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Androgenetic alopecia (AGA) is a common age-dependent trait, characterised by a 
progressive loss of hair from the scalp. The hair loss may commence during puberty and up 
to 80% of Caucasian men experience some degree of AGA throughout their lifetime1. 
Research has established that two essential aetiological factors for AGA are a genetic 
predisposition and the presence of androgens (male sex hormones)1,2. A recent meta-



 

 

analysis of genome-wide association studies (GWAS) has increased the number of identified 
loci associated with this trait at the molecular level to a total of eight3. Despite these 
successes, however, a large fraction of the genetic contribution remains to be identified. One 
way to identify further genetic loci is to combine the resource of GWAS datasets with 
knowledge about specific biological factors likely to be involved in the development of 
disease. The focused evaluation of a limited number of candidate genes in GWAS datasets 
avoids the necessity for extensive correction for multiple testing, which typically limits the 
power for detecting genetic loci at a genome-wide level.4 Because the presence of genetic 
association suggests that candidate genes are likely to operate early in the causative chain 
of events leading to the phenotype, this approach may also function to favour biological 
pathways for their importance in the development of AGA.  
In their study, Garza et al. (Sci Transl Med 2012; 4:126ra34, published online 21 March 
2012)5 were the first to use a global gene expression approach to identify differentially 
expressed genes in balding versus non-balding scalp from men with AGA. The authors found 
elevated levels of prostaglandin D2 synthase (PTGDS) and its enzymatic product 
prostaglandin D2 (PGD2) in balding versus non-balding scalp. Their results suggest an 
inhibitory effect of elevated PTGDS and PGD2 on hair growth by premature induction of 
catagen, the cessation phase of the hair growth cycle. These inhibitory effects seem to be 
specifically mediated by interaction with the G-protein coupled receptor 44 (GPR44). Garza 
et al.5 thus suggest an involvement of PGD2 and its receptor GPR44 in AGA-aetiology. To 
test for supportive genetic evidence for a contribution of prostaglandins to AGA-aetiology, we 
performed gene-based tests (+/- 50kb of the 5' and 3' UTRs) for PTGDS and GPR44 using 
VEGAS6 on an existing GWAS dataset of 3,891 early-onset AGA cases and 8,915 controls 
reported as a meta-analysis3. This is the largest genetic dataset assembled to date in AGA 
and is a unique resource for testing specific hypotheses of a possible contribution of a gene 
or set of genes to the development of AGA. The gene-based analysis for PTGDS (44 SNPs) 
revealed no significant association with AGA (P = 0.77). GPR44 (58 SNPs) showed a 
nominally significant association (P = 0.03);. Hhowever, this association did not withstand 
correction for multiple testing when adjusting for the two genes analysed. Also, none of the 
investigated SNPs in PTGDS or GPR44 showed a nominally significant individual association 
with AGA (P>0.05). To detect any variants that might affect the expression of PTGDS or 
GPR44 via a cis-regulatory effect, we also looked for an association of SNPs 1Mb around the 
transcription start and end points of the two genes (PTGDS: 685 SNPs; GPR44: 1,141 
SNPs). No association with AGA (P < 0.05) was observed after correcting for multiple testing 
with 1/2 × n (number of SNPs), which is appropriate for populations of European ancestry7. 
Additionally, we searched the seeQTL data base, which combines information on known 
eQTL associations from 14 human eQTL-datasets 
(http://www.bios.unc.edu/research/genomic_software/seeQTL/), for known cis- and trans-
eQTLs that influence the expression of GPR44 or PTGDS. The database lists five eQTLs for 
GPR44 and six eQTLs for PTGDS with P < 0.05 that were derived from analyses in human 
monocytes and brain tissue. However, none of these known eQTL-SNPs or their respective 
genotyped proxySNPs (r2 > 0.8) showed an association with AGA of P < 0.05. To test 
whether GPR44 or PTGDS might confer an effect on AGA by epistatic interaction with known 
AGA loci, we used a logistic regression model implemented in INTERSNP8 to test for both 
allelic (1 degree of freedom [df]) and genotypic (4 df) interactions within a published German 
dataset for AGA, comprising 581 cases and 617 controls9. We did not find any significant 
evidence (P < 0.05) for epistasis. In summary, neither the gene-based analysis, the analysis 
for cis- and trans-regulatory variants, nor the interaction analysis yielded evidence for a 
significant contribution of genetic variation within or around PTGDS and GPR44 to early-



 

 

onset AGA. Therefore,Oour results, fail to provide genetic support for a role of prostaglandins 
in the early causative chain of events that lead to AGA. As prostaglandins themselves are 
likely to be strictly regulated by additional tissue-specific and transcription factors, the effect 
of prostaglandins in AGA may be indirectly conferred by AGA-associated variants affecting 
these regulatory factors. Moreover, although we were not able to identify any AGA-
associated cis- or trans-regulatory effects within existing eQTL-datasets, our analyses do not 
rule out the existence of hair follicle tissue-specific eQTL-effects on PTGDS or GPR44, as 
hair follicle specific eQTLs have not been systematically investigated to date. Finally, despite 
having analysed the largest genetic dataset assembled to date in AGA, we still may have 
missed a very small effect because of power limitations. The nominally significant finding of 
the gene-based analysis for GPR44 may be a candidate in this respect. Much larger than the 
present dataset, however, will be necessary to provide robust evidence for such a small 
effect. In addition, it will be interesting to observe how complementary analyses and methods 
will contribute to a better understanding of the mechanisms that lead to the interesting 
differences in prostaglandin expression between balding and non-balding hair follicles 
observed by Garza et al. 
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