Polyethylene Glycol Method for High-Density Lipoprotein Cholesterol Defended

To the Editor:

While we consider the paper of Warnick, Cheung, and Albers [Clin. Chem. 25, 596–604 (1979)] to be an extremely valuable attempt to bring order to the field of high-density-lipoprotein cholesterol measurement, we regret that their summary implies that the polyethylene glycol-6000 (PEG-6000) precipitation method is inherently inaccurate.

As recommended by Viikari (1), they use a final concentration of PEG-6000 of 120 g/L. As they note, Figure 2 in their paper suggests that this concentration is too high, because the supernatant cholesterol becomes nearly constant at 60–80 g of PEG-6000 per liter, decreases by about 2.5% at 100 g of PEG-6000 per liter and further still at 120 g/L, and continues to decline with increasing concentrations of PEG-6000. Our results (2) are similar to theirs, except that we do not find such a large decrease in supernatant cholesterol concentrations at a final PEG-6000 concentration of 120 g/L, a discrepancy that might be caused by variations in PEG-6000. Our supplier was British Drug House Chemicals, Ltd., and their supplier was Sigma Chemical Co. However, the similarity of the portions of the curves between 60 and 100 g/L final concentration of PEG-6000 should be noted. We found that at 60 and 80 g of PEG-6000 per liter there was some material remaining that reacted with β-lipoprotein antiserum. Possibly this is a portion of the ApoB-associated cholesterol with $d > 1.063$, as the necessarily high protein content of these molecules might stabilize the lipoprotein structure in comparison with the lower density lipoproteins, low-density lipoprotein and very-low-density lipoprotein, which also contain ApoB. Therefore, it seems to us that the final concentration of 100 g of PEG-6000 per liter is suitable. From inspection of Warnick et al.’s Figure 2, it appears that had they used the value for supernatant cholesterol at 100 g of PEG-6000 per liter the results obtained would have been equal to the values obtained by ultracentrifugation, which they use as a reference method.

Under Warnick et al.’s conditions, as will be seen from their Figure 2, minor variations in final PEG-6000 concentrations will lead to much greater variations in the supernatant cholesterol concentration at 120 g/L than at 80 or 100 g/L final concentration of PEG-6000. In practice, the viscosity of PEG-6000 solutions tends to limit the reproducibility of additions to samples. Indeed, Warnick et al. found a coefficient of variation with 120 g of PEG-6000 per liter that was about twice our coefficient of variation for 100 g of PEG-6000 per liter, although, of course, some of this difference may be due to inter-laboratory variations in methods.

PEG-6000 precipitation is extremely convenient and we would not like to see it discredited if minor changes to the method give acceptable results.

References

Janet K. Allen
John B. Whitfield

Department of Biochemistry
Royal Prince Alfred Hospital
Missenden Road
Camperdown
New South Wales 2050
Australia