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Abstract. Imaging genetics aims to discover how variants in the human ge-
nome influence brain measures derived from images. Genome-wide association 
scans (GWAS) can screen the genome for common differences in our DNA that 
relate to brain measures. In small samples, GWAS has low power as individual 
gene effects are weak and one must also correct for multiple comparisons 
across the genome and the image. Here we extend recent work on genetic clus-
tering of images, to analyze surface-based models of anatomy using GWAS. 
We performed spherical harmonic analysis of hippocampal surfaces, automati-
cally extracted from brain MRI scans of 1254 subjects. We clustered hippo-
campal surface regions with common genetic influences by examining genetic 
correlations (rg) between the normalized deformation values at all pairs of sur-
face points. Using genetic correlations to cluster surface measures, we were 
able to boost effect sizes for genetic associations, compared to clustering with 
traditional phenotypic correlations using Pearson's r.  

Keywords: heritability, GWAS, clustering, hippocampus, 3D surfaces, imaging 
genetics. 

1 Introduction 

An important focus of biomedical research is the analysis of biomarkers – easily attain-
able and reproducible measurements that relate to disease severity or predict clinical 
decline. In neuroimaging, methods that quantify brain morphometry (e.g., anatomical 
volumes or shapes, expansions, contractions, etc.) offer promising biomarkers for a 
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variety of brain diseases and disorders. Surface-based morphometry of cortical and 
subcortical structures has been greatly advanced by ideas in computational geometry – 
many groups have applied surface meshes, “M-reps”, spectral analysis, differential 
forms, or partial differential equations – to map disease effects and dynamic changes in 
the brain [1]. Surface models of subcortical structures such as the hippocampus can 
reveal 3D shape differences between healthy controls and patients with neurological or 
psychiatric disorders such as schizophrenia [2] and Alzheimer’s disease [3].  

More recently, researchers in imaging genetics have adapted computational anatomy 
methods to analyze genetic effects on the brain. Many brain diseases are genetically 
influenced, and there is an urgent need to find specific variants in our DNA – both 
common and rare – that contribute to variations in disease and brain measures. It is now 
feasible to test how variants along the human genome relate to disease biomarkers or 
imaging measures using genome-wide association scans (GWAS). One study recently 
applied GWAS to brain MRI data from over 21,000 people, discovering new genetic 
variants affecting hippocampal volumes [4]. However, GWA studies have low power if 
they test a large number of individual phenotypes – if GWAS is run at each voxel in an 
image, an astronomical correction must be made for the multiple statistical tests across 
the image and genome [5,6]. Here we build on recent work [7,8] using genetic cluster-
ing to increase power and prioritize regions for GWAS. We develop a framework to 
perform GWAS on 3D anatomical surface models. We demonstrate our method on 
hippocampal surfaces from a large cohort of 1254 subjects, scanned in independent 
studies on 3 continents.  

2 Methods 

2.1 Imaging Data 

3D T1-weighted structural brain MRI and genotyping data were obtained from three 
independent cohorts: the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
Queensland Twins Imaging Study (QTIM), and Thematically Organized Psychosis 
Study (TOP). We focused on healthy controls from each study, but we also included 
people with mild cognitive impairment (MCI) in the ADNI. In total, there were 511 
ADNI subjects (299 males; age mean±sd: 75.5±6.5 years; 323 MCI patients), 571 
QTIM subjects (218 males; age mean±sd: 23.9±2.3 years; monozygotic and dizygotic 
twins and siblings from 335 families), and 172 TOP subjects (90 males; age mean±sd: 
35.8±9.8). Genotyping data was filtered to remove SNPs with minor allele frequency 
<0.01, call rate <95%, violations of Hardy-Weinberg Equilibrium p<1x10-6. The fil-
tered genotype data was imputed to a custom ‘1000 Genomes’ reference set (phase 1, 
release 3) which excludes non-European samples and singleton SNPs [9].  

2.2 Hippocampal Surface Generation 

Hippocampal (HP) segmentations were obtained using the freely-available and auto-
mated FSL FIRST segmentation algorithm [10]. Segmentation quality for the left and 
right hippocampus across all three cohorts was individually inspected by the first 
author. Subjects with segmentations not covering the entire HP, or including regions 
outside the HP (defined by [11]) were removed. The SPHARM-MAT Toolbox for 
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Matlab (V1.0) [12,13] was used to generate hippocampal surface models. First, we 
ensured that each binary segmentation label had a spherical topology. Binary segmen-
tations were parameterized using triangular mesh surfaces, with a bijective mapping 
of each point p on the surface to a unit sphere with (θ, φ) coordinates, such that: , , , , , , , using the Control of Area and Length Dis-
tortions (CALD) algorithm [12]. The object surface was then expanded in terms of a 
set of spherical harmonic basis functions of order m and degree l [13]. This expansion 
has the form ,  ∑ ∑ , ,  where p is defined as above and 

 is a set of Fourier coefficient weights for the basis functions: , , . The spherical harmonic models of the surfaces were then 
aligned using 12 degrees of freedom to a common template model comprised of an 
average of 40 healthy controls from the QTIM sample using the SHREC algorithm 
[14]. A translation and rotation matrix for a given mesh to the common template using 
SHREC matches landmarks on the surface of an object to similar points on the tem-
plate (a solution is found by minimizing the root mean squared distance) [14]. In this 
way, we mapped the points along the surface to a common space across subjects and 
studies, while preserving individual morphometric differences of interest. 

2.3 Quantifying Morphometric Differences on Surfaces 

We determined the distance a given point on the hippocampal surface had to be de-
formed to match the equivalent point on the common template surface by first calcu-
lating the simple deformation matrix,  , , , where i is the index of vertices 
of length n, from a coordinates matrix V of vertices compared to the vertices in the 
average template A: . Next we calculated the vertex normals of each indi-
vidual’s 3D mesh in MATLAB using the patch function, which returns an n-by-3 
normalization matrix, N. We project the deformation onto the vertex normals and 
obtain a vector of deformation scalars for each vertex, s, such that: ∑ ·, . The deformation value preserves in-out differences along the surface normal (a 
contraction or expansion to match the template). Each value in the normalized defor-
mation vector, s, represents the expansion or contraction required to match a given 
vertex on the surface of an individual subject’s hippocampal surface to the equivalent 
point on the average template surface.  

2.4 Optimizing Parameters Using Test-Retest Data 

To examine the ideal parameters required to maximize the reliability of the hippo-
campus surface reconstruction while minimizing data smoothing and the density of 
the reconstructed 3D mesh, we obtained test-retest data from 40 healthy young adults 
in the QTIM study scanned twice on the same scanner with a mean interval of four 
months. We examined how the reliability of surface reconstruction within the same 
subject changes, as a function of the surface sampling density and the extent of heat 
kernel smoothing [14]. We calculated the intraclass correlation coefficient (ICC) at 
each point along the surface to quantify the reproducibility of hippocampal surface 
models across test-retest data. 
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2.5 Genetic Versus Phenotypic Clustering and GWAS 

We wanted to compare the GWAS performance of clustered regions of interest on the 
hippocampal surfaces chosen by genetic correlation (rg) relative to those chosen by 
traditional phenotypic correlations using Pearson's rp. We calculated the genetic and 
phenotypic correlations between the normalized deformation values at each point on 
the surface with all other deformation values on the surface bilaterally, yielding a 
genetic correlation matrix and a separate phenotypic correlation matrix of the same 
size. We calculated rg using the cross-twin, cross-trait method in 142 dizygotic and 
120 monozygotic twin pairs, controlling for age and sex [15]. The phenotypic correla-
tion rp was the partial correlation between traits, controlling for age and sex. The ge-
netic correlation determines areas on the surface of the hippocampus with common 
genetic determinants by using the known genetic relationships between monozygotic 
and dizygotic twins. This is not the same as phenotypic correlations, where measures 
from different regions can covary due to a combination of genetic and environmental 
effects. The genetic correlation is calculated from the covariance between two traits: 
Cov(Gx,Gy)/√(Var(Gx) * Var(Gy)), where Gx  and Gy are the genetic effects that influ-
ence the two traits x and y. When the two traits are controlled by overlapping genetic 
factors they will covary, leading to a high genetic correlation value.We applied x-
means clustering to the genetic and phenotypic correlation matrices, separately. The 
x-means algorithm is an iterative form of the k-means clustering algorithm that choos-
es the best number of clusters, k, using the Bayesian Information Criterion (BIC) [16]. 
Cluster membership was mapped back onto the 3D surface. Deformation values in the 
clustered regions were averaged across the cluster. Values in each cluster, for each 
subject, were used as phenotype values in a GWAS.  

Genome-wide association tests were conducted separately within each sample and 
combined meta-analytically (described below) for the final results. In ADNI and TOP 
samples, we performed association tests using multiple linear regression, imple-
mented in the mach2qtl program [18]. Association tests in the family-based QTIM 
study employed mixed-effects models to account for twin and family relationships, as 
implemented in merlin-offline [19]. All association tests controlled for sex, age, and 
intracranial volume (ICV). Each subject’s ICV was estimated as the determinant of 
the affine transformation matrix to the standard FSL template. GWAS results from 
within each cluster were combined using an inverse variance-weighted meta-analysis, 
implemented in metal [20].  

3 Results 

Test-retest data show that reproducibility of our hippocampus surface models was 
moderate but in line with the reproducibility of volume segmentations achieved by 
others [4] (ICC=0.66 for the left hippocampus and ICC=0.73 for the right) using a 
low-density icosahedral sampling mesh (called ‘icosa2’ in SPHARM-MAT) and 
without smoothing the data (see Table 1). We used the most parsimonious model for 
our analysis; we examined the surface morphology of the ‘icosa2’ sample surface at 
162 vertices (so 324 vertices left and right) with no heat kernel smoothing [17]. 
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Table 1. Intraclass correlation coefficient values for left and right hippocampal surfaces. 
‘icosaX’ is the name of the sampling mesh provided in SPHARM-MAT; larger values in the 
name represent a finer sampling mesh (more vertices). Heat kernel smoothing was performed at 
three different standard deviation values (a parameter of the heat kernel smoothing algorithm) 
for 100 iterations. The most parsimonious model bilaterally uses the 'icosa2' mesh, with no 
smoothing.     

Left  
Hippo. 

No 
Smoothing 

 
1mm 

 
2mm 

 
3mm 

‘icosa2’ 0.67 0.53 0.53 0.51 
‘icosa4’ 0.67 0.67 0.67 0.67 
‘icosa6’ 0.67 0.67 0.67 0.67 
Right  
Hippo. 

    

‘icosa2’ 0.73 0.63 0.62 0.62 
‘icosa4’ 0.73 0.73 0.73 0.73 
‘icosa6’ 0.73 0.73 0.73 0.74 

 
We estimated the number of clusters sufficient to group related vertices based on 

their phenotypic correlations and separately their genetic correlations with all other 
points on the hippocampal surface using x-means clustering. The most parsimonious 
models for both the phenotypic and genotypic correlation matrices determined by BIC 
were k-means clustering with 2 groups. To visualize the clusters, we mapped the clus-
ter membership back onto the 3D average template surfaces. The cluster memberships 
determined by the phenotypic correlation are shown in Fig. 1 and the genotypic corre-
lation in Fig. 2. The cluster regions of interest selected by phenotypic correlation are 
highly similar to those chosen by genotypic correlation. There does seem to be noti-
ceable differences in the cluster membership along the bottom left hippocampal  
surface. In addition, there was a clear bilateral symmetry, with cluster 1 (in green) 
occupying the outer curves of the structure and cluster 2 (in red) the inner curve.   

 

 

Fig. 1. A 3D projection of the cluster membership determined by phenotypic clustering onto 
the average template images (A and P denote anterior and posterior) 
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Fig. 2. A 3D projection of the cluster membership from genetic clustering onto the average tem-
plate images (A and P denote anterior and posterior). These are regions where coherent genetic 
influences are detected, so they are clustered together to provide a coherent signal for GWA.  

We conducted a genome-wide association study on the average deformation values 
in each of the clusters across subjects. Our criterion for significance is the standard 
genome-wide cut-off (p<5x10-8), but after applying a further Bonferroni correction, 
for testing two separate phenotypes in each condition, our new significance criterion 
is p<2.5x10-8.  

After meta-analysis, only cluster 1 from the genetic correlation clustering yielded a 
region of genome-wide significance. The most strongly associated SNP in the FBLN2 
gene was rs145212527 after meta-analysis: PMA= 1.25x10-8; Effect Allele = T; Freq = 
0.956; BetaMA= 0.354; SEMA=0.0621 (Fig. 3). Each individual study provided support 
for this SNP and the same direction of effect (ADNI: p=0.0073, β=0.389, SE=0.145; 
QTIM: p=0.00059, β=0.300, SE=0.087; TOP: p=0.00017, β=0.421, SE=0.112). Neither 
of the GWAS analyses of the clusters determined by phenotypic clustering yielded sig-
nificant results. The top SNP in cluster 1 (rs145212527) was the same SNP found in the 
genetic clustering analysis of cluster 1. However, the p-value was less strong than for 
the genetic clustering GWAS and did not pass significance (p=4.6x10-7).  

 

 

Fig. 3. LocusZoom plot [21] of the most highly associated SNP from the GWAS of cluster 1 
from genetic clustering, after meta-analysis. Each point is a SNP; points above the red horizon-
tal line are genome-wide significant. Each point’s color gives the linkage disequilibrium (r2) of 
that point to rs145212527. 
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4 Discussion 

This paper’s major contributions are to: 1) perform the first-ever genetic clustering 
analysis on the hippocampal surface, 2) use genetic correlation values to prioritize and 
group related regions based on genetic similarity in an image to reduce the multiple 
comparisons correction, and 3) to demonstrate a case where the added information 
about common genetic determinants from genetic correlations can boost power for 
genomic association analyses compared to traditional phenotypic correlation. 

In addition, we identified a genome-wide significant SNP affecting hippocampal 
structure in the FBLN2 gene. The Allen Human Brain Atlas shows that this gene is 
differentially expressed in the hippocampus. FBLN2 is involved with tissue organiza-
tion, and in differentiation of neurons and other cells [22]. In some ways, clustering 
the data before performing GWAS is related to performing a GWAS at each point and 
performing cluster-wise correction for multiple comparisons. The cluster-wise correc-
tion methods of Hayasaka and Nichols may be useful for this purpose [23]. However, 
in this current paper we show that using cluster-wise methods that incorporate genetic 
correlation methods are more powerful and the methods of [23] do not incorporate 
genetic correlation into the model. Another paper [24] used sparse models to simulta-
neously select SNPs from a subset of candidate SNPs and correlated features along 
the surface. However, the model in [24] has limited utility in high dimensional appli-
cations, such as searching the full genome as we did in this study. Additionally, fur-
ther work is still necessary to confirm that clustering methods are more powerful that 
voxel-wise analyses. However, this was discussed previously [7]. These are promising 
findings; further studies will attempt to replicate the genetic results and study the 
biological pathways they may affect. 
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