variance due to individual-specific

http://www.nitrc.org/projects/se_linux


Fig. 1. A generalized workflow for ENIGMA–DTI. Preprocessed images are registered to
the ENIGMA–DTI template, and skeletal projection is performed using TBSS (Smith
et al., 2006) in FSL software. Common ROIs are extracted and averaged and all informa-
tion is stored in a spreadsheet. Various quality control steps are also implemented to
identify outliers.
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environmental effects, and I is an identity matrix. In this model herita-
bility is

h2 ¼ σ2
g

σ2
P

;

where σ2
P refers to the phenotypic variance.

The variance parameters are estimated by comparing the observed
phenotypic covariance matrix with the covariance matrix predicted
by kinship (Almasy and Blangero, 1998). Significance of heritability
is tested by comparing the likelihood of the model in which σg

2 is
constrained to zero with that of a model in which σg

2 is estimated.
Twice the difference between the two loge likelihoods of thesemodels
yields a test statistic, which is asymptotically distributed as a 1/2:1/2
mixture of a χ2 variable with 1 degree-of-freedom and a point mass
at zero. Prior to testing for the significance of heritability, phenotype
values for each individual were adjusted for covariates including sex,
age, age2, age × sex interaction, and age2 × sex interaction. Inverse
Gaussian transformation was also applied to ensure normality of the
measurements. Outputs from SOLAR include the heritability value,
its significance value (p), and its standard error.

Meta analysis
Various methods have been proposed for meta-analyzing heritabili-

ty data (Li et al., 2003). To obtain our mean meta-analyzed heritability
(h2) and standard error measurements, here we chose to employ two
methods:

1) Weight the heritability from each study by its sample size as was
previously shown to be successful (Verweij et al., 2010) in twin
studies. The mean heritability weighted by sample size (Sutton,
2000) is:

h2MA ¼ h21 vð Þ � n1 þ h22 vð Þ � n2

n1 þ n2
;

for v = 1 to Nv — the total number of voxels along the skeleton, or
the total number of ROIs; subscripts 1 and 2 refer to the two
datasets used in this analysis.

2) Weight the heritability from each study by the heritability stan-
dard error, as extracted from the variance component model of
Solar. The heritability weighted by standard error (Sutton, 2000)
is:

h2MA ¼ h21 vð Þ � se−2
1 vð Þ þ h22 vð Þ � se−2

2 vð Þ
se−2

1 vð Þ þ se−2
2 vð Þ ;

for v = 1 to Nv — the total number of voxels along the skeleton, or
the total number of ROIs; subscripts 1 and 2 refer to the two
datasets used in this analysis.

As the heritability for both datasets was computed with SOLAR,
the standard error for the heritability at each voxel was also available.
In an analogous way, we also computed the joint standard error by
weighting estimates from each cohort by its sample size.

Mega analysis
In addition to meta-analysis, we jointly analyzed the two separate

cohorts in a mega-analysis of heritability. A mega-analysis program
developed for the SOLAR (Blangero et al., 2005) computer package
was implemented on the LONI Pipeline infrastructure (Dinov et al.,
2010) for mega-analysis of heritability on both a voxelwise and an
ROI level. Meta-analysis approaches fit separate models, while a
mega-analysis fits a single model that allows certain parameters to
be shared over datasets. Thus, especially for combining a small num-
ber of datasets, the mega-analysis approach may be more efficient,
though necessarily makes more assumptions. Primarily, we assume
that the pattern of inheritance of the trait is similar among the popula-
tions. We then force the phenotype to have the same distribution for
each population. In themega-analysis, we specifically test that the degree
of shared genetic variance is not different between populations before
combining them. To do this, we fit the model separately first for each co-
hort and test for the difference in the heritability values. A joint pedigree
structure was produced by merging the kinship matrices for QTIM and
GOBS cohorts. For each of the cohorts, a model was fitted including ad-
justment for covariates and finding the inverse normal transformation
of the traits. Individual cohort heritability estimates can be obtained and
using the full pedigree structure and thenormalized FA values, a joint her-
itability estimate can be obtained.

Region of interest (ROI) extraction

Regions of interest were parcellated from the ENIGMA target in
ICBM space according to the multi-subject JHU white matter
parcellation atlas described by Mori et al. (2008). Here, we removed
several regions that are often cropped out of the imaging field of
view (FOV), which could lead to unstable and unreliable estimates.
For heritability analysis, in some cases, we joined together several re-
gions of the same tract. This was done to aggregate data from regions
expected to behave in a relatively homogeneous way, and to avoid
analyzing very small regions, which may suffer from various levels
of partial voluming depending on the imaging protocol.

For example, the internal capsule is comprised of the left and right an-
terior limb, posterior limb, and retrolenticular parts of the internal cap-
sule, as defined in the atlas. An overall mask was created from all these
regions and the average FA value within this entire mask was considered
to be the average value within the full bilateral region. Our protocols and
executables, which are publicly available (http://enigma.loni.ucla.edu/
ongoing/dti-working-group/), provide mean FA value information for all
portions of these combined tracts for each hemisphere, but in our analysis
here we focus on the combined bilateral measures.

Additionally, we analyze the average FA value along the full skel-
eton (including all peripheral voxels not included in any of the afore-
mentioned parcellations). A generalized workflow of our processing
can be seen in Fig. 1.

A final list of regions used in this paper is shown in Table 2.

Factor analysis

To obtain a general estimate of FA heritability, we perform an explor-
atory factor analysis on all ROIs examined using the covariance structure
of each cohort independently. The analysis was performed using the
‘psych’ package in the statistical software ‘R’ to obtain a single factor
score with maximum likelihood estimation and a default oblimin
rotation.

http://enigma.loni.ucla.edu/ongoing/dti-working-group/
http://enigma.loni.ucla.edu/ongoing/dti-working-group/


Table 2
Regions of interest parcellated on the white matter skeleton of the ENIGMA template,
according to the JHU White Matter Atlas (Mori et al., 2008).

Regions of Interest Evaluated

avgFA Average skeleton FA
GCC Genu of the corpus callosum
BCC Body of corpus callosum
SCC Splenium of corpus callosum
FX Fornix
CGC Cingulum (cingulate gyrus) — L and R combined
CR Corona radiata — L and R anterior and posterior sections combined
EC External capsule — L and R combined
IC Internal capsule — L and R anterior limb, posterior limb, and

retrolenticular parts combined
IFO Inferior fronto-occipital fasciculus — L and R combined
PTR Posterior thalamic radiation — L and R combined
SFO Superior fronto-occipital fasciculus
SLF Superior longitudinal fasciculus
SS Sagittal stratum (include inferior longitudinal fasciculus and inferior

fronto-occipital fasciculus) — L and R combined
CST Corticospinal tract
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Covariates and multiple comparisons correction

Covariates were chosen to be consistent for both datasets. For all
methods of analysis and for both datasets, these standard covariates in-
cluded age, sex, age-squared, age-by-sex interaction, and age-squared
by sex interaction.

Performing multiple statistical tests, whether at each voxel, or for
each ROI, inflates the chance of reporting false positives at a given
significance threshold.We use two different approaches to controlling
false positives, the false discovery rate (FDR) (Genovese et al., 2002)
and familywise error rate (FWE) (Nichols and Hayasaka, 2003). FDR
is a more lenient measure, controlling the average proportion of
false positives among the detected voxels or ROIs, whereas FWE is
more specific (but less powerful), controlling the chance any false pos-
itive voxels or ROIs. We report FDR-corrected significances for both
voxel-wise and ROI analyses. FWE inferences that account for depen-
dence between tests that require permutation methods (Nichols and
Hayasaka, 2003) were also conducted on the ROI data.

Permutation inference must be performed in a way that takes into
account the dependence in the data. For the twin sample, the null
Existing 
Template 

ENIGMA-DTI 
Template 

Fig. 2. The Johns Hopkins University FA template is compared to the ENIGMA–DTI FA temp
subject (200 M/200 F) FA maps obtained with high spatial and directional resolution imag
hypothesis of no heritability allows randomly exchanging the MZ
and DZ labels on twin pairs (twins pairs are kept intact, to control
for common environmental effects). For the pedigree sample, the
null hypothesis means that family members are exchangeable, and
so we randomly permuted the phenotypes of subjects within families
while ensuring that all covariates remained linked to each individual.
1000 permutations were used for each test.

Results

The template (Fig. 2, bottom row) derived from FA images from four
sites with relatively high resolution DTI may be found, along with its
corresponding skeleton for TBSS processing here: http://enigma.loni.
ucla.edu/wp-content/uploads/2012/06/enigmaDTI.targets.tar.gz.

This section is organized as follows:

• ENIGMA template:We present the results of the average deformation
(measured as the determinant of the Jacobian matrix at every voxel
derived from the nonlinear registration deformation fields) across
the full brain when registering the FA images from each cohort's
subjects to the ENIGMA template as well as the JHU FA template.

• Heritability results:

1. QTIM Twin and GOBS Pedigree Comparison: Heritability using SOLAR
was computed for both cohorts. We computed the correlation
between the heritabilities of two cohorts on a voxelwise level.

2. Meta-analysis of both samples as weighted by sample size and by
standard error. Meta analysis weighted by standard error is more
powerful in this case as heritability in a twin sample can be esti-
mated with a smaller total N than is the case for a pedigree sample.

3. Exploratory analyses:

a. Mega-analysis: an analysis of heritability is conducted using the
information from both cohorts simultaneously, and permutation
testing enables the visualization of the null distribution. Jointly
analyzing the samples is possibly advantageous for picking up
heritability effects.

b. Factor analysis: a non-localized measure of general FA heritabili-
ty is investigated. Regional associations may serve as more pow-
erful phenotypes.
late, both in standard MNI space. The ENIGMA–DTI FA template was created from 400
ing at 4 independent sites.

http://enigma.loni.ucla.edu/wp-content/uploads/2012/06/enigmaDTItargets.tar.gz
http://enigma.loni.ucla.edu/wp-content/uploads/2012/06/enigmaDTItargets.tar.gz
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Table 3
Average deformations (measured as the determinant of the Jacobian matrix at every
voxel derived from the nonlinear registration deformation fields) are listed across
the entire skull stripped brain when registering the FA images from each cohort's sub-
jects to the existing JHU template and the newly created ENIGMA–FA template. When
comparing individuals from each site, there was a significant reduction in the amount
of overall deformation required to warp the brains. Although the difference was not as
pronounced, the significance and lower deformation level was also true for the UMCU
data, which was not included in the creation of the template.

Average
deformation

JHU
template

ENIGMA–DTI
template

Paired t-test

p-Value

GOBS 0.3905 0.0555 b1 × 10−06

QTIM 0.3506 0.0374 b1 × 10−06

BFS 0.3581 0.0595 b1 × 10−06

LBC 0.0653 0.0026 b1 × 10−06

UMCU 0.3961 0.3178 b1 × 10−06
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ENIGMA–DTI FA template

Fig. 2 provides a visual comparison of the existing template with
the high resolution template created from 400 subjects here, 200M/
200F, from 4 separate imaging studies.

Despite the stereotaxic similarities between the original template
and the ENIGMA–DTI template, a single image registration to each
one will produce different deformations primarily along tract periph-
eries where the templates differ most. Table 3 shows an analysis of
the average deformation (measured from the determinant of the
Jacobian matrix at every voxel derived from the nonlinear registra-
tion deformation fields) across the full brain when registering the
FA images from each cohort's subjects to the existing JHU template
and the newly created ENIGMA–FA template. All datasets show regis-
tration improvements, i.e., less overall deformation necessary, when
the data were registered to the ENIGMA–DTI template. Significant im-
provement was also seen in UMCU, a cohort not used in the creation
of the template, although the difference was not as pronounced.

Whereas the target was created from healthy subjects only, ap-
proximately half the UMCU sample used for validation was comprised
of schizophrenic patients. When broken down by sex into patient and
control groups (Table 4), each subgroup showed less overall registra-
tion deformation towards the ENIGMA–DTI template, with less vari-
ance in the population. No statistical differences were found within
control or patients per protocol, ensuring the ENIGMA–DTI template,
as well as the JHU template, is not biasing towards healthy controls of
similar sex and age.

Multi-site heritability using twin and pedigree samples

To determine whether regions of interest along the skeleton
would result in similar heritability estimates regardless of which tem-
plate is used to define them, for the QTIM sample, we estimated her-
itability based on ROIs from both the JHU and ENIGMA templates for
registration and skeletonization. As expected, no significant differ-
ences were found in heritability estimates across the 15 ROIs, and
all heritability values of a region using one template were almost
Table 4
When broken down by sex into patient and control groups, each subgroup showed less ove
the population. No statistical differences were found within controls or patients between eith
biased towards healthy controls of similar sex and age.

UMCU Patients

Male Fe

N-subjects 21 28
Age in years (sd) 27.7 (7.3) 27
ENIGMA–DTI Jacobian (sd) 0.316 (0.046) 0.3
JHU Jacobian (sd) 0.393 (0.131) 0.3
identical or within the standard error of the same measure using
the other template. This is shown in Fig. 3.

Fig. 4 shows, qualitatively, various 2D image slices comparing her-
itability results in the QTIM sample with GOBS.

In Fig. 5, we plot the voxel heritability values of one sample
versus the other and examine the correlation between the two
on a voxelwise level. Moderate correlations are seen overall at
0.51.

Meta and mega analyses

To combine results from both samples and obtain an overall esti-
mate of heritability per voxel, we first meta-analytically combine
the heritability results and additionally analyze the heritability of
both cohorts together through a large mega analysis. Fig. 6 shows
the results of both the meta- and mega-analyses. The heritability re-
sult of the meta-analysis weighted by the sample size follows closely
the distribution of the GOBS sample, as is expected as the sample size
is much larger. The mega-analysis shows greater heritability overall.
Fig. 7 plots the voxelwise correlation between the two types of anal-
yses for both heritability estimate and significance values. Despite dif-
ferences in the magnitude of both sets of values, we find that the
voxelwise correlation between the two methods is extremely high
(0.88 for N weighted and 0.89 for SE weighted).

In order to adjust our analyses for multiple testing and the likeli-
hood of false positives from over 100,000 voxelwise tests performed
on the white matter skeleton, we use the false discovery rate (FDR)
procedure, as described in the Methods. We plot the cumulative dis-
tribution function of the sorted p-values from the variance compo-
nent heritability tests from both individual cohorts as well as both
the meta- and mega-analyses to show the relative effect size of each
cohort and analysis in Fig. 8. The cumulative distribution function
(cdf) of the p-values is plotted against the null expected p-values.
If the distribution follows the identity (dotted line, y = x), then
the data are consistent with noise. If the curve exceeds y = 20x
(i.e., y = x/0.05, to control FDR at 5%; solid black line), then the dis-
tribution of p-values is significant according to the false discovery
rate procedure. The FDR-critical p-value is the point at which the
curve crosses the y = 20x line. The closer the FDR critical p-value is
to 0.05 (the higher it is), the greater the proportion of the image
that can be claimed to have significant heritability while ensuring
the false positive rate is maintained at 0.05. The FDR critical
p-values for the plotted lines are: QTIM: 0.0315, GOBS: 0.0322,
MA-N: 0.0325, MA–SE: 0.0330, mega-analysis: 0.0437. The mega
analysis has the greatest effect, followed by the meta-analysis
weighted by the standard deviation. Each individual cohort and the
meta analyses have roughly the same effect. The significance of all
analyses remains after multiple comparison correction using FDR.

Heritability was also assessed for regions of interest parcellated on
the JHU white mater atlas. Regions were averaged bilaterally and av-
erage tract measures are reported.

Fig. 9 shows the proportion of the variance that was estimated to
be due to genetic factors for each region for each of the two cohorts
when registered to the ENIGMA–DTI template, as well as for both
rall registration deformation towards the ENIGMA–DTI template, with less variance in
er the JHU template or the ENIGMA template. This suggests that both templates are not

Controls

male Male Female

29 22
.0 (8.4) 25.9 (5.2) 28.3 (6.9)
08 (0.055) 0.317 (0.042) 0.332 (0.053)
88 (0.122) 0.376 (0.129) 0.435 (0.129)



Fig. 4. We can visually compare voxelwise heritability values computed from the two cohorts. QTIM is a twin sample of 146 twin pairs of European ancestry and GOBS is a pedigree
sample of Mexican–American ancestry. Despite differences in the cohort demographics and image acquisitions, similar profiles are seen in the voxelwise heritability along the white
matter skeleton. Warmer colors indicate that a higher proportion of the overall variance is due to genetic factors. For improved visualization the skeleton was dilated with 3 × 3 × 3
maximum kernel.

Fig. 3. Heritability comparison using two templates. For the QTIM sample, we estimated heritability based on ROIs from both the JHU and ENIGMA templates for registration and
skeletonization. As expected, no significant differences were found in heritability estimates across the 15 ROIs, and all heritability values of a region using one template were almost
identical or within the standard error of the same measure using the other template.
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Fig. 5. Heritability of the GOBS sample and the QTIM sample are moderately correlated
(r = 0.51) at a voxelwise level. Contour plots show the densities of distribution. The
heritability of all the voxels along the skeleton is plotted against each other for each co-
hort. The solid line reflects the best fitting linear relation between the x and y coordi-
nates, as denoted by the equation shown.
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the meta and mega analyses. The majority of regions, for all analyses,
show high levels of heritability between 0.4 and 0.8. The trend of the
meta-analyses weighted by the sample size follows closely that of
the GOBS sample,which is expected as GOBS has amuch larger sample
size. However, the meta-analysis weighted by the standard error is a
better medium between the two samples, as the smaller twin design
has added power for estimating heritability. The superior longitudinal
fasciculus, the external capsule, the corona radiata, and the body of
the corpus callosum reliably show high levels of heritability. The
corticospinal tract and fornix regions are the least heritable overall.
This can be expected as both are rather small and can be difficult to
register appropriately. The significance of the heritability of these re-
gions is listed in Table 5 for each cohort and for the meta and mega
analyses. 1000 permutations for the data in each cohort were also
performed to obtain a null distribution on the heritability and signifi-
cance estimates on the individual cohorts and themega-analysis. Note
that 1000 permutations lead to a minimum possible p-value of 0.001.
According to permutation results, the most significantly heritable re-
gions were the genu, body, and splenium of the corpus callosum, the
superior longitudinal fasciculus, the sagittal stratum, and the corona
radiata all at p b 0.005.

As a further exploration of a general factor of FA,we performed a fac-
tor analysis of all regions of interest and estimated the per-cohort and
overall heritability. The heritability for the GOBS cohort was h2 =
0.36 (SE = 0.08), for QTIM h2 = 0.59 (SE = 0.07), the SE-weighted
meta-analysis was therefore h2 = 0.45, and the mega-analyzed herita-
bility estimate was h2 = 0.55 (p b 1 × 10−10), suggesting that the
general FA factor heritability is not as high as examining specific local-
ized regions.

Discussion

The protocol harmonization work presented here aims to serve as
a foundation for multi-site meta-analytic studies with a focus on dif-
fusion tensor neuroimaging genetics. Our analysis had several main
results:

1) We created a publicly available FA template composed of images
from 4 sites, each of which included 50 male and 50 female sub-
jects ranging from age 18 to 85. These sites differed in study pop-
ulation and imaging protocols, although all diffusion imaging
protocols had relatively high spatial and directional resolution.
2) We showed the usefulness and practicality of our pipeline for
multi-site imaging-genetics studies by computing heritability
voxelwise along the FA-skeleton from two datasets, allowing us
to find moderate correlations between heritability in two datasets
different in family structure, ethnicity, and image acquisition.

3) Our meta-analysis weighted by the standard error was more accu-
rate and less biased than one weighted by the sample size in this
situation, suggesting that a meta-analysis of gene effects may
show promise for future studies.

4) We partitioned the images into white matter regions of interest
based on the JHU white matter atlas and found tracts and regions
with corresponding high levels of heritability to rank regional
phenotypes from FA images.

5) We made our template and its skeletonized FA map available to
the public and provide protocols for worldwide meta-analysis, so
that groups at any site can harmonize scans for readily extendible
meta-analytical applications of brain mapping (http://enigma.
loni.ucla.edu/ongoing/dti-working-group/), with explicit promise
for imaging genetic studies.

As voxelwise and skeleton-wise analyses require that all images
be registered to a common space, we registered all our images to
both our template and the existing JHU template to observe the dif-
ferences in the amount of overall deformation. As expected and
shown in Table 1, all datasets require, on average, less overall defor-
mations when being registered to the ENIGMA–DTI template as com-
pared to the current standard multi-subject DTI-FA template. Despite
improvements in registration, our template is not meant to alter ana-
tomic localization of existing tract regions of interest. In fact, we
showed here that there is no statistical difference in the heritability
(h2 values, standard errors, or significance) in the regions of interest
when either template is used. Therefore, results from previous studies
using the current standard template could still be valid using this
template, yet due to the large sample size and high resolution images
used to obtain the ENIGMA–DTI-FA template, we predict it would
allow for a wider variety of cohorts to map their individual data to
the standard space with less variability and registration error.

Much effort has been dedicated to understanding the sources of
variability inmulti-site DTI studies and developing harmonized proto-
cols using clinical or phantom data (Walker et al., 2012), or both
(Teipel et al., 2011; Zhan et al., 2012). These efforts are of high value
when starting new large multicenter imaging studies and can help
identify outliers or problems at scan sites before the analysis is under-
way. However, these efforts are only applicable for data that has yet to
be acquired and, despite the projected size of the study, will still be
only limited to that study itself. Some multicenter studies, such as
the Alzheimer's Disease Neuroimaging Initiative, or ADNI (Weiner et
al., 2012), harmonized their image acquisition protocols at the outset,
but a far larger sample can be amassed if data can be combined from
multiple studies that were initially planned and performed indepen-
dently. Our harmonization scheme here is intended to complement
such efforts after data has already been collected, so that study groups
can compare, contrast and meta-analyze various DTI-based analyses
in the same space. One of the most pressing and fundamental aspects
of all scientific research is the ability to reproduce and replicate find-
ings, as consistently replicated results are the only way to guarantee
true positives in scientific research. This is particularly clear in the
search for genetic associations to traits.

There are also genetic correlations, i.e. a common proportion
of variance that two traits share because of common genetic influ-
ences — between FA and other traits such as intellectual performance
(Chiang et al., 2009) or cerebrovascular measures (Kochunov et al.,
2011a; Jahanshad et al., 2012b). Due to this, FA may be a promising
target for genetic analyses but may also be used to identify genetic
variants with pleiotropic relations to disease. Additionally, there is
some evidence that FA is altered in groups of individuals with genetic

http://enigma.loni.ucla.edu/ongoing/dti-working-group/
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Fig. 6. We can visually compare voxelwise heritability values of the two types of combined analysis, meta and mega. Meta-analysis is performed by sample size weighting, and as
would be expected, the meta analysis heritability is quite similar to that of the GOBS cohort, which had a much larger sample size. The mega analysis shows greater heritability
estimates overall. Warmer colors indicate that a higher portion of the overall variance is due to heritability. For improved visualization the skeleton was dilated with 3 × 3 × 3
maximum kernel.
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variants that may put them at higher risk for certain brain diseases.
FA differences are found in carriers of common variants in genes asso-
ciated with neurodegeneration such as APOE (Honea et al., 2009;
Jahanshad et al., 2012d; Westlye et al., 2012), CLU (Braskie et al.,
2011a), HFE (Jahanshad et al., 2012b), as well as genes associated
with psychiatric disorders including BDNF (Chiang et al., 2011a;
Carballedo et al., 2012), DISC1 (Sprooten et al., 2011b), neuregulin
and neurotrophin-related genes (Braskie et al., 2012; McIntosh et al.,
2008; Zuliani et al., 2011) and several others. Several of these variants
may even be combined to help predict FA in young normal adults
(Kohannim et al., 2012).

Here, we use two datasets, a Caucasian twin sample, and a large
Mexican–American pedigree, to individually and jointly analyze the
heritability in order to narrow down regions of the image where we
might expect a meta-analytical GWAS study to help discover new ge-
netic loci influencing brain structure and potential risk for disease.
Whereas heritability is considered a property of the population
under study, and may not be appropriately meaningful as a single pa-
rameter estimate across various populations, ourmeta-analytic efforts
here are designed to map brain regions that are heritable in different
populations despite variability in population ethnicity, structure, and
variations due to image acquisition. Meta-analytic approaches as de-
scribed above have been successful in narrowing down trait heritabil-
ity estimates across populations for a more general genome-wide
scan. As an exploratory analysis, and because we began with a limited
number of cohorts for meta-analysis, we jointly analyzed the two sep-
arate cohorts in a mega-analysis of heritability. For a trait to be found
to be heritable in the mega-analysis, the reliability of the trait within
and across cohorts must be high. We can use this approach to map,
on a voxelwise level, an estimate of heritability that may be unreliable
in single site analyses while taking into account reliability across co-
horts and, hence, image acquisition parameters. Mega-analysis may
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Fig. 7. Comparisons of heritability results frommeta- and mega-analyses. The left panel shows the correlation between the heritability of the meta-analysis weighted by the sample
size (MA-N) and the right panel shows that for the meta-analysis weighted by standard error (MA–SE). There is a high correlation of r = 0.88 and r = 0.89, respectively, between
the two methods of meta-analysis and mega-analysis. Contour plots show the densities of distribution. The meta-analyses themselves are also highly correlated at r = 0.97, al-
though heritability values are significantly different as shown through a t-test (p b 10−10). The solid line reflects the best fitting linear relation between the x and y coordinates,
as denoted by the equation shown.

Fig. 8. The cumulative distribution function of the p-values obtained is plotted against
the null expected p-values from a normal distribution. If the spread of the distribution
follows that of the dotted line y = x, then a normal distribution is observed. If the slope
of the curve is steeper than the y = 20x solid black line, then the distribution of
p-values is significant according to the false discovery rate procedure. The steeper the
slope of the line is, the greater the heritability effect. The FDR-critical p-value is the
point at which the curve crosses the y = 20x line. The closer the FDR critical p-value
is to 0.05 (the higher it is), the greater the portion of the image that can be claimed to
have significant heritability while ensuring the false positive rate is maintained
at 0.05. The FDR critical p-values are: QTIM: 0.0315, GOBS: 0.0322, Meta analysis
(N): 0.0325, Meta analysis (SE): 0.0330, Mega analysis 0.0437.
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be more powerful than meta-analysis in this case, although larger
studies of voxelwisewhitematter heritability and genetic associations
are needed to confirm the findings.

For a more regional analysis, we also examined the heritability of
mean FA along parcellated white matter labels representing specific
tracts. Almost all regions, except the corticospinal tract, exhibited
high heritability across and within the cohorts. This suggests that if
not specifically imaged for a study, the CST may not serve as a reliable
endophenotype, particularly when combining multi-site data with
different acquisitions. Genetic studies involving whole-brain analyses
with results concentrated in the CST should be approached cautiously.
Certain regions were shown to be more heritable than the overall
mean FA across the skeleton and a general factor derived from all
ROIs, confirming that the genetic influence over brain structure is
not uniform; hence, a prioritization of regionswith highest heritability
may help accelerate the search for specific genetic influences on brain
structure. Regions (averaged bilaterally) that showed the greatest
heritability overall are the superior longitudinal fasciculus, the sagittal
stratum, the external capsule, the corona radiata, and the body of the
corpus callosum. These were consistently found to be highly heritable
despite differences in image acquisition between the two groups and
the different ethnic backgrounds of the two cohorts.

A mean measure from these specific regions or tracts may serve as
a good endophenotype, by independently showing high heritability
for at least one of the measures (Brouwer et al., 2010; Gatt et al.,
2012) (although these studies also found high heritability elsewhere
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Fig. 9. Here we show the proportion of the variance that was estimated to be due to genetic factors for each region listed in Table 2 for each of the two cohorts, as well as for both the
meta and mega analyses. For most regions, except for the fornix and the CST, all analyses show high heritability, between 0.4 and 0.8.
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as well), by showing genetic associations with white matter alter-
ations in one or more of these regions (Barnes et al., 2012; Sprooten
et al., 2011b) or by associating the mean measure to a genetically-
mediated disease such as Rett Syndrome (Mahmood et al., 2010),
psychosis (Karlsgodt et al., 2009) or schizophrenia (Clark et al., 2011).

If brain measures are more strongly affected by risk-associated
genetic variation than clinical or behavioral measures, more efficient
association studies could be designed using imaging measures as
quantitative traits, However, at this point, it is not clear if imaging
genetics studies require smaller samples compared to those in case–
control designs. We previously aggregated evidence from over
20,000 MRI scans to discover genome-wide significant variants that
consistently affect the brain (Stein et al., 2012), providing further ev-
idence in support of imaging genetics.

This study, from the ENIGMA–DTI working group, was conducted
to identify reliably measured endophenotypes from FA maps that
are computable, in principle, from dozens of DTI studies worldwide.
Consortium efforts are indeed needed to help discover the genes
that affect the living human brain. Mapping out the statistical effects
of these genes in a common space will help us understand the mech-
anistic properties of genes that influence behavior, cognition, and
neurological diseases.

Conclusion

Our template, and its skeletonized FA map are readily available
(http://enigma.loni.ucla.edu/ongoing/dti-working-group/). We provide
Table 5
The significance of the heritability in the ROIs is listed for each cohort and for the meta and
obtain a null distribution on the heritability and significance estimates on the individual
p-value of 0.001.Bold values represent permuted p-values with pb0.05.

Region of
interest

Meta (SE) P Meta (N) P Mega P Mega P per

Skeleton 6.35E−07 3.34E−07 b1 × 10−10 0.750
GCC 8.92E−08 5.12E−08 b1 × 10−10 0.001
BCC 7.84E−09 4.25E−09 b1 × 10−10 0.001
SCC 2.46E−05 1.22E−05 b1 × 10−10 0.004
FX 3.90E−05 6.02E−04 b1 × 10−10 0.040
CGC 1.58E−08 1.93E−08 b1 × 10−10 0.710
CR b1 × 10−10 b1 × 10−10 b1 × 10−10 0.003
EC 3.21E−10 3.31E−10 b1 × 10−10 0.240
IC 9.29E−08 5.13E−08 b1 × 10−10 0.034
IFO 9.35E−07 1.19E−06 b1 × 10−10 0.009
PTR 2.19E−09 2.65E−09 b1 × 10−10 0.026
SFO 5.91E−08 7.48E−08 b1 × 10−10 0.871
SLF b1 × 10−10 b1 × 10−10 b1 × 10−10 0.001
SS 6.92E−10 8.01E−10 b1 × 10−10 0.002
CST 0.0914 0.0369 4 × 10−7 0.246
protocols for interested parties to have their images skeletonized and
transformed into the same space as our template using FSL's TBSS pipe-
line, and to extract lateral and bilateral mean FA values from the skele-
tonized regions of interest from the JHU parcellated white matter atlas
already popular inmany clinical DTI studies. Results will bemade public
and downloadable on voxel-wise and region of interest levels for future,
largermeta-analytical approaches of variance components based herita-
bility estimates of white matter integrity. We hope the work presented
as a part of this working group, and the rest of the ENIGMA efforts, em-
phasizes the power of imaging harmonization programs for previously
collected data, allowing for increased power and replication across the
neuroimaging community.
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