# ORIGINAL RESEARCH

# **Contrast Effects and Sex Influence Maternal and Self-Report Dimensional Measures of Attention-Deficit Hyperactivity Disorder**

J. L. Ebejer · S. E. Medland · J. van der Werf · M. J Wright · A. K. Henders · N. A. Gillespie · I. B. Hickie · N. G. Martin · D. L. Duffy

Received: 17 January 2014/Accepted: 30 July 2014/Published online: 24 August 2014 © Springer Science+Business Media New York 2014

Abstract The heritability of attention-deficit/hyperactivity disorder (ADHD) is higher for children than adults. This may be due to increasing importance of environment in symptom variation, measurement inaccuracy when two raters report behavior of a twin-pair, a contrast effect resulting from parental comparison of siblings and/or dimensionality of measures. We examine rater contrast and sex effects in ADHD subtypes using a dimensional scale and compare the aetiology of self, versus maternal-report. Data were collected using the Strengths and Weaknesses of ADHD and Normal Behaviour Scale (SWAN): maternal-

Edited by Yoon-Mi Hur.

J. L. Ebejer (⊠) · J. van der Werf Environmental and Rural Sciences, University of New England, Armidale, NSW, Australia e-mail: ebejer.j@gmail.com

J. L. Ebejer · A. K. Henders · N. A. Gillespie · N. G. Martin · D. L. Duffy Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia

S. E. Medland Quantitative Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia

M. J Wright · N. A. Gillespie Neuroimaging Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia

M. J Wright · N. A. Gillespie Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA

I. B. Hickie

Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia

report for 3,223 twins and siblings (mean age 21.2, SD = 6.3) and self-report for 1,617 twins and siblings (mean age 25.5, SD = 3.2). Contrast effects and magnitude of genetic and environmental contributions to variance of ADHD phenotypes (inattention, hyperactivity-impulsivity, combined behaviours) were examined using structural equation modeling. Contrast effects were evident for maternal-report hyperactivity-impulsivity (b = -0.04) and self-report inattention (-0.09) and combined ADHD (-0.08). Dominant genetic effects were shared by raters for inattention, hyperactivity-impulsivity and combined ADHD. Broad-sense heritability was equal across sex for maternal-report inattention, hyperactivity-impulsivity and combined ADHD (0.72, 0.83, 0.80). Heritability for corresponding subtypes in self-reported data were best represented by sex (0.46, 0.30, 0.39 for males; 0.69, 0.41, 0.65 for females). Heritability difference between maternal and self-report ADHD was due to greater variance of male specific environment in self-report data. Self-reported ADHD differed across sex by magnitude of specific environment and genetic effects.

### Introduction

In childhood, behavioural measures of attention-deficit hyperactivity disorder (ADHD) symptoms are collected from parents, teachers or trained interviewers. Adult ADHD data are most often self-reported. The change in rater with time corresponds to a change in heritability estimates of ADHD. A heritability estimate of  $\sim 80 \%$  is consistently found for children (Derks et al. 2008; Knopik et al. 2005; Martin et al. 2002) and adult heritability is estimated at ~45 % (Boomsma et al. 2010; Larsson et al. 2012; Kan et al. 2012). Sex effects are suggested, but not clarified in these studies. The drop in heritability is confounded with the move from parental to self-report of symptoms (Kan et al. 2012) and could be due to the increased influence of environmental factors in symptom moderation for adults. For example adults are more able to select environments in which their symptoms are not problematic. This decline could also be due to rater effects and a change in model parameters when two rather than one person reports on the behaviour of paired twins.

Classical twin studies examining parental report of ADHD, show sex effects. Eaves and colleagues (1997) show fathers' but not mothers' report of childhood ADHD differed for males and females. They also show evidence for a sibling contrast effect (Simonoff et al. 1998; Eaves et al. 1997). Simonoff and colleagues (1998) speculate this is due to parental bias rather than true sibling interaction because the same effect is not evident in teacher report of children's behavior. It may also be that parents' see aspects of their children's behavior not evident during school. A contrast effect results when for example, high levels of ADHD in one twin lead to lower levels of ADHD in a cotwin. The effect reduces the within twin-pair correlation with the decrease in genetic relationship between siblings. Therefore differences between DZ twins are exaggerated in comparison to MZ twins, an effect also indicative of the action of dominant genes or epistasis (Eaves 1976). It is important to clarify the nature of contrast and sex effects to increase measurement accuracy of ADHD symptoms.

Two recent studies have sought to explain the variation in ADHD measurement that occurs with sex and rater. Merwood and colleagues (2013) found a contrast effect for parent ratings of ADHD and a dominant genetic effect in self-report symptoms within an 11–12 year old twin sample. The contrast effect was equal for males and females, but there were scalar sex effects in parent, teacher and selfreported ADHD in this sample. The heritability estimates they found when two raters reported the behaviour of each twin within a pair (teachers = 49 % and self = 48 %), were of similar magnitude. They were also lower than heritability estimates calculated with parental (82 %) and same teacher (60 %) behavioural report.

Chang et al. (2013) examined sex effects and change in genetic effects on attention problems that occur with age. Their sample consisted of 8–20 year old twins with parental and self-reported data collected across time. Their results indicated variation across sex and a dominant genetic effect accounting for variation in attention problems. In contrast to the drop in heritability estimates of ADHD with age, there was no decline in genetic effects influencing attention

problems over time (range = 77-82 %) when a latent measure including maternal and self-reported symptoms was used. This study did not test for contrast effects and both parent and self-report data were collected using a severity scale (The Child Behavior Checklist).

The scale used to collect data has been suggested to exert an additional influence on research findings. Pinto and colleagues (2012) found consistent contrast effects and a sex effect influencing ADHD for children aged 7 and 12 when parents' reported ADHD using severity scales (The Strengths and Difficulties Questionnaire and The Revised Rutter Scale). These authors suggest rater contrast effects are due to the limitations of a severity scale. A study by Hay and colleagues (2007) found contrast effects for ADHD when a severity scale was used (Australian Twin Behavioural Rating Scale; Levy et al. 1997), but not when ADHD data were collected using the Strengths and Difficulties of ADHD and Normal behaviour Scale (SWAN).

The SWAN scale (Swanson et al. 2005) measures ADHDrelated behaviours along a continuum, ranging from high levels of attention and highly appropriate activity, to the clinically relevant inattention and hyperactivity-impulsivity characteristic of ADHD. The use of this dimensional scale could provide a more accurate description of behavior because respondents are not required to say whether or not the participant has a symptom. The requirement is to rate the way in which a symptom is expressed, this can be in a negative or positive direction. The increased specificity of behavioural description possible with the SWAN could remove a reporting bias imposed by the base category of a severity scale.

This study explores the presence of rater contrast effects in maternal and self-reported ADHD related behaviours using the SWAN. We estimate the similarity and difference in genetic and environmental factors contributing to maternal and self-reported inattentive, hyperactive-impulsive and combined ADHD related behaviours. We also test for variation in the genetic and environmental factors influencing these behaviours across sex in a sample of adolescents and young adults, extending the age range of previous studies.

### Methods

### Samples

Data were from two ongoing sub-studies of the Brisbane Longitudinal Twin Study (BLTS; Wright & Martin 2004) in which the inattentive and hyperactive-impulsive behaviours comprising ADHD were collected using the SWAN. The first sample came from a study of melanocytic naevi (Zhu et al. 1999) and included 3,236 twins and family members, 51.0 % female with a mean age of 21.2

| pa<br>Clinic current renort N | ars twins      |                   |               | 4.7 |              |                    |              | Pearson's product in    |                              |                          |
|-------------------------------|----------------|-------------------|---------------|-----|--------------|--------------------|--------------|-------------------------|------------------------------|--------------------------|
| Clinic current report N       |                | Sibling<br>n      | Siblings<br>n |     | M (SD)       | ımpulsıvıty M (SD) | M (SD)       | Inattention             | Hyperactivity<br>impulsivity | Combined ADHD            |
| T HODAT MATTER AND            | = 504, age     | range = $10^{-1}$ | -17           |     |              |                    |              |                         |                              |                          |
| MZ female 3                   | 12 0           | 10                | 0             | 74  | 0.12 (0.77)  | 0.14(0.81)         | 0.15 (0.78)  | 0.67 (0.43, 0.82)       | 0.71 (0.48, 0.85)            | 0.71 (0.48, 0.85)        |
| MZ male                       | <b>6</b> 0     | 4                 | 3             | 82  | 0.37 (0.98)  | 0.42 (0.87)        | 0.42 (0.92)  | $0.79\ (0.63,\ 0.89)$   | $0.78\ (0.61,\ 0.88)$        | 0.81 (0.66, 0.90)        |
| DZ female (                   | 0 1            | 13                | 3             | 140 | -0.02 (0.81) | -0.15(0.84)        | -0.09(0.79)  | 0.18 (-0.07, 0.41)      | $0.51 \ (0.29, \ 0.67)$      | $0.34 \ (0.10, \ 0.55)$  |
| DZ male                       | 0 6            | 13                | 1             | 93  | 0.33 (0.92)  | 0.36 (0.91)        | 0.37 (0.92)  | 0.37 (0.07, 0.62)       | $0.56\ (0.30,\ 0.74)$        | 0.55 (0.29, 0.74)        |
| DZ female/male 2              | 3 0            | 3                 | 0             | 49  | 0.07 (0.85)  | -0.14 (0.93)       | -0.36(0.86)  | 0.19 (-0.24, 0.56)      | $0.63 \ (0.29, \ 0.83)$      | $0.48 \ (0.08, \ 0.74)$  |
| DZ male/female 2              | 0 6            | 9                 | 1             | 99  | 0.21 (1.00)  | 0.15 (0.94)        | 0.19 (0.90)  | 0.16 (-0.10, 0.42)      | 0.72 (0.52, 0.84)            | 0.57 (0.32, 0.75)        |
| Siblings                      | 1              | I                 | I             | Ι   | 0.11 (0.91)  | -0.90 (0.95)       | 0.01 (0.93)  | 0.21 (0.05, 0.35)       | 0.60(0.49, 0.69)             | $0.46\ (0.33,\ 0.58)$    |
| Online current report I       | V = 918, age   | range = $5-$      | 20            |     |              |                    |              |                         |                              |                          |
| MZ female 7                   | 1 1            | 25                | 5             | 178 | -0.18 (0.96) | -0.27 (0.89)       | -0.24 (0.92) | $0.72 \ (0.58, \ 0.81)$ | 0.87 (0.80, 0.92)            | 0.84 (0.76, 0.90)        |
| MZ male 5                     | 1 1<br>1       | 26                | 5             | 155 | 0.28(0.94)   | 0.18 (0.99)        | 0.24 (0.93)  | 0.55 (0.34, 0.71)       | 0.47 (0.23, 0.65)            | $0.46\ (0.21,\ 0.64)$    |
| DZ female (                   | 8 0            | 28                | 5             | 174 | -0.23 (0.94) | -0.24(1.01)        | -0.25 (0.99) | 0.09 (-0.14, 0.33)      | 0.22 (-0.02, 0.43)           | 0.17 (-0.06, 0.40)       |
| DZ male 5                     | 1 0            | 19                | 9             | 145 | 0.29 (1.31)  | 0.23 (1.20)        | 0.28 (1.28)  | 0.42 (0.17, 0.62)       | $0.44 \ (0.19, \ 0.64)$      | 0.49 $(0.24, 0.68)$      |
| DZ female/male                | 4 3            | 14                | 4             | 133 | 0.00 (1.10)  | -0.14(1.04)        | -0.07 (1.08) | 0.18 (-0.11, 0.44)      | $0.37\ (011,\ 0.58)$         | $0.32 \ (0.04, \ 0.55)$  |
| DZ male/female 5              | 2 1            | 18                | 5             | 133 | 0.06 (1.06)  | -0.01 (1.06)       | 0.03 (1.07)  | $0.33 \ (0.06, \ 0.55)$ | 0.19 (-0.08, 0.44)           | $0.24 \ (-0.03, \ 0.49)$ |
| Siblings                      | I              | I                 | I             |     | 0.10 (1.01)  | -0.01 (0.97)       | 0.05 (0.99)  | 0.20 (0.14, 0.27)       | $0.35\ (0.29,\ 0.41)$        | 0.30 (0.24, 0.36)        |
| Online retrospective re       | port $N = 1,4$ | 177, age rang     | g = 21-44     |     |              |                    |              |                         |                              |                          |
| MZ female 11                  | 4 3            | 42                | 27            | 327 | -0.24 (0.86) | -0.09 (0.92)       | -0.17 (0.90) | 0.68 (0.57, 0.77)       | $0.82\ (0.75,\ 0.87)$        | 0.79 $(0.71, 0.85)$      |
| MZ male 5                     | 7 2            | 34                | 29            | 288 | 0.15 (0.93)  | 0.05 (0.91)        | 0.11 (0.91)  | $0.80\ (0.71,\ 0.86)$   | $0.90\ (0.85,\ 0.93)$        | 0.89 $(0.84, 0.93)$      |
| DZ female 7                   | 2 2            | 23                | 18            | 205 | -0.33 (0.99) | -0.24 (0.97)       | -0.30(0.98)  | $0.30\ (0.08,\ 0.50)$   | $0.54\ (0.35,\ 0.69)$        | 0.50 $(0.30, 0.66)$      |
| DZ male 8                     | 1 I            | 33                | 25            | 256 | 0.13 (1.01)  | 0.23 (1.03)        | 0.20 (1.04)  | 0.15 (-0.06, 0.36)      | $0.27 \ (0.05, \ 0.46)$      | 0.23 $(0.00, 0.43)$      |
| DZ female/male 7              | 5 1            | 36                | 10            | 207 | 0.06 (0.99)  | 0.16(0.89)         | 0.12 (0.92)  | 0.03 (-0.20, 0.26)      | 0.35(0.13, 0.54)             | 0.22 (-0.01, 0.44)       |
| DZ male/female 7              | 3 1            | 21                | 13            | 194 | 0.01 (0.98)  | 0.07 (1.02)        | 0.04(1.00)   | 0.04 (-0.19, 0.27)      | 0.19 (-0.05, 0.41)           | $0.09 \ (-0.15, \ 0.33)$ |
| Siblings                      | I              | I                 | I             | Ι   | -0.13 (1.03) | -0.06 (1.06)       | -0.10 (1.05) | 0.20 (0.14, 0.27)       | $0.35\ (0.29,\ 0.41)$        | 0.30 (0.24, 0.36)        |
| Data combined $N = 3$ .       | 141, age rang  | ge = 5-44         |               |     |              |                    |              |                         |                              |                          |
| MZ female 21                  | 7 4            | 86                | 51            | 626 | -0.16 (0.89) | -0.11 (0.91)       | -0.15(0.90)  | $0.69 \ (0.62, \ 0.75)$ | $0.84\ (0.79,\ 0.87)$        | $0.80\ (0.75,\ 0.84)$    |
| MZ male 15                    | 12 3           | 69                | 56            | 568 | 0.23 (0.95)  | 0.16(0.94)         | 0.21 (0.93)  | 0.71 (0.64, 0.77)       | $0.74 \ (0.67, \ 0.79)$      | 0.75 (0.68, 0.80)        |
| DZ female 2(                  | 0 3            | 68                | 43            | 557 | -0.20 (0.93) | -0.21 (0.94)       | -0.22 (0.93) | 0.23 $(0.10, 0.35)$     | 0.43 (0.32, 0.53)            | $0.38 \ (0.26, \ 0.48)$  |
| DZ male 18                    | 1 1            | 68                | 49            | 531 | 0.23 (1.10)  | 0.26 (1.07)        | 0.26 (1.10)  | 0.30 (0.16, 0.42)       | $0.39\ (0.26,\ 0.50)$        | 0.37 (0.24, 0.48)        |
| DZ female/male 15             | 2 4            | 61                | 28            | 425 | 0.04(1.01)   | 0.01 (0.96)        | 0.03 (0.97)  | 0.13 (0.02, 0.23)       | 0.33 (0.22, 0.44)            | $0.24 \ (0.13, \ 0.34)$  |
| DZ male/female 15             | 4 2            | 49                | 31            | 421 | 0.07 (1.01)  | 0.06 (1.02)        | 0.07 (1.00)  | 0.13 (0.02, 0.25)       | 0.30 (0.21, 0.39)            | $0.24 \ (0.14, \ 0.34)$  |
| Siblings                      | I              | I                 | I             | I   | -0.05 (1.02) | -0.05 (1.03)       | -0.51 (1.03) | 0.25 (0.19, 0.31)       | $0.41 \ (0.35, \ 0.47)$      | 0.37 (0.24, 0.41)        |

(SD = 6.3). ADHD data in sample 1 was provided by mothers. The second sample was drawn from a study of mental health in young adults (Gillespie et al. 2012). Sample 2 included 1,617 twins and family members aged on average 25.0 (SD = 3.7), and 58.1 % of these participants were female. These participants reported their own ADHD related behaviours. Participants with three or more missing inattentive or hyperactive-impulsive items were removed from the samples, reducing the size of sample 1 by 13.

Nine-hundred and twenty-four participants provided valid data to both projects, this allowed us to compare maternal and self-reported SWAN scores. We call this group sample 3. The mean age of sample 3 was 24.30 (3.94), and 41.2 % of these participants were female.

Twin zygosity was determined by typing nine independent polymorphic DNA markers with the AmpFLSTR Profile PCR Amplification Kit. Cross-checks compared ABO, MN and Rh blood groups and phenotypic information. The probability of error using this method is less than  $10^{-4}$ . Subsequent genotyping with the Illumina 610 k array for the majority of the sample confirmed zygosity determination.

Participants and their parents were fully informed of study procedures and gave consent to participate.

### Measurement

ADHD Data collection for samples 1 and 2 began in 2008 and 2009 respectively. The 18 SWAN items (Swanson et al. 2005) address the 18 ADHD criterion *A* symptoms listed in the Diagnostic and Statistical Manual of Mental Disorders, fourth edition-text-revision (DSM-IV-TR) but are worded to reflect normal behaviour. The mean of the first nine items represented participants' inattention score and the mean of items 10–18 represented their level of hyperactivity-impulsivity. The mean of all 18 items represented participants' level of combined ADHD related behaviours. Descriptive statistics for the SWAN scale are presented in Tables 1 and 2 by zygosity group, for samples 1 and 2 respectively.

### ADHD measurement in sample 1

During the adolescent twins' first or second clinic visit, ADHD data were collected from mothers for twin-pairs and their siblings (N = 512). Data for twins completing clinic visits prior to introduction of the SWAN were collected using an online questionnaire completed at home, taking approximately 60–90 min (N = 2,711). If participants were aged twenty or younger, mothers were asked about childrens' *current symptoms* (n = 1,016). If participants were older than twenty, mothers' were asked about their childrens' ADHD symptoms when they were in primary school, scale items were *retrospective* (n = 1,695). Both clinic and online versions of the questionnaire recorded responses on a 7-point scale ranging from -3-3 describing participants' *ability to maintain attention* for example, as: *far above average, above average, slightly above average, average, slightly below average, far below average.* 

Mothers of 103 participants completed the SWAN during the clinic visit and approximately 2-years later (SD = 6-months) using the online questionnaire. Retest correlations followed by 95 % confidence intervals (CI) for the reported inattention, hyperactive-impulsivity and combined ADHD were 0.81 (0.73–0.87), 0.76 (0.67–0.83) and 0.82 (0.74–0.87) respectively.

### ADHD measurement in sample 2

The SWAN scale used to collect self-reported ADHD symptoms in sample 2 was 5-point ranging from -2-2: far above average, above average, average, below average and far below average. Data were collected across three waves; the first wave included 373 participants and the SWAN scale was retrospective. Participants were asked to rate their behaviour in relation to peers when they were in primary school and aged around 7–10. The second wave included 711 participants and the third wave included 905, questionnaires in these two waves asked participants about *current* symptoms. Some participants contributed data to multiple waves of data collection allowing us to estimate retest correlations, these were listed in Table 3 along with the period of time between testing.

Less than 2 % of ADHD data points were missing within samples 1 and 2.

# ADHD measurement in sample 3

Scales in samples 1 and 2 were standardized (mean = 0, variance = 1) this allowed us to compare ADHD scores across studies using sample 3. Maternal-report ADHD data for these participants was both current (n = 248) and retrospective (n = 676). Self-report ADHD came from each wave of sample 2 data collection (1 = 254, 2 = 293, 3 = 377), also including current and retrospective report of symptoms.

## Analyses

Data from the first and second sibling within each twin's family was included in analyses whenever available, to increase the power to detect dominant genetic and common environmental effects (Posthuma and Boomsma 2000).

|                        | sıblıng<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sıblıngs<br>n                                        |                                                      | ( (SD )                                              | impulsivity<br>M (SD) | UHUA<br>M (SD)                                                                                                 | Inattention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hyperactivity<br>impulsivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Combined ADHD                                         |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| rt N = $373$ , age ra  | nge = 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -30                                                  |                                                      |                                                      |                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| 10                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                    | 98                                                   | -0.33 (0.88)                                         | -0.16 (1.06)          | -0.27 (0.96)                                                                                                   | $0.42 \ (0.14, \ 0.64)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.41 \ (0.13, \ 0.63)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.39 (0.11, 0.62)                                     |
| 17                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ι                                                    | 45                                                   | -0.20(0.81)                                          | -0.09 (0.88)          | -0.16 (0.77)                                                                                                   | -0.14 (-0.63, 0.41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.34 (-0.73, 0.23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.29(-0.71, 0.29)                                    |
| 22                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                    | 76                                                   | -0.22 (0.93)                                         | 0.04 (1.05)           | -0.10(0.97)                                                                                                    | $0.34 \ (-0.04, \ 0.64)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.17 (-0.22, 0.52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.34 (-0.05, 0.64                                     |
| 21                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                    | 41                                                   | -0.35 (0.87)                                         | -0.25 (1.01)          | -0.33 $(0.90)$                                                                                                 | -0.15(-0.71, 0.53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03 (-0.61, 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.12 (-0.70, 0.55                                    |
| 15                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                    | 63                                                   | -0.15 (0.98)                                         | 0.08 (1.11)           | -0.04 (1.02)                                                                                                   | 0.26 (-0.16, 0.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.34 \ (-0.07, \ 0.66)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.39 (-0.01, 0.69)                                    |
| 12                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                    | 50                                                   | -0.17 (0.97)                                         | 0.14 (1.02)           | -0.02 (0.96)                                                                                                   | 0.03 (-0.43, 0.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.02 (-0.46, 0.44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.02 (-0.47, 0.44                                    |
| Ι                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                    | Ι                                                    | I                                                    | I                     | Ι                                                                                                              | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ι                                                     |
| = 427, age range =     | : 19–38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| 41                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                    | 119                                                  | -0.21 (1.02)                                         | -0.19 (1.05)          | -0.22 (1.06)                                                                                                   | 0.65 (0.39, 0.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.44 (0.12, 0.68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.60\ (0.33,\ 0.78)$                                 |
| 36                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                    | 92                                                   | 0.44 (1.01)                                          | 0.18 (1.12)           | 0.34 (1.04)                                                                                                    | $0.42 \ (0.03, \ 0.70)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.54 (0.19, 0.77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.47 \ (0.09, \ 0.73)$                               |
| 28                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                    | 56                                                   | 0.13 (1.05)                                          | -0.08 (1.06)          | 0.03 (1.08)                                                                                                    | -0.40(-0.79, 0.23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.43 (-0.81, 0.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.54 (-0.85, 0.05)                                   |
| 27                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                    | 55                                                   | 0.42 (1.16)                                          | 0.26 (0.97)           | 0.38 (1.07)                                                                                                    | -0.22 (-0.75, 0.48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.45 (-0.84, 0.24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.49 (-0.86, 0.19)                                   |
| 32                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                    | 60                                                   | -0.05 (1.17)                                         | -0.08 (1.11)          | -0.07 (1.14)                                                                                                   | -0.33 (-0.76, 0.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.16(-0.67, 0.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.21 (-0.70, 0.41                                    |
| 32                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                    | 45                                                   | 0.02 (0.95)                                          | -0.23 (0.92)          | -0.12 (0.92)                                                                                                   | $-0.89 \ (-0.99, \ 0.30)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.36(-0.91, 0.63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.79 ( $-0.97$ , $0.07$ )                            |
| I                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                    | Ι                                                    | -0.03 (1.12)                                         | -0.12 (1.01)          | -0.08(1.08)                                                                                                    | 0.23 (-0.20, 0.59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02 (-0.40, 0.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.14 (-0.29, 0.52)                                    |
| = 613, age range =     | = 18–33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| 44                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                    | 141                                                  | -0.03 (0.95)                                         | -0.10 (0.93)          | -0.07 (0.97)                                                                                                   | 0.54 (0.30, 0.72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.48 \ (0.23, \ 0.68)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55 (0.31, 0.72)                                     |
| 37                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                    | 90                                                   | 0.22 (0.89)                                          | 0.20 (0.78)           | 0.23 (0.82)                                                                                                    | $0.34 \ (-0.08, \ 0.65)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.30 (-0.11, 0.63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33 (-0.09, 0.65                                     |
| 37                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                    | 127                                                  | 0.07 (1.02)                                          | 0.02 (0.99)           | 0.05 (1.03)                                                                                                    | -0.23 (-0.50, 0.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.11 (-0.40, 0.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.19 (-0.47, 0.11                                    |
| 37                     | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                    | 96                                                   | 0.24 (0.81)                                          | 0.32 (0.81)           | 0.31 (0.80)                                                                                                    | 0.13 (-0.25, 0.48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00 (-0.37, 0.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01 (-0.36, 0.39]                                    |
| 37                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                    | 65                                                   | -0.10 (0.92)                                         | -0.10 (0.97)          | -0.11 (0.95)                                                                                                   | -0.39 $(-0.77, 0.21)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-0.07 \ (-0.59, \ 0.50)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.18 (-0.66, 0.41)                                   |
| 37                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                    | 94                                                   | 0.09 (0.92)                                          | 0.17 (0.84)           | 0.15(0.85)                                                                                                     | $-0.04 \ (-0.41, \ 0.33)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.26(-0.57,13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.14 (-0.49, 0.24                                    |
| I                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ι                                                    |                                                      | 0.13 (1.04)                                          | 0.03 (1.12)           | 0.09 (1.12)                                                                                                    | -0.12 (-0.29, 0.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.07 (-0.25, 0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.10 (-0.28, 0.08)                                   |
| , age range = 18–3     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                      |                                                      |                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| 65                     | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                    | 378                                                  | -0.17 (0.96)                                         | -0.14 (1.00)          | -0.17 (1.00)                                                                                                   | 0.58 (0.46, 0.68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.47 (0.33, 0.59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.55\ (0.43,\ 0.66)$                                 |
| 58                     | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                    | 240                                                  | 0.22 (0.95)                                          | 0.13 (0.95)           | 0.19 (0.92)                                                                                                    | 0.29 ( $0.08$ , $0.49$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.27 (0.05, 0.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.25\ (0.04,\ 0.45)$                                 |
| 41                     | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                    | 279                                                  | -0.01 (1.00)                                         | 0.01 (1.02)           | 0.00 (1.02)                                                                                                    | -0.05(23, 0.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.03 (-0.22, 0.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.05 (-0.24, 0.14                                    |
| 57                     | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                    | 204                                                  | 0.15 (0.96)                                          | 0.17 (0.93)           | 0.18 (0.94)                                                                                                    | 0.02 (-0.22, 0.27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.13 (-0.36, 0.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.13 (-0.37, 0.12]                                   |
| 62                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                    | 207                                                  | -0.10 (1.02)                                         | -0.03 (1.06)          | -0.07 (1.03)                                                                                                   | -0.05 (-0.30, 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.20 (-0.05, 0.44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.16(-0.10, 0.40)                                     |
| 55                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                    | 201                                                  | 0.00 (0.94)                                          | 0.67 (0.92)           | 0.04 (0.90)                                                                                                    | -0.03 (-0.27, 0.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.15 (-0.38, 0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.10(-0.33, 0.14)                                    |
| I                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                    | Ι                                                    | 0.02 (1.10)                                          | -0.08 (1.05)          | -0.03 (1.09)                                                                                                   | 0.02 (-0.09, 0.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01 (-0.09, 0.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02 (-0.09, 0.13                                     |
| er values indicate the | he presenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | te of ADHL                                           | ) sympi                                              | coms. Only twin                                      | pairs, the first t    | wo additional sil                                                                                              | lings within any family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and siblings with twins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wer                                                   |
|                        | <ul> <li>21</li> <li>15</li> <li>12</li> <li>-</li> <li>-</li> <li>41</li> <li>36</li> <li>41</li> <li>36</li> <li>28</li> <li>36</li> <li>28</li> <li>28</li> <li>37</li> <li>32</li> <li>33</li> <li>37</li> <li>41</li> <li>57</li> <li>62</li> <li>55</li> <li>54</li> <li>54</li> <li>54</li> <li>54</li> <li>54</li> <li>54</li> <li>54</li> <li>54</li> <li>55</li> <li>55</li> <li>55</li> <li>55</li> <li>55</li> <li>55</li> <li>56</li> <li>57</li> <li>57</li> <li>57</li> <li>57</li> <li>58</li> <li>57</li> <li>58</li> <li>57</li> <li>58</li> <li>58</li> <li>58</li> <li>58</li> <li>58</li> <li>59</li> <li>59</li> <li>50</li> <li>51</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> <li>54</li> <li>54</li> <li>54</li> <li>54</li> <li>55</li> <li>55</li> <li>55</li> <li>55</li> <li>56</li> <li>57</li> <li>57</li> <li>57</li> <li>57</li> <li>57</li> <li>57</li> <li>57</li> <li>57</li> <li>57</li> <li>58</li> <li>58</li> <li>59</li> <li>59</li> <li>50</li> <li>51</li> <li>51</li> <li>52</li> <li>51</li> <li>52</li> <li>54</li> <li>54</li> <li>54</li> <li>54</li> <li>55</li> <li>55</li> <li>56</li> <li>57</li> <li>57</li> <li>58</li> <li>58</li> <li>59</li> <li>59</li> <li>50</li> <li>51</li> <li>51</li> <li>51</li> <li>51</li> <li>51</li> <li>51</li> <li>51</li> <li>51</li> <li>52</li> <li>51</li> <li>51</li> <li< td=""><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>21<math></math></td><td>21       <math>                                                                                                        -</math></td><td>22         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td><td>22         70         -0.24         (0.93)         0.04         (1.02)         -0.03         (0.93)         0.04         (1.02)         0.03         (-0.43, 0.47)         0.04         (1.02)         0.03         (-0.43, 0.47)         0.04         (1.02)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.43)         0.03         (-0.43, 0.43)         0.03         (-0.43, 0.43)         0.03         (-0.43, 0.43)         0.03         (-0.43, 0.43)         0.03         (-0.43, 0.03)         0.03         (-0.43, 0.03)         0.03<td><math display="block"> \begin{array}{cccccccccccccccccccccccccccccccccccc</math></td></td></li<></ul> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 21 $$                 | 21 $                                                                                                        -$ | 22         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | 22         70         -0.24         (0.93)         0.04         (1.02)         -0.03         (0.93)         0.04         (1.02)         0.03         (-0.43, 0.47)         0.04         (1.02)         0.03         (-0.43, 0.47)         0.04         (1.02)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.47)         0.03         (-0.43, 0.43)         0.03         (-0.43, 0.43)         0.03         (-0.43, 0.43)         0.03         (-0.43, 0.43)         0.03         (-0.43, 0.43)         0.03         (-0.43, 0.03)         0.03         (-0.43, 0.03)         0.03 <td><math display="block"> \begin{array}{cccccccccccccccccccccccccccccccccccc</math></td> | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

### Twin methodology

Following classical twin methodology, monozygotic twins were considered genetically identical and any difference between twins within a pair was due to environmental experiences. Dizygotic twins shared on average 50 % additive genetic effects and 25 % dominant genetic effects, while both MZ and DZ twins could be assumed to share the family environment to the same extent. The genetic relatedness between family members was used to dissect the variance of ADHD ratings into genetic and environmental components: the additive effect of markers across multiple loci (A), variants acting in a dominant manner (D), environmental sharing between family members (C), and specific environmental experiences that made individuals within families differ (E). The E variance component also included measurement error. D and C were negatively confounded as both estimates were based on the difference in the MZ and DZ within pair correlation so could not be included in the same model for twins reared together.

Contrast effects act in the same way as dominance and could not be estimated in the same model as *C*. Therefore separate models were run for *C* and *D* parameters to determine which provided the best fit to the data and contrast parameters were excluded from the models including *C*. The contrast parameters were modeled as a direct pathway (*b*) from one twin's phenotype to that of their cotwin (or sibling) taking a negative value. The covariance for each ADHD phenotype was therefore represented as  $(I-b)^{-1}$  (A + D)  $(I-b)^{-1}$  for MZ twins, and  $(I-b)^{-1}$  (.5A + .25D)  $(I-b)^{-1}$  for DZ twins. The difference between MZ and DZ twin-pair covariance provided an estimate of the magnitude of genetic effects influencing ADHD symptoms. These analyses were run in classic Mx (Neale et al. 1999).

# Univariate twin models testing contrast and sex effects on ADHD

Three nested models were used to estimate sex difference in the aetiology of ADHD: (1) the general model illustrated in Fig. 1, allowed qualitative and quantitative (scalar) A, C or D and E paths for males  $(am_{ij}, dm_{ij}, em_{ij})$  and females  $(af_{ij}, df_{ij}, ef_{ij})$ , including a male specific genetic effect  $(mg_{ij})$ , (2) a scalar sex-limitation model allowed separate A, C or D and E paths across sex assuming the genetic effects contributing to symptoms were the same for males and females, but genetic and environmental paths differed by magnitude, and (3) a progressively constrained model in which path coefficients were equated between males and females  $(am_{ij} = af_{ij}, dm_{ij} = df_{ij}, em_{ij} = ef_{ij})$ . Contrast effects were included in each of these models for twins  $(b_{21})$  and siblings  $(b_{32}, b_{43})$  and initially allowed to differ between the sexes.

# Bivariate modelling comparing maternal and self-report ADHD

The bivariate Cholesky decomposition illustrated in Fig. 1 allowed an estimation of genetic  $(a_{21}, d_{21})$  and environmental factors  $(e_{21})$  common to maternal and self-reported inattention, hyperactivity-impulsivity and combined ADHD related behaviours. This model also provided an estimate of genetic and environmental effects specific to either maternal  $(a_{11}, d_{11}, e_{11})$  or self-reported  $(a_{22}, d_{22}, e_{22})$  ADHD subtypes. Contrast effects for twins  $(b_{31})$  and siblings  $(b_{53}, b_{75})$  were also included in this model.

### Common factors model

A common factors model was used to separate specific environmental factors (*E*) from error (*R*) for each rater, using sample 3. The common factor model can only be identified when four or more variables are included in the model. We included only two variables, so the loadings of the latent factors (1) onto ADHD subtypes collected at time 1 and 2 were equated and the latent variable was scaled to 1 to identify the model (Loehlin 1996) for our purposes. Siblings could not be included in this model due to the relatively low number completing data at two time points and the effect this had on parameter estimation.

# Results

Mean current inattentive symptoms reported by mothers (sample 1) were higher than when these symptoms were reported retrospectively [t (1,994) = 3.04, p = 0.002]. This was not the case for hyperactivity-impulsivity [t(2,091) = -0.93, p = 0.35]. The average ages of participants with current and retrospectively reported data were 17.14 (2.31) and 26.26 (3.66) respectively. Self-reported inattention was also higher when participants reported on their current, in relation to retrospective symptoms [t (674) = 5.77, p < 0.001]. This was not the case for self-reported symptoms of hyperactivity-impulsivity [t(589) = 0.87, p = 0.39]. The ages of these groups with current and retrospective self-report data were 24.20 (3.30) and 25.18 (3.72) respectively.

Heritability estimates were calculated within each sample, for each method of data collection. Clinic data collection, retrospective and current report of symptoms in sample 1, and for each wave of data collection in sample 2. These results are presented in Table 4. Inspection of the

41

|        | Inattention  |              | Hyperactivity-im | pulsivity    | Combined ADH | D            |
|--------|--------------|--------------|------------------|--------------|--------------|--------------|
|        | Wave 2       | Wave 3       | Wave 2           | Wave 3       | Wave 2       | Wave 3       |
| Wave 1 | 0.44         | 0.46         | 0.43             | 0.52         | 0.46         | 0.55         |
|        | (0.30, 0.57) | (0.34, 0.57) | (0.28, 0.56)     | (0.41, 0.62) | (0.31, 0.59) | (0.45, 0.64) |
| Wave 2 |              | 0.66         |                  | 0.52         |              | 0.62         |
|        |              | (0.43, 0.81) |                  | (0.23, 0.73) |              | (0.37, 0.79) |

Mean time lapse between waves: 1 and 2 = 1.6 years (SD = 0.5), 1 and 3 = 3.7 years (SD = 0.3), 2 and 3 = 2.1 (SD = 2.1). Size of re-test sample waves: 1 and 2 n = 132, 1 and 3 n = 194, 2 and 3 n = 36

estimates justified pooling data within each sample and including covariates to account for variation in method of data collection and age.

Likelihood-ratio tests (LRT) were used to estimate the homogeneity of means, variances across zygosity group within each sample. In sample 1, mean maternal-report inattention scores were approximately equal within sex, across zygosity groups. Females had lower mean scores than males  $(\Delta - 2LL = 77.1, \Delta df = 3, p < 0.001)$ . Variance of these scores was approximately equal for MZ and DZ zygosity groups, providing no evidence for a contrast effect. However variance was greater for DZ male than DZ female twins  $(\Delta - 2LL = 9.20, \Delta df = 3, p = 0.03)$ . Mean hyperactivity-impulsivity scores in sample 1 were also lower for females  $(\Delta - 2LL = 43.7, \Delta df = 3,$ p < 0.001), but could be equated within sex across zygosity groups. The variance of hyperactivity-impulsivity was approximately equal for MZ and DZ zygosity groups and for males and females.

In sample 2 self-report data, mean inattention scores were approximately equal across DZ same and opposite sex twins, but MZ males scores were higher than MZ females ( $\Delta$ -2LL = 13.67,  $\Delta df = 1$ , p < 0.001). All variances were approximately equal. Mean hyperactivity-impulsivity scores were higher for males ( $\Delta$ -2LL = 11.4,  $\Delta df = 3$ , p = 0.009), but all variances and means within sex and across zygosity group were equal.

Univariate sex-limited analyses and contrast effects for ADHD subtypes

The presence of rater contrast effects (*b*) in SWAN measured ADHD was tested within each sex-limitation model. Parameters were consecutively constrained to determine their relevance to model fit. The best fitting models for inattention, hyperactivity-impulsivity and combined ADHD related behaviour within each dataset were presented in Table 5 respectively, and discussed below. Results of all model-fitting was provided in supplementary Tables 7 and 8 in Appendix Section for maternal and selfreport ADHD subtypes respectively.

# Inattention

ADE and ADE + b models were the best fit for maternal and self-report inattention. The ADE parameters were equal for males and females in maternal-report data but the magnitude of D and E differed across sex when inattention was self-reported. There was a contrast effect evident in self- but not maternal-report inattention (-0.09).

# Hyperactivity-impulsivity

AE + b and ADE models provided the best fit for maternal and self-reported hyperactivity-impulsivity. The A and E factors could be equated for males and females in both samples, but the magnitude of D was greater for females than males in sample 2. The magnitude of E was greater for males than females in sample 1.

### Combined ADHD

ADE and ADE + b models best described sample 1 and 2 combined ADHD behaviours. The magnitude of A was equal for males and females within both samples. Similarly D was equal across sex in sample 1 but differed for males and females when combined ADHD was self-reported. The magnitude of E was greater for males than females in both samples. There was a contrast effect evident in self-report, but not maternal-report of symptoms. There was however no difference between the MZ and DZ twin variance for combined ADHD related behaviours in sample 2 as would be expected in the presence of a contrast effect.

Bivariate Cholesky rater comparison

The bivariate Cholesky decomposition allowed us to estimate genetic and environmental effects that were shared by maternal and self-reported inattention, hyperactivityimpulsivity and combined ADHD ratings for the 924 participants contributing data to both samples. We were also able to identify A, D and E factors specific to each rater (see Table 6). Rater contrast parameters were included for







Sibling 1

Twin 2





Common Factors Model

◄Fig. 1 Models used to decompose genetic and environmental variance in ADHD related behaviours. In all cases dominant genetic effects (D) provided a better model fit than common environment (C). E represents specific environmental factors, b represents contrast between twins  $(b_{21}, b_{31})$  and siblings  $(b_{32}, b_{43}, b_{53}, b_{75})$ . Lower case a, d, and e represent additive genetic, dominant genetic and specific environmental loadings onto measured phenotypes. Lower case f and *m* represent the female and male specific effects in the test for sexlimitation and mg represents the male specific genetic effect. Subscripted numbers show the placement of effects in model matrices and 1 represents the loadings of latent ADHD subtypes onto data collected at times 1 and 2 for sample 3, in the common factors model

maternal and self-report data due to their presence in the univariate models. However this parameter could be dropped from each model without a significant deterioration in model fit (see Table 9 in Appendix Section of the supplementary, rows 4, 11 and 18).

The A factor loading onto each ADHD subtype was not shared by raters. The genetic factor common to maternal and self-reported behaviours showed a pattern of dominance (see Table 6 column 4, rows 3, 6 and 9). This genetic correlation was 0.64 (95 % CI 0.51, 0.89) for inattention, 1.00 (95 % CI 0.73, 1.00)for hyperactivity-impulsivity and 0.94 (95 % CI 0.69, 1.00) for combined ADHD.

The *E* factor for specific environment common to raters could not be dropped without a deterioration in model fit. These correlations were 0.17 (95 % CI = 0.03, 0.30) for inattention, 0.22 (95 % CI = 0.07, 0.37) for hyperactivityimpulsivity and 0.16 (95 % CI = 0.00, 0.30) and may represent a case of correlated error terms.

Common factors model examining the aetiology of specific environment (E)

Measurement error (R) and the specific environmental factor (E) were separable in this model allowing us to determine the magnitude of difference in E not shared by raters. The squared loading  $(l^2)$  of the latent factor in supplementary Table 10 (column 9) of Appendix, onto ADHD measures at times 1 and 2 provided as estimate of retest-correlations for each ADHD subtype and rater. These estimates should be similar to the estimates provided in the methods (ADHD Measurement in Sample 1) and Table 3. The magnitude of R was greater in

| Table 4         Heritability Estimates           for Samples 1 and 2 by Subtype | Model           | AIC    | -2LL     | df    | А                 | Ε                 |
|---------------------------------------------------------------------------------|-----------------|--------|----------|-------|-------------------|-------------------|
| for Samples 1 and 2 by Subtype                                                  | Maternal-report |        |          |       |                   |                   |
|                                                                                 | Clinic          |        |          |       |                   |                   |
|                                                                                 | Inattention     | 241.17 | 1,239.17 | 499   | 0.63 (0.47, 0.75) | 0.37 (0.25, 0.53) |
|                                                                                 | Hyp-imp         | 157.53 | 1,155.53 | 499   | 0.79 (0.71, 0.84) | 0.21 (0.16, 0.29) |
|                                                                                 | Combined        | 156.74 | 1,154.74 | 499   | 0.75 (0.66, 0.82) | 0.25 (0.18, 0.34) |
|                                                                                 | Current         |        |          |       |                   |                   |
|                                                                                 | Inattention     | 691.30 | 2,479.30 | 894   | 0.65 (0.54, 0.73) | 0.35 (0.27, 0.46) |
|                                                                                 | Hyp-imp         | 610.20 | 2,392.20 | 891   | 0.71 (0.63, 0.79) | 0.29 (0.22, 0.37) |
|                                                                                 | Combined        | 623.35 | 2,373.35 | 875   | 0.71 (0.63, 0.80) | 0.29 (0.22, 0.37) |
|                                                                                 | Retrospective   |        |          |       |                   |                   |
|                                                                                 | Inattention     | 820.61 | 3,716.61 | 1,448 | 0.72 (0.65, 0.78) | 0.28 (0.22, 0.35) |
|                                                                                 | Hyp-imp         | 735.13 | 3,589.13 | 1,427 | 0.86 (0.83, 0.89) | 0.14 (0.11, 0.17) |
|                                                                                 | Combined        | 725.17 | 3,535.17 | 1,405 | 0.84 (0.80, 0.87) | 0.16 (0.13, 0.20) |
|                                                                                 | Self-Report     |        |          |       |                   |                   |
|                                                                                 | Wave 1          |        |          |       |                   |                   |
|                                                                                 | Inattention     | 239.32 | 975.32   | 368   | 0.31 (0.10, 0.49) | 0.69 (0.51, 0.90) |
|                                                                                 | Hyp-imp         | 340.05 | 1,076.05 | 368   | 0.31 (0.10, 0.49) | 0.69 (0.51, 0.91) |
|                                                                                 | Combined        | 268.93 | 1,005.93 | 368   | 0.30 (0.09, 0.47) | 0.70 (0.52, 0.91) |
|                                                                                 | Wave 2          |        |          |       |                   |                   |
|                                                                                 | Inattention     | 394.88 | 1,238.88 | 422   | 0.59 (0.37, 0.73) | 0.41 (0.27, 0.63) |
|                                                                                 | Hyp-imp         | 373.03 | 1,217.03 | 422   | 0.46 (0.25, 0.62) | 0.54 (0.38, 0.75) |
| ALC Algoiles Information                                                        | Combined        | 384.85 | 1,228.85 | 422   | 0.56 (0.35, 0.70) | 0.44 (0.30, 0.65) |
| Criterion. $-2LL - 2 \times \log$                                               | Wave 3          |        |          |       |                   |                   |
| likelihood, <i>df</i> degrees-of-                                               | Inattention     | 412.48 | 1,628.48 | 608   | 0.33 (0.13, 0.51) | 0.67 (0.49, 0.87) |
| freedom, A additive genetic                                                     | Hyp-imp         | 388.96 | 1,604.96 | 608   | 0.26 (0.08, 0.43) | 0.74 (0.57, 0.92) |
| effect <i>E</i> unique environmental                                            | Combined        | 402.07 | 1,618.07 | 608   | 0.32 (0.13, 0.48) | 0.68 (0.52, 0.87) |

| Best fitting model               | Female variance |   |              |              |               | Male variance |   |               |              | Twin contrast  |
|----------------------------------|-----------------|---|--------------|--------------|---------------|---------------|---|---------------|--------------|----------------|
|                                  | V               | С | D            | Ш            | Male specific | A             | С | D             | Щ            |                |
| Inattention                      |                 |   |              |              |               |               |   |               |              |                |
| Mother                           | 0.17            | ļ | 0.55         | 0.28         | I             | 0.17          | ļ | 0.55          | 0.28         | I              |
| Equal ADE                        | (-0.35, 0.35)   |   | (0.37, 0.74) | (0.24, 0.32) |               | (-0.35, 0.35) |   | (0.37, 0.74)  | (0.24, 0.32) |                |
| Self                             | 0.04            | I | 0.65         | 0.31         | I             | 0.05          | I | 0.41          | 0.54         | -0.09          |
| Equal A, D and E differ          | -0.52, 0.52)    |   | (0.21, 0.82) | (0.23, 0.42) |               | (-0.58, 0.58) |   | (0.22, 0.65)  | (0.39, 0.77) | (-0.17, -0.02) |
| Hyperactivity-impulsivity        |                 |   |              |              |               |               |   |               |              |                |
| Mother                           | 0.86            | I | I            | 0.14         | I             | 0.79          | I | I             | 0.21         | -0.04          |
| Equal ADE + contrast             | (0.79, 0.94)    |   |              | (0.11, 0.17) |               | (0.72, 0.85)  |   |               | (0.17, 0.26) | (-0.08, 0.00)  |
| Self                             | 0.00            | I | 0.41         | 0.59         | I             | 0.00          | I | 0.30          | 0.70         | I              |
| Equal A and E                    | (-0.26, .0.26)  |   | (0.11, 0.53) | (0.50, 0.70) |               | (-0.31, 0.31) |   | (-0.33, 0.45) | (0.59, 0.82) |                |
| Combined symptoms                |                 |   |              |              |               |               |   |               |              |                |
| Mother                           | 0.62            | I | 0.21         | 0.18         | I             | 0.57          | I | 0.19          | 0.24         | I              |
| Equal AD, E differs, no contrast | (0.43, 0.81)    |   | (0.03, 0.38) | (0.15, 0.21) |               | (0.40, 0.75)  |   | (0.03, 0.36)  | (0.20, 0.29) |                |
| Self                             | 0.10            | I | 0.55         | 0.35         | I             | 0.12          | I | 0.27          | 0.60         | -0.08          |
| Equal A, D and E differ          | (-0.48, 0.48)   |   | (0.50, 0.77) | (0.26, 0.47) |               | (-0.58, 0.58) |   | (0.14, 0.58)  | (0.43, 0.84) | (-0.16, -0.02) |

self-report than maternal-report data (see column 10, Table 10 of Appendix), confidence intervals did not overlap. The magnitude of E (column 8, Table 10 of Appendix) was also greater for hyperactivity-impulsivity and combined ADHD when self-reported.

# Discussion

We have addressed three questions raised in ADHD research: (1) the presence of rater contrast effects in maternal-report ADHD measured using a dimensional scale (Pinto et al. 2012), (2) the aetiology of difference between heritability estimates derived using maternal and self-reported data (Merwood et al. 2013; Chang et al. 2013), and (3) sex differences in genetic and environmental influences on ADHD-related behaviours.

We found there were rater contrast effects evident for hyperactivity-impulsivity in data collected from mothers of twins using a dimensional scale (SWAN). The size of the effect was consistent with previous findings (-0.04; Merwood et al. 2013) using maternal-report ADHD. Surprisingly there was a contrast effect evident in self-report inattention (-0.08) and combined ADHD related behaviours (-0.09). These effects could be due to greater contact and perhaps similarity between MZ twins in adulthood or sibling interaction—this was not examined. There was no evidence of contrast in the variances of MZ and DZ twins, leaving uncertainty about the origin of the contrast effect in our data.

The bivariate analyses we conducted show differences in heritability between maternal and self-reported data within our samples were due to the greater magnitude of rater specific E loading onto self-reported hyperactivityimpulsivity and combined behaviours. Other groups have found the E factor in rater specific self-report ADHD includes additive genetic effects (manuscript submitted), we did not test for this.

The retest-reliability of self-reported ratings within our data was moderate (r = 0.46), and lower than the retest-reliability of maternal-report ADHD (r = 0.81) over approximately 2 years. The phenotypic correlation between maternal and self-reported data was 0.34 (0.27, 0.41) for ADHD total score 0.38 (0.31, 0.44) for inattention and 0.27 (0.19, 0.34) for hyperactivity-impulsivity. These findings were consistent with reduced reliability of self-report data.

Researchers have previously suggested symptomatic adults do not provide an accurate report of their behaviour (Knouse et al. 2005) but others indicate adults with ADHD provide the more accurate assessment of their symptoms but minimize symptom severity (Kooij et al. 2008). We did not address this question but did find greater variation in

| Reporter      | А             |              | D            |              | E            |              | Twin contrast |
|---------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|
|               | Mother        | Self         | Mother       | Self         | Mother       | Self         |               |
| Inattention   |               |              |              |              |              |              |               |
| Mother        | 0.08          |              | 0.65         |              | 0.26         |              | -             |
|               | (0.00, 0.25)  |              | (0.48, 0.79) |              | (0.23, 0.30) |              |               |
| Self          | -             | 0.00         | 0.36         | 0.49         | 0.06         | 0.52         |               |
|               |               | (0.00, 0.00) | (0.29, 0.44) | (0.27, 0.59) | (0.01, 0.12) | (0.44, 0.62) |               |
| Hyperactivity | y-impulsivity |              |              |              |              |              |               |
| Mother        | 0.65          |              | 0.16         |              | 0.18         |              | -             |
|               | (0.52, 0.74)  |              | (0.09, 0.28) |              | (0.16, 0.21) |              |               |
| Self          | -             | 0.00         | 0.25         | 0.38         | 0.07         | 0.62         |               |
|               |               | (0.00, 0.14) | (0.18, 0.32) | (0.21, 0.48) | (0.02, 0.13) | (0.53, 0.73) |               |
| Combined sy   | mptoms        |              |              |              |              |              |               |
| Mother        | 0.50          |              | 0.31         |              | 0.18         |              | _             |
|               | (0.34, 0.62)  |              | (0.20, 0.47) |              | (0.16, 0.44) |              |               |
| Self          | -             | 0.00         | 0.35         | 0.44         | 0.05         | 0.56         |               |
|               |               | (0.00, 0.16) | (0.27, 0.42) | (0.26, 0.55) | (0.00, 0.10) | (0.47, 0.66) |               |

Table 6 Standardised path estimates for best fitting bivariate cholesky examining the aetiology of maternal and self-reported ADHD subtypes

All model fitting results for these analyses are shown in supplementary Table 10

the specific environmental/error factor influencing selfreported data. A general review of the literature examining self-report of ADHD did however show, self-reported symptoms were reliable and valid in European (Adler et al. 2008; Magnússon et al. 2006) and Korean (Kim et al. 2013) samples. However, these results may not be comparable to ours due to the fact that they concentrate on more severely affected samples.

There were additive genetic factors specific to mothers' report of each ADHD subtype not evident when symptoms were self-reported. These factors could partly account for the severity of symptoms that has previously been reported as a cause of variation between mother and self-ratings (Kooij et al. 2008). There were also sex differences in selfreported data. The magnitude of dominant genetic effects influencing inattention was greater for females than males. The magnitude of unique environmental effects was greater for males within each self-reported subtype. Males generally have greater variance in ADHD scores (Chang et al. 2013; Merwood et al. 2013; Ebejer et al. 2013) and unique environmental experience may account for this. The magnitude of D was greater for females in self-reported data. We found scalar differences in the genetic and environmental effects across sex for self-report, but not maternalreport subtypes. Our findings differ from the work done by Merwood and colleagues (2013) in this regard.

Broad-sense heritability estimates of maternal report inattention, hyperactivity-impulsivity and combined behaviours were approximately equal for men and women (0.72, 0.79, 0.76 and 0.72, 0.86, 0.83 respectively). The broad-sense heritability of self-reported symptoms was lower for men than women for inattention (0.46 vs 0.69), hyperactivity-impulsivity (0.30 vs 0.41) and combined behaviours (0.39 vs 0.65).

The SWAN scale measures behaviours across the full spectrum, including high and low levels of attention and activity. Merwood and colleagues (2013) used a severity scale to measure ADHD within their sample of 11 and 12 year olds and the rater contrast effect they found for ADHD total score was approximately equal to the contrast effect we found influencing symptoms of hyperactivity-impulsivity in maternal-report data. Additionally a contrast effect unexpectedly appeared in self-report data, possibly due to the greater difference between MZ and DZ twin correlations for ADHD subtypes. The negative twin correlations evident in self-report data could account for this effect.

It is important to consider our findings in relation to the limitations of the study. There was a difference in the period of time to which scale items were addressed; approximately half of sample 1 and one-third of the sample 2 were retrospectively reporting on childhood symptoms. Symptoms of inattention were lower on average when they were reported retrospectively, suggesting participants were more attentive as children than they were as teenagers and young adults. Additionally the possible correlation of error terms in our comparison of maternal and self-reported variance components could show a model bias. This effect could also be due to the similarity of wording on the scale used to collect data from each group of informants (Bollen and Lennox 1991).

Despite these limitations our results show a contrast parameter for inattentive and hyperactive-impulsive subtypes when using a dimensional measure of symptoms. We also found  $\sim 14$  % of the variation in self-reported ADHD was accounted for by variation in specific environmental experience and  $\sim 50$  % of the variation was due to other factors falling into *E* when two raters rather than one report on twins within a pair.

Acknowledgments We thank Marlene Grace and Natalie Garden for conducting initial interviews with twins, Richard Parker for ongoing data collection and both David Smyth and Anthony Conciatore for IT support. But most importantly, we thank the twins and their families for continued involvement and interest in our studies. JLE was supported by an Australian Postgraduate Award and a Strategic Doctoral Scholarship. This work was also supported in part by the Australian National Health and Medical Research Council Grant 1009839. SEM was supported by an Australian Research Council (full) Future Fellowship 110100548. DLD was support by an NHMRC Senior Research Fellowship. Statistical analyses were carried out on the GenEpi Cluster which is financially supported by contributions from Grants from the NHMRC (389892; 496682; 496688; 496739; 613672) and ARC (FT0991022; FT0991360).

Conflict of Interest There are no conflicting interests to declare.

**Human and Animal Rights and Informed Consent** QIMR Human Research and Ethics Committee (HREC) approved samples 1 and 2 data collection. Data collection for sample 2 was also approved by the Virginia Commonwealth University Institutional Review Board (IRB).

# Appendix

See Tables 7, 8, 9 and 10.

Table 7 Univariate sex-limited twin models with contrast effects for maternal-report ADHD subtypes

| Model              | AIC      | -2LL     | df    | $\Delta$ -2LL | $\Delta df$ | p value | Best fitting model                     |
|--------------------|----------|----------|-------|---------------|-------------|---------|----------------------------------------|
| Inattention        |          |          |       |               |             |         |                                        |
| ACE                | 2,012.23 | 8,258.23 | 3,123 | _             | -           | _       |                                        |
| ADE + b            | 1,999.86 | 8,233.86 | 3,117 | 24.37         | -           | _       |                                        |
| Equate b sibs      | 1,996.12 | 8,238.12 | 3,121 | 4.26          | 4           | 0.37    |                                        |
| Drop b sibs        | 1,994.93 | 8,238.93 | 3,122 | 0.81          | 1           | 0.37    | No contrast effect for twins or sibs   |
| Drop b twins       | 1,996.53 | 8,242.53 | 3,123 | 3.60          | 1           | 0.06    | No male specific genetic effects       |
| Drop M             | 1,995.34 | 8,243.34 | 3,124 | 0.81          | 1           | 0.37    | Equal A, D and E for males and females |
| Equate A           | 1,995.21 | 8,245.21 | 3,125 | 1.87          | 1           | 0.17    |                                        |
| Drop D             | 2,026.64 | 8,280.64 | 3,127 | 35.43         | 2           | < 0.001 |                                        |
| Equate AD          | 1,996.82 | 8,248.82 | 3,126 | 3.61          | 1           | 0.06    |                                        |
| Equate ADE         | 1,997.74 | 8,251.74 | 3,127 | 2.92          | 1           | 0.09    |                                        |
| Hyperactivity-impu | lsivity  |          |       |               |             |         |                                        |
| ACE                | 1,717.55 | 7,963.55 | 3,123 | _             | -           | _       |                                        |
| ADE + b            | 1,720.56 | 7,954.56 | 3,117 | 8.99          | -           | _       |                                        |
| Equate b sibs      | 1,716.09 | 7,958.09 | 3,121 | 3.53          | 4           | 0.47    | Contrast effect for twins              |
| Drop b sibs        | 1,716.85 | 7,960.85 | 3,122 | 2.76          | 1           | 0.10    | No male specific genetic effects       |
| Drop b twins       | 1,718.62 | 7,964.62 | 3,123 | 3.77          | 1           | 0.05    | Equal A and no D effects               |
| Drop M             | 1,714.85 | 7,960.85 | 3,123 | 0.00          | 1           | 1.00    | E differs for males and females        |
| Equate A           | 1,712.86 | 7,960.86 | 3,124 | 0.01          | 1           | 0.92    |                                        |
| Drop D             | 1,710.14 | 7,962.14 | 3,126 | 1.28          | 2           | 0.53    |                                        |
| Equate E           | 1,727.77 | 7,981.77 | 3,127 | 19.63         | 1           | < 0.001 |                                        |
| Combined ADHD      |          |          |       |               |             |         |                                        |
| ACE                | 1,774.44 | 8,020.44 | 3,123 | _             | -           | _       |                                        |
| ADE + b            | 1,776.55 | 8,010.55 | 3,117 | 9.89          | -           | _       |                                        |
| Equate b sibs      | 1,772.04 | 8,014.04 | 3,121 | 3.49          | 4           | 0.48    | No contrast effect for twins or sibs   |
| Drop b sibs        | 1,770.05 | 8,014.05 | 3,122 | 0.01          | 1           | 0.92    | No male specific genetic effects       |
| Drop b twins       | 1,771.61 | 8,017.61 | 3,123 | 3.56          | 1           | 0.06    | Equal A and D parameters               |
| Drop M             | 1,769.66 | 8,017.66 | 3,124 | 0.05          | 1           | 0.82    | E differs for males and females        |
| Equate A           | 1,768.38 | 8,018.38 | 3,125 | 0.72          | 1           | 0.40    |                                        |
| Drop D             | 1,772.73 | 8,026.73 | 3,127 | 8.25          | 1           | 0.004   |                                        |
| Equate AD          | 1,769.54 | 8,021.54 | 3,126 | 3.16          | 1           | 0.08    |                                        |
| Equate E           | 1,776.64 | 8,030.64 | 3,127 | 9.10          | 1           | 0.003   |                                        |
| -                  |          |          |       |               |             |         |                                        |

AIC Akaike Information Criterion,  $-2LL - 2 \times \text{log-likelihood}$ , df degrees-of-freedom, M male specific genetic effects. Best fitting models are bolded and selected according to the least degree of change in -2LL when parameters are dropped from the model

Table 8 Sex-Limited Twin Models with Contrast Effects for Self-Reported ADHD Subtypes

| Model             | AIC      | -2LL     | df    | $\Delta$ -2LL | $\Delta df$ | p value | Best fitting model                   |
|-------------------|----------|----------|-------|---------------|-------------|---------|--------------------------------------|
| Inattention       |          |          |       |               |             |         |                                      |
| ACE               | 1,232.56 | 4,382.56 | 1,575 | -             | -           | -       |                                      |
| ADE + b           | 1,217.83 | 4,355.83 | 1,569 | 26.73         | 6           | < 0.001 |                                      |
| Equate b sibs     | 1,216.97 | 4,362.97 | 1,573 | 7.14          | 4           | 0.13    |                                      |
| Drop b sibs       | 1,215.02 | 4,363.02 | 1,574 | 0.05          | 1           | 0.82    | Contrast effect for twins            |
| Drop b twins      | 1,220.56 | 4,370.56 | 1,575 | 7.54          | 1           | 0.006   | No male specific genetic effects     |
| Drop M            | 1,213.05 | 4,363.05 | 1,575 | 0.03          | 1           | 0.86    | Equal A for males and females        |
| Equate A          | 1,211.05 | 4,363.05 | 1,576 | 0.00          | 1           | 1.00    | E and D differ for male and females  |
| Drop D            | 1,222.33 | 4,378.33 | 1,578 | 15.28         | 2           | < 0.001 |                                      |
| Equate AD         | 1,216.68 | 4,370.68 | 1,577 | 7.63          | 1           | 0.006   |                                      |
| Equate AE         | 1,214.84 | 4,368.84 | 1,577 | 5.79          | 1           | 0.02    |                                      |
| Hyperactivity-Imp | ulsivity |          |       |               |             |         |                                      |
| ACE               | 1,263.27 | 4,413.26 | 1,575 | -             | -           | -       |                                      |
| ADE + b           | 1,257.69 | 4,395.69 | 1,569 | 17.57         | 6           | 0.007   | No contrast effect for twins or sibs |
| Equate b sibs     | 1,259.42 | 4,405.42 | 1,573 | 9.73          | 4           | 0.05    | No male specific genetic effects     |
| Drop b sibs       | 1,257.61 | 4,405.61 | 1,574 | 9.92          | 5           | 0.08    | Equal A and E for males and females  |
| Drop b twins      | 1,259.09 | 4,409.09 | 1,575 | 3.48          | 1           | 0.06    | D differs for males and females      |
| Drop M            | 1,257.09 | 4,409.09 | 1,576 | 0.00          | 1           | 1.00    |                                      |
| Equate A          | 1,255.19 | 4,409.19 | 1,577 | 0.10          | 1           | 0.75    |                                      |
| Drop D            | 1,262.12 | 4,420.12 | 1,579 | 10.93         | 2           | 0.004   |                                      |
| Equate AD         | 1,258.50 | 4,414.50 | 1,578 | 5.31          | 1           | 0.02    |                                      |
| Equate AE         | 1,254.66 | 4,410.66 | 1,578 | 1.47          | 1           | 0.23    |                                      |
| Combined ADHD     |          |          |       |               |             |         |                                      |
| ACE               | 1,244.66 | 4,374.66 | 1,575 | -             | _           | -       |                                      |
| ADE + b           | 1,212.98 | 4,350.98 | 1,569 | 23.68         | 6           | < 0.001 |                                      |
| Equate b sibs     | 1,214.98 | 4,360.98 | 1,573 | 10.00         | 4           | 0.04    | Contrast effect for twins            |
| Drop b sibs       | 1,213.18 | 4,361.18 | 1,574 | 10.19         | 5           | 0.07    | No male specific genetic effects     |
| Drop b twins      | 1,217.34 | 4,367.34 | 1,575 | 6.16          | 1           | 0.01    | Equal A for males and females        |
| Drop M            | 1,211.18 | 4,361.18 | 1,575 | 0.00          | 1           | 1.00    | D and E differ for males and females |
| Equate A          | 1,209.31 | 4,361.31 | 1,576 | 0.13          | 1           | 0.72    |                                      |
| Drop D            | 1,221.15 | 4,377.15 | 1,578 | 15.86         | 2           | < 0.001 |                                      |
| Equate AD         | 1,218.74 | 4,372.74 | 1,577 | 11.56         | 1           | < 0.001 |                                      |
| Equate AE         | 1,211.00 | 4,365.00 | 1,577 | 3.69          | 1           | 0.05    |                                      |
|                   |          |          |       |               |             |         |                                      |

AIC Akaike Information Criterion,  $-2LL - 2 \times \text{log-likelihood}$ , df degrees-of-freedom, M male specific genetic effects. Best fitting models are bolded and selected according to the least degree of change in -2LL when parameters are dropped from the model

| Model                    | AIC      | 211       | Df    | A 211         | Adf | n voluo        | Post fitting model  |
|--------------------------|----------|-----------|-------|---------------|-----|----------------|---------------------|
| Model                    | AIC      | -2LL      | DI    | $\Delta$ =2LL | Δu  | <i>p</i> value | Best fitting model  |
| Inattention              |          |           |       |               |     |                |                     |
| AE + b                   | 3,717.74 | 13,901.74 | 5,092 | _             | -   | _              |                     |
| ADE + b                  | 3,656.80 | 13,834.80 | 5,089 | 66.94         | 3   | _              | No contrast effects |
| Drop b twins             | 3,658.39 | 13,838.39 | 5,090 | 3.59          | 1   | 0.06           | No common A         |
| Drop A common            | 3,657.43 | 13,839.43 | 5,091 | 1.04          | 1   | 0.31           | Common E            |
| Drop AE common           | 3,660.79 | 13,844.79 | 5,092 | 5.36          | 1   | 0.02           | Common D            |
| Drop AD common           | 3,736.58 | 13,920.58 | 5,092 | 81.15         | 1   | < 0.001        |                     |
| Hyperactivity-Impulsivit | у        |           |       |               |     |                |                     |
| AE + b                   | 3,436.74 | 13,618.74 | 5,091 | _             | -   | _              |                     |
| ADE + b                  | 3,400.74 | 13,578.74 | 5,089 | 40.00         | 2   | _              |                     |
| Drop b twins             | 3,401.76 | 13,581.76 | 5,090 | 3.02          | 1   | 0.08           | No contrast effects |
| Drop A common            | 3,399.80 | 13,581.80 | 5,091 | 0.04          | 1   | 0.84           | No common A         |
| Drop AE common           | 3,404.81 | 13,588.81 | 5,092 | 7.01          | 1   | 0.008          | Common E            |
| Drop D common            | 3,436.80 | 13,620.80 | 5,092 | 31.99         | 1   | < 0.001        | Common D            |
| Combined ADHD            |          |           |       |               |     |                |                     |
| AE + b                   | 3,450.66 | 13,634.66 | 5,092 | _             | -   | _              |                     |
| ADE + b                  | 3,427.65 | 13,605.65 | 5,089 | 28.99         | 3   | _              |                     |
| Drop b twins             | 3,428.65 | 13,608.65 | 5,090 | 3.00          | 1   | 0.08           | No contrast effects |
| Drop A common            | 3,427.47 | 13,609.47 | 5,091 | 0.82          | 1   | 0.37           | No common A         |
| Drop AE common           | 3,429.39 | 13,613.38 | 5,092 | 3.91          | 1   | 0.05           | Common E            |
| Drop AD common           | 3,502.98 | 13,686.98 | 5,092 | 77.51         | 1   | < 0.001        | Common D            |

 Table 9
 Model Fitting for Bivariate Cholesky Comparing Rater A, D and E Parameters

AIC Akaike Information Criterion,  $-2LL - 2 \times log-likelihood$ , df degrees-of-freedom, M male specific genetic effects. Best fitting models are indicated by non-significant change in -2LL when parameters are dropped from the model

Table 10 Path Estimates and Model Fit for Common Factors Model Examining Specific Environment and Error Components of ADHD Subtypes

| Model      | AIC         | -2LL     | df    | А               | D               | С               | Е               | 1               | R               |
|------------|-------------|----------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Maternal-  | report      |          |       |                 |                 |                 |                 |                 |                 |
| Inattentio | on          |          |       |                 |                 |                 |                 |                 |                 |
| ADE        | 1,430.43    | 5,994.43 | 2,282 | 0.00 (.00, .00) | 0.70 (.51, .77) | _               | 0.06 (.00, .12) | 0.87 (.82, .92) | 0.20 (.15, .27) |
| ACE        | 1,459.31    | 6,029.87 | 2,282 | 0.67 (.59, .76) | _               | 0.00 (.00, .02) | 0.11 (.03, .18) | 0.88 (.83, .93) | 0.20 (.15, .27) |
| AE         | 1,459.31    | 6,025.31 | 2,283 | 0.67 (.59, .76) | _               | _               | 0.11 (.03, .18) | 0.88 (.83, .93) | 0.20 (.15, .27) |
| Hyperact   | ivity-impul | sivity   |       |                 |                 |                 |                 |                 |                 |
| ADE        | 1,247.36    | 5,811.36 | 2,282 | 0.61 (.36, .81) | 0.14 (.00, .38) | _               | 0.00 (.00, .02) | 0.86 (.82, .90) | 0.20 (.18, .23) |
| ACE        | 1,248.68    | 5,812.69 | 2,282 | 0.75 (.67, .82) | _               | 0.00 (.00, .07) | 0.00 (.00, .02) | 0.87 (.83, .91) | 0.21 (.18, .24) |
| AE         | 1,246.20    | 5,812.20 | 2,283 | 0.75 (.68, .82) | _               | _               | 0.00 (.00, .02) | 0.87 (.83, .91) | 0.21 (.18, .24) |
| Combine    | d symptom   | s        |       |                 |                 |                 |                 |                 |                 |
| ADE        | 1,263.71    | 5,827.71 | 2,282 | 0.34 (.08, .59) | 0.41 (.17, .67) | _               | 0.00 (.00, .04) | 0.87 (.83, .91) | 0.20 (.16, .22) |
| ACE        | 1,275.34    | 5,839.34 | 2,282 | 0.76 (.69, .84) | _               | 0.00 (.00, .00) | 0.00 (.00, .06) | 0.87 (.83, .92) | 0.21 (.16, .24) |
| AE         | 1,270.82    | 5,836.82 | 2,283 | 0.76 (.69, .84) | _               | _               | 0.00 (.00, .05) | 0.88 (.83, .92) | 0.20 (.16, .24) |
| Self-repor | rt          |          |       |                 |                 |                 |                 |                 |                 |
| Inattentio | on          |          |       |                 |                 |                 |                 |                 |                 |
| ADE        | 1,222.84    | 4,614.84 | 1,696 | 0.00 (.00, .00) | 0.42 (.28, .51) | _               | 0.02 (.00, .11) | 0.66 (60, .73)  | 0.51 (.45, .59) |
| ACE        | 1,238.32    | 4,630.32 | 1,696 | 0.36 (.26, .46) | -               | 0.00 (.00, .04) | 0.07 (.00, .18) | 0.66 (.58, .72) | 0.52 (.45, .60) |
| AE         | 1,235.08    | 4,631.08 | 1,698 | 0.36 (.26, .46) | _               | _               | 0.07 (.00, .18) | 0.66 (.59, .73) | 0.52 (.45, .60) |

Table 10 continued

| Model    | AIC         | -2LL     | df    | А               | D               | С               | Е               | 1               | R               |
|----------|-------------|----------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Hyperact | ivity-impul | sivity   |       |                 |                 |                 |                 |                 |                 |
| ADE      | 1,279.13    | 4,671.13 | 1,696 | 0.00 (.00, .00) | 0.33 (.16, .43) | _               | 0.12 (.02, .23) | 0.67 (.60, .73) | 0.52 (.45, .60) |
| ACE      | 1,288.37    | 4,680.37 | 1,696 | 0.27 (.17, .37) | _               | 0.00 (.00, .00) | 0.18 (.07, .29) | 0.67 (.60, .73) | 0.52 (.46, .60) |
| AE       | 1,285.94    | 4,681.94 | 1,698 | 0.27 (.17, .37) | _               | _               | 0.18(.08, .29)  | 0.67 (.60, .73) | 0.52 (.45, .60) |
| Combine  | d symptom   | s        |       |                 |                 |                 |                 |                 |                 |
| ADE      | 1,216.89    | 4,608.89 | 1,696 | 0.00 (.00, .00) | 0.38 (.24, .48) | _               | 0.10 (.01, .20) | 0.69 (.63, .76) | 0.47 (.41, .54) |
| ACE      | 1,230.02    | 4,622.02 | 1,696 | 0.32 (.22, .42) | _               | 0.00 (.00, .00) | 0.16 (.06, .27) | 0.69 (.63, .75) | 0.48 (.41, .55) |
| AE       | 1,235.08    | 4,623.43 | 1,698 | 0.32 (.22, .42) | -               | _               | 0.16 (.06, .27) | 0.69 (.62, .76) | 0.47 (.41, .55) |

AIC Akaike Information Criterion,  $-2LL - 2 \times \log$ -likelihood, df degrees-of-freedom. Best fitting models are indicated by non-significant change in -2LL when parameters are dropped from the model using Chi square distribution with 1 df

# References

- Adler LA, Faraone SV, Spencer TJ, Michelson D, Reimherr FW, Glatt SJ, Marchant BK, Biederman J (2008) The reliability and validity of self- and investigator ratings of ADHD in adults. J Atten Disord 11:711–719
- Bollen K, Lennox R (1991) Conventional wisdom on measurement: a structural equation perspective. Psychol Bull 110:305
- Boomsma DI, Saviouk V, Hottenga J-J, Distel MA, De Moor MHM, Vink JM, Geels LM, Van Beek JHDA, Bartels M, De Geus EJC, Willemsen G (2010) Genetic epidemiology of attention deficit hyperactivity disorder (ADHD index) in adults. PLoS ONE 5:e10621
- Chang Z, Lichtenstein P, Asherson PJ, Larsson H (2013) Developmental twin study of attention problems: high heritabilities throughout development. JAMA psychiatry 70:311–318
- Derks EM, Hudziak JJ, Dolan CV, Van Beijsterveldt TCEM, Verhulst FC, Boomsma DI (2008) Genetic and environmental influences on the relation between attention problems and attention deficit hyperactivity disorder. Behav Genet 38:11–23
- Eaves L (1976) A model for sibling effects in man. Heredity 36:205–214
- Eaves LJ, Silberg JL, Maes HH, Simonoff E, Pickles A, Rutter M, Neale MC, Reynolds CA, Erikson MT, Heath AC, Loeber R, Truett KR, Hewitt JK (1997) Genetics and developmental psychopathology: 2. The main effects of genes and environment on behavioral problems in the Virginia Twin Study of Adolescent Behavioral Development. J Child Psychol Psychiatry 38:965–980
- Ebejer JL, Medland SE, Van Der Werf J, Lynskey M, Martin NG, Duffy DL (2013) Variation in latent classes of adult attention– deficit hyperactivity disorder by sex and environmental adversity. J Atten Disord. doi:10.1177/1087054713506261
- Gillespie NA, Henders AK, Davenport TA, Hermens DF, Wright MJ, Martin NG, Hickie IB (2012) The Brisbane Longitudinal Twin Study: pathways to Cannabis Use, Abuse, and Dependence project—current status, preliminary results, and future directions. Twin Res Hum Genet 1:1–13
- Hay DA, Bennett KS, Levy F, Sergeant J, Swanson J (2007) A twin study of attention-deficit/hyperactivity disorder dimensions rated by the strengths and weaknesses of ADHD-symptoms and normal-behavior (SWAN) scale. Biol Psychiatry 61:700–705
- Kan KJ, Dolan CV, Nivard MG, Middeldorp CM, Van Beijsterveldt CEM, Willemsen G, Boomsma DI (2012) Genetic and environmental stability in attention problems across the lifespan: evidence from the Netherlands twin register. J Am Acad Child Adolesc Psychiatry 52(1):12–25

- Kim JH, Lee EH, Joung YS (2013) The WHO Adult ADHD Self-Report Scale: Reliability and Validity of the Korean Version. Psychiatry Investig 10:41–46
- Knopik VS, Sparrow EP, Madden Paf, Bucholz KK, Hudziak JJ, Reich W, Slutske WS, Grant JD, Mclaughlin T, Todorov A (2005) Contributions of parental alcoholism, prenatal substance exposure, and genetic transmission to child ADHD risk: a female twin study. Psychol Med 35:625–635
- Knouse LE, Bagwell CL, Barkley RA, Murphy KR (2005) Accuracy of self-evaluation in adults with ADHD. J Atten Disord 8:221–234
- Kooij SJJ, Boonstra MA, Swinkels SHN, Bekker EM, De Noord I, Buitelaar JK (2008) Reliability, validity, and utility of instruments for self-report and informant report concerning symptoms of ADHD in adult patients. J Atten Disord 11:445
- Larsson H, Asherson P, Chang Z, Ljung T, Friedrichs B, Larsson JO, Lichtenstein P (2012) Genetic and environmental influences on adult attention deficit hyperactivity disorder symptoms: a large Swedish population-based study of twins. Psychol Med 43(1):197–207
- Levy F, Hay DA, Mcstephen M, Wood C, Waldman I (1997) Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study. J Am Acad Child Adolesc Psychiatry 36:737–744
- Loehlin JC (1996) The Cholesky approach: a cautionary note. Behav Genet 26:65–69
- Magnússon P, Smári J, Sigurðardóttir D, Baldursson G, Sigmundsson J, Kristjánsson K, Sigurðardóttir S, Hreiðarsson S, Sigurbjörnsdóttir S, Guðmundsson ÓÓ (2006) Validity of selfreport and informant rating scales of adult ADHD symptoms in comparison with a semistructured diagnostic interview. J Atten Disord 9:494–503
- Martin N, Scourfield J, Mcguffin P (2002) Observer effects and heritability of childhood attention-deficit hyperactivity disorder symptoms. Br J Psychiatry 180:260–265
- Merwood A, Greven C, Price T, Kuntsi J, Mcloughlin G, Larsson H, Asherson P (2013) Different heritabilities but shared aetiological influences for parent, teacher and self-ratings of ADHD symptoms: an adolescent twin study. Psychol Med 1:12
- Neale MC, Boker SM, Xie G, Maes HM (1999) Statistical modeling. Department of Psychiatry, Richmond
- Pinto R, Rijsdijk F, Frazier-Wood A, Asherson P, Kuntsi J (2012) Bigger families fare better: a novel method to estimate rater contrast effects in parental ratings on ADHD symptoms. Behav Genet 42(6):875–885
- Posthuma D, Boomsma DI (2000) A note on the statistical power in extended twin designs. Behav Genet 30:147–158

- Simonoff E, Pickles A, Hervas A, Silberg JL, Rutter M, Eaves L (1998) Genetic influences on childhood hyperactivity: contrast effects imply parental rating bias, not sibling interaction. Psychol Med 28:825–837
- Swanson J, Schuck S, Mann M, Carlson C, Hartman K, Sergeant J, Clevenger W, Wasdell M, Mccleary R (2005). Categorical and dimensional definitions and evaluations of symptoms of ADHD: The SNAP and the SWAN Ratings Scales [Draft] [Online]. Available: http://www.adhd.net/SNAP\_SWAN.pdf. Accessed 24<sup>th</sup> February, 2012
- Wright MJ, Martin NG (2004) Brisbane adolescent twin study: outline of study methods and research projects. Aust J Psychol 56:65–78
- Zhu G, Duffy DL, Eldridge A, Grace M, Mayne C, O'gorman L, Aitken JF, Neale MC, Hayward NK, Green AC (1999) A Major Quantitative-Trait Locus for Mole Density Is Linked to the Familial Melanoma Gene CDKN2A: a Maximum-Likelihood Combined Linkage and Association Analysis in Twins and Their Sibs. Am J Hum Genet 65:483–492