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Abstract  

 Recently, carriers of a common variant in the autism risk gene, CNTNAP2, were 

found to have altered functional brain connectivity using functional MRI. Here we 

scanned 328 young adults with high-field (4-Tesla) diffusion imaging, to test the 

hypothesis that carriers of this gene variant would have altered structural brain 

connectivity. All participants (209 females, 119 males, age: 23.4 +/-2.17 SD years) were 

scanned with 105-gradient high angular diffusion imaging (HARDI) at 4 Tesla. After 

performing a whole-brain fiber tractography using the full angular resolution of the 

diffusion scans, 70 cortical surface-based regions of interest were created from each 

individualôs co-registered anatomical data to compute graph metrics for all pairs of 

cortical regions. In graph theory analyses, subjects homozygous for the risk allele (CC) 

had lower characteristic path length, greater small-worldness and global efficiency in 

whole brain analyses, as well as greater eccentricity (maximum path length) in 60 of 70 

nodes in regional analyses. These results were not reducible to differences in more 

commonly studied traits such as fiber density or fractional anisotropy. This is the first 

study to link graph theory metrics of brain structural connectivity to a common genetic 

variant linked with autism and will help us understand the neurobiology of circuits 

implicated in risk for autism. 
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Introduction  

 Many neuropsychiatric disorders are thought to involve disrupted brain 

connectivity, but very little is known about what causes brain connectivity to vary in 

human populations. Total brain volume (Posthuma et al., 2000), cortical thickness 

(Schmitt et al., 2008; Thompson et al., 2001) and measures of white matter integrity 

derived from DTI (diffusion tensor imaging) (Chiang et al., 2009; Chiang et al., 2011a; 

Pfefferbaum et al., 2001) are all under moderately strong genetic control. By analyzing 

very large cohorts (on the order of 20,000 subjects) with MRI and genome-wide scans 

(JL Stein et al., 2011), we recently discovered commonly carried genetic variants that are 

associated with differences in brain structure. As these studies searched the genome for 

effects of up to a million SNPs, very large samples were needed to reduce the risk of false 

positive associations. An alternative approach is to study candidate genes already 

associated with disease risk. For instance, young adults who carry the Alzheimerôs risk 

allele CLU-C have lower white matter integrity in DTI scans of the brain, as measured by 

fractional anisotropy (Braskie et al., 2011). In addition, common variants in the growth 

factor genes, BDNF and NTRK1, are also associated with altered white matter integrity, 

making it possible to predict a small proportion of individual differences in brain 

integrity by genotyping multiple common variants (Kohannim et al., 2011). These early 

DTI genetics studies have generally mapped brain integrity using maps of fractional 

anisotropy, either broadly across the brain (Braskie et al., 2011), or in specific brain 

regions (Chiang et al., 2009; McIntosh et al., 2008; Winterer et al., 2008). Methods that 

assess brain connectivity may be useful in gauging how these variants affect white matter 

organization overall. Even so, no studies have yet linked graph metrics of structural brain 
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connectivity to any specific genetic variants. Power to detect gene effects is limited in 

small samples, so we scanned a fairly large cohort of twins (118 identical twin pairs, 183 

fraternal twin pairs, 27 non-twin siblings) with high angular resolution diffusion imaging 

(HARDI), at a relatively high magnetic field (4 Tesla).   

The recently discovered autism risk gene, CNTNAP2, encodes CASPR2, or 

contactin-associated protein-like 2, a member of the neurexin superfamily of 

transmembrane proteins. CASPR2 is involved in clustering voltage-gated potassium 

channels (Kv1.1) at the nodes of Ranvier (Strauss et al., 2006; Vernes et al., 2008). 

CASPR2 has a suggested developmental role as a cell adhesion molecule responsible for 

neuroblast migration and laminar organization (Arking et al., 2008; Bakkaloglu et al., 

2008; Vernes et al., 2008). In a study of an Amish family, a deletion mutation in 

CNTNAP2 was linked with a disorder with many hallmarks of autism, involving seizures, 

language difficulties, and impaired social abilities (Strauss et al., 2006). Subsequent 

research in both autistic and language-impaired (but non-autistic) populations has 

discovered further support that CNTNAP2 is associated with autism (Alarcón et al., 2008; 

Arking et al., 2008; Bakkaloglu et al., 2008) and language ability (Alarcón et al., 2008; 

Vernes et al., 2008). A recent study characterizing CNTNAP2 knockout mice found 

behavioral deficits characteristic of autism - namely, seizures - as well as neuronal 

migration abnormalities, reduced interneuron density, and abnormal neuronal network 

activity (Peñagarikano et al., 2011). CNTNAP2 expression is highest in the frontal and 

temporal lobes (Abrahams et al., 2007; Arking et al., 2008; Bakkaloglu et al., 2008; 

Vernes et al., 2008), areas responsible for language abilities, particularly in the left 

hemisphere (Baynes et al., 1998), supporting the link between CNTNAP2 and language 
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function. Stein and colleagues found that a CNTNAP2 SNP (rs2710102) was associated 

with increased risk for selective mutism, an anxiety disorder in which a child is unable or 

unwilling to speak in certain situations, despite having normal language abilities in other 

situations. This disorder is similar, in some respects, to autism; they both involve 

characteristic deficits in language and social interactions (MB Stein et al., 2011).  

In a recent analysis of functional brain connectivity using functional MRI, Scott-

Van Zeeland and colleagues (2010) compared risk and non-risk allele carriers of 

CNTNAP2 (rs2710102) in a cohort consisting of both autistic and typically developing 

children (Scott-Van Zeeland et al., 2010). Children with the genetic risk allele did not 

show the same left-lateralized pattern of mPFC (medial prefrontal cortex) connectivity as 

non-carriers. This association was consistent with prior research linking CNTNAP2 to 

language ability. Scott-Van Zeeland et al. also found stronger long-range anterior-

posterior connections in the non-risk subjects and stronger short-range frontal lobe 

connectivity in the at-risk subjects. As short-range connections are typically pruned and 

long-range ones are strengthened over the course of development (Dosenbach et al; 2010; 

Huttenlocher, 1990), this may be evidence of delayed development in those at risk.  

Graph theory can quantify brain connectivity at the network level. This branch of 

mathematics - for describing and analyzing graphs - examines brain networks as 

collections of nodes (i.e., specific brain regions) and edges (connections between those 

regions) (Sporns et al., 2004). The complex web of brain structural or functional 

connectivity may be quantified using a number of key parameters to summarize network 

characteristics. Path length, for example, is a measure of the distance (i.e., number of 

edges) between one brain region and another (Rubinov & Sporns, 2009). A network with 
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a shorter average path length is considered to be more efficient in terms of information 

transfer (Bullmore & Sporns, 2009). We recently found these metrics to be heritable in 

this same sample (Dennis et al., 2011). 

Here we set out to investigate how variation in a CNTNAP2 SNP (rs2710102) 

might relate to graph theoretical measures from diffusion-weighted MRI. Further impetus 

for this work came from a recent report that found an association between a different 

CNTNAP2 SNP (rs7794745) and fractional anisotropy (FA) (Tan et al., 2010). Tan and 

colleagues found lower FA in individuals homozygous for the risk allele in a number of 

regions implicated in autism, including the cerebellum, fusiform gyrus, occipital and 

frontal cortices (Tan et al., 2010). Given this prior success in linking a different 

CNTNAP2 SNP with structural connectivity, we decided this might be a promising 

method for understanding the results of Scott-Van Zeeland and colleagues, who found an 

association between our CNTNAP2 SNP (rs2710102) and alterations in functional 

connectivity.  Functional and structural connectivity are closely related, with functional 

connectivity existing between areas that are structurally connected; yet functional 

connections may exist where no structural connections exist (Honey et al., 2009). Results 

from these different modalities may assess different types of connectivity, but they are 

complementary and together generate a more complete picture of brain networks. In 

some cases but not others, differences in functional synchronization may be explained by 

detectable differences in structural connections. Additionally, findings from different 

modalities may discover general principles of neural organization from multiple very 

different modalities, such as network hubs, small-world properties, as well as metrics of 

efficiency and resilience to disruption. Prior research associating CNTNAP2 with 
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cognitive or behavioral traits focused on autistic populations or people with known 

language difficulties. To test if this very common genetic variant leads to detectable brain 

differences outside of populations with language or developmental disorders, we focused 

on healthy adults with normal variations in language ability. As Scott-Van Zeeland and 

colleagues, 2010, were able to find and replicate CNTNAP2ôs association with brain 

connectivity in a population of both autistic and typically developing children, we 

hypothesized that we might be able to detect differences in the structural networks of 

healthy normal carriers of the CNTNAP2 risk allele (rs2710102). In this study, we 

assessed both global and hemisphere-specific brain network properties. We recently 

reported on genetically influenced left-right asymmetries in white matter tracts 

(Jahanshad et al., 2010). Given those asymmetries, we expected that the relationship 

between CNTNAP2 and network measures might differ by hemisphere, as CNTNAP2 is 

linked with language ability (Alarcón et al., 2008; Vernes et al., 2008) - a generally a left-

lateralized function (Baynes et al., 1998). As such, we tested for effects on each 

hemisphere independently. 

Materials and Methods 

Participants 

Participants were recruited as part of a 5-year research project examining healthy 

young adult Australian twins using structural MRI and DTI with a projected sample size 

of approximately 1150 at completion (de Zubicaray et al., 2008). Our analysis included 

328 right-handed subjects (209 women/119 men, average age=23.4, SD=2.17). This 

population included 118 monozygotic (MZ) twins, 183 dizygotic (DZ) twins, and 27 non-

twin siblings, from 189 families. The population was racially homogenous: 100% of 
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subjects were Caucasian. In studies of genetic variations, a genetically homogenous 

population is preferable to avoid incorrectly ascribing effects to alleles that have different 

frequencies in different racial/ethnic groups. Subjects were screened to exclude those 

with a history of significant head injury, neurological or psychiatric illness, substance 

abuse or dependence, or had a first-degree relative with a psychiatric disorder. All 

participants were right-handed, as assessed by 12 items on the Annettôs Handedness 

Questionnaire (Annett et al., 1970). Study participants gave informed consent; 

institutional ethics committees at the Queensland Institute of Medical Research, the 

University of Queensland, the Wesley Hospital and at UCLA approved the study. 

Establishing Zygosity and Genotyping  

Zygosity was
 
established objectively by typing nine independent DNA 

microsatellite
 
polymorphisms (polymorphism information content > 0.7), using

 
standard 

PCR methods and genotyping. Results were cross-checked
 
with blood group (ABO, MNS, 

and Rh), and phenotypic data (hair,
 
skin, and eye color), giving an overall probability of 

correct
 
zygosity assignment > 99.99%. Genomic DNA samples were analyzed on the 

Human610-Quad BeadChip (Illumina) according to the manufacturers protocols 

(Infinium HD Assay; Super Protocol Guide; Rev. A, May 2008). For our SNP of interest, 

rs2710102, 47 (20%) were homozygous for the non-risk allele (TT) 111 (47.4%) subjects 

were heterozygous for the risk allele (TC), while 76 (32.4%) subjects were homozygous 

for the risk allele (CC).  

Scan Acquisition 
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Whole-brain anatomical and high angular resolution diffusion images (HARDI) 

were collected with a 4T Bruker Medspec MRI scanner. T1-weighted anatomical images 

were acquired with an inversion recovery rapid gradient echo sequence. Acquisition 

parameters were: TI/TR/TE = 700/1500/3.35ms; flip angle = 8 degrees; slice thickness = 

0.9mm, with an acquisition matrix of 256x256. Diffusion-weighted images (DWI) were 

also acquired using single-shot echo planar imaging with a twice-refocused spin echo 

sequence to reduce eddy-current induced distortions. Acquisition parameters were 

optimized to provide the best signal-to-noise ratio for estimation of diffusion tensors 

(Jones et al., 1999). Imaging parameters were: 23cm FOV, TR/TE 6090/91.7ms, with a 

128x128 acquisition matrix. Each 3D volume consisted of 55 2-mm thick axial slices 

with no gap and 1.79x.1.79 mm
2
 in-plane resolution. 105 images were acquired per 

subject: 11 with no diffusion sensitization (i.e., T2-weighted b0 images) and 94 diffusion-

weighted (DW) images (b = 1159 s/mm
2
) with gradient directions evenly distributed on 

the hemisphere. Scan time for the HARDI scan was 14.2 min.  

Cortical Extraction and HARDI Tractography  

Connectivity analysis was performed as in Jahanshad et al. (Jahanshad et al, 2011). 

Briefly, non-brain regions were automatically removed from each T1-weighted MRI scan, 

and from a T2-weighted image from the DWI set, using the FSL tool ñBETò (FMRIB 

Software Library, http://fsl.fmrib.ox.ac.uk/fsl/). A trained neuroanatomical expert 

manually edited the T1-weighted scans to further refine the brain extraction. Total brain 

volume estimates were obtained from the manually edited full brain mask, including 

cerebral, cerebellar, and brain stem regions. All T1-weighted images were linearly 

aligned using FSL (with 9 DOF) to a common space (Holmes et al., 1998) with 1mm 
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isotropic voxels and a 220×220×220 voxel matrix. Raw diffusion-weighted images were 

corrected for eddy current distortions using the FSL tool, ñeddy_correctò 

(http://fsl.fmrib.ox.ac.uk/fsl/).  For each subject, the 11 eddy-corrected images with no 

diffusion sensitization were averaged, linearly aligned and resampled to a downsampled 

version of their corresponding T1 image (110×110×110, 2×2×2mm). Averaged b0 maps 

were elastically registered to the structural scan using a mutual information cost function 

(Leow et al., 2005) to compensate for EPI-induced susceptibility artifacts. 

35 cortical labels per hemisphere, as listed in the Desikan-Kil liany atlas (Desikan 

et al., 2006), were automatically extracted from all aligned T1-weighted structural MRI 

scans using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). The Desikan-Killiany atlas 

lists 34 cortical regions per hemisphere that are based on the main cortical gyri, and 

FreeSurfer adds the insula to make a total of 35 cortical regions for each hemisphere. A 

full list of the regions included is found in Jahanshad et al., 2011. Other parcellations are 

possible, and some may be more sensitive in principle to picking up gene effects. Prior 

work by our lab found that connectivity maps based on these 70 regions can be used to 

detect genetic influences on brain connections (in terms of gross heritability rather than 

SNP effects), so we planned our SNP analyses based on this parcellation (Joshi et al., 

2010; Jahanshad et al., 2011). The Desikan-Killiany atlas has been widely used for 

structural connectivity analysis (Honey et al., 2009; Hagmann et al., 2010). Even so, 

there is ongoing work in the field aiming to optimize the cortical parcellation for network 

analyses, and to understand how different parcellation schemes may influence different 

kinds of network measures (Zalesky et al., 2010; Bassett et al., 2011). As a linear 

registration is performed by the software, the resulting T1-weighted images and cortical 
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models were aligned to the original T1 input image space and down-sampled using 

nearest neighbor interpolation (to avoid intermixing of labels) to the space of the DWIs. 

To ensure tracts would intersect cortical labeled boundaries, labels were dilated with an 

isotropic box kernel of 5 voxels.  

The transformation matrix from the linear alignment of the mean b0 image to the 

T1-weighted volume was applied to each of the 94 gradient directions to properly re-

orient the orientation distribution functions (ODFs). At each HARDI voxel, ODFs were 

computed using the normalized and dimensionless ODF estimator, derived for q-ball 

imaging (QBI) in (Aganj et al., 2010). We performed HARDI tractography on the 

linearly aligned sets of DWI volumes using these ODFs.  Tractography was performed 

using the Hough transform method as described in (Aganj et al., 2011). Briefly, 

tractography was performed after a linearly aligning and scaling the DWI data to 

anatomical (T1-weighted) image space. As a linear transform was applied to the diffusion 

weighted images, we also reoriented the gradient table so that the tract tracing algorithm 

could correctly follow the dominant direction of diffusion. The table of gradient vectors 

was corrected to reflect the nonrigid transformation by applying the same transformation 

to each directional gradient vector. Running tractography after re-orienting the images, as 

we did here, might slightly affect the SNR (signal-to-noise ratio) of the diffusion signals, 

as it would act as a very mild spatial filter on the data. 

Elastic deformations obtained from the EPI distortion correction, mapping the 

average b0 image to the T1-weighted image, were then applied to the tractsô 3D 

coordinates for accurate alignment of the anatomy. Each subjectôs dataset contained 

2,000-10,000 useable fibers (3D curves). Fibers were filtered to eliminate those likely to 
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be erroneous. All duplicate fibers were removed; those with a very small number of 

points (<5) were considered unreliable and were also removed. 

For each subject, a full 70×70 connectivity matrix was created. Each element 

described the proportion of the total number of fibers connecting each of the labels; 

diagonal elements of the matrix describe the total number of fibers passing through a 

certain cortical region of interest. As these values were calculated as a proportion -- they 

were normalized to the total number of fibers traced for each individual participant, so 

that results could not be skewed by raw fiber count.  

Graph Theory Analyses 

On the 70x70 matrices generated above, we used the Brain Connectivity Toolbox 

(Rubinov & Sporns, 2010; https://sites.google.com/a/brain-connectivity-

toolbox.net/bct/Home) to compute two standard measures of nodal brain connectivity ï 

regional efficiency (EREG) and eccentricity (ECC). EREG is the global efficiency 

computed for each node and is related to the clustering coefficient (Latora & Marchiori, 

2001). ECC is the longest characteristic path length for any given node (Sporns, 2002). 

We also computed five standard measures of global brain connectivity - characteristic 

path length (CPL), mean clustering coefficient (MCC), global efficiency (EGLOB), 

small-worldness (SW), and modularity (MOD) (Rubinov & Sporns, 2010). CPL is a 

measure of the average path length in a network, path length being the minimum number 

of edges that must be traversed to get from one node to another. MCC is a measure of 

how many neighbors of a given node are also connected to each other, in proportion with 

the maximum number of connections in the network. EGLOB is inversely related to CPL, 
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networks with a small average CPL are generally more efficient than those with large 

average CPL. SW represents the balance between network differentiation and network 

integration, calculated as a ratio of local clustering and characteristic path length of a 

node relative to the same ratio in a randomized network. We created 10 simulated 

random networks. The ratio of the clustering coefficient in our network to the clustering 

coefficient in the simulated random networks was denoted by lambda. The ratio of the 

CPL in our network to the CPL in the simulated random network was denoted by gamma. 

These measures were generated in the same way as the others, integrated across a range, 

and are listed in the results tables alongside MCC and CPL but were not entered into any 

association analyses. MOD is the degree to which a system can be subdivided into 

smaller networks (Bullmore & Bassett, 2010). The equations to calculate each of these 

measures can be found in Rubinov and Sporns. 

One step in graph theory analysis is selecting a threshold for the network, termed 

the sparsity. Networks with a sparsity of 0.2 retain only 20% of the connections of the 

ñfull-sparsityò network. Selecting a single sparsity level may arbitrarily affect the 

network measures, so we computed measures at multiple sparsities, and integrated across 

that range to generate more stable scores. We calculated these measures for the whole 

brain over a range of sparsities (0.2-0.3, in 0.01 increments), and calculated the area 

under the curve of those 11 data points to generate an integrated score for each measure. 

23 participants completed 2 separate scanning sessions 3 months apart in which DTI data 

were collected. The measures were calculated for both scans for each of these participants 

over the whole range of sparsities, and we found that the range 0.2-0.3 gave the most 

stable network measures. Supplementary Figure 1 shows the calculations of all five 
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network measures plotted for both groups across the sparsity range 0-0.5. These graphs 

show that at very low sparsities the graphs are not stable, while we know that higher 

sparsities are less biologically plausible (Sporns, 2011). We also calculated the network 

measures for the left and right hemispheres independently. We hypothesized that we 

would find evidence of altered structural connectivity between the two groups and thus 

started with global graph theory measures of connectivity. We calculated efficiency on a 

regional level by considering these measures at each node, to see whether our results 

were attributable to differences in certain brain regions. For these regional measures, we 

calculated the measures over the same range of sparsities and integrated over that range. 

We calculated eccentricity on a regional level as well. We ran post hoc association 

analyses on the raw fiber density matrices to see if there were overall differences in 

connectivity but also ran the analyses on a subset of connections, just those with one 

terminus in the frontal, parietal, or temporal cortex.  

Association Controlling for Relatedness 

We performed a mixed-model regression for each network measure to find the 

association of the SNP while incorporating a model accounting for family relatedness 

(Kang et al., 2008). When family members are analyzed, the relatedness among members 

of the sample must be taken into account, and each individual cannot be treated as 

independent as some share part (in the case of siblings and DZ twins) or all (MZ twins) 

of their genome. This analysis was performed using Efficient Mixed-Model Association 

(EMMA; http://mouse.cs.ucla.edu/emma/) within the R statistical package (version 2.9.2; 

http://www.r-project.org/). A symmetric n × n kinship matrix was constructed to describe 

the relationship of every subject to all others. A kinship matrix coefficient of 1 denoted 
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the relationship of each subject to him/herself; the coefficient for MZ twins within the 

same family was 1; the coefficient for DZ twins and siblings within the same family was 

0.5; and the coefficient for subjects not in the same family was 0. Ancestry outliers were 

removed, so no additional modeling was used in the kinship matrix to adjust for 

population genetic structure between families. The association of SNP rs2710102 was 

tested for all network measures described above according to the formula: 

y = Xɓ + Zu + e. 

Here y is a vector representing the network property; X is a matrix of fixed-effects 

containing the genetic effect of the SNP for each subject (coded additively or using other 

models that combine genotype groups; see above) and a constant term; ɓ is a vector 

representing the fixed effect regression coefficients; Z is an identity matrix; u is the 

random effect with Var(u) = ů
2
gK , where K  is the kinship matrix; and e is a matrix of 

residual effects with Var(e)= ů
2
eI . Age and sex were included as covariates. 

 FDR Correction for Multiple Comparisons 

 All results were controlled for multiple comparisons using the standard FDR 

(false discovery rate) method (Benjamini et al., 1995). The FDR is the expected 

proportion of false positives among results that are declared significant. Simply setting 

the alpha at a value of 0.05 implies that 5% of results are expected to be false positives. 

An FDR q-value of 0.05, as used in this paper, implies that, on average across 

experiments, 5% of results declared significant are expected to be false positives. 
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Results 

Carriers of two (CC) but not just one (CT) risk allele have a higher risk of speech 

development delay and/or impairment (see SNPedia, at 

http://www.snpedia.com/index.php/Rs2710102). Thus, we coded our analyses in a 

recessive fashion (with respect to the major risk allele), where individuals homozygous 

for the risk allele formed one group, and those heterozygous for the risk allele or carrying 

no copies of the risk allele formed the other group. Graph theory measures depend on a 

choice of threshold on the strength of connectivity, which may be thought of as a sparsity 

level: pruning away weaker connections leads to a sparser network model. To avoid this 

dependency, which could lead to arbitrary thresholding effects in the results, connectivity 

measures were integrated across a range of sparsities (0.2-0.3), as this range was the most 

stable in an initial analysis (see Methods section for definitions, and Supplementary 

Figure 1). This range of sparsities also makes sense biologically, as demonstrated in a 

number of studies (Sporns, 2011). All the analyses below were run on integrated scores 

calculated in this way.  

Results ï Whole Brain Measures 

We tested associations of the rs2710102 CNTNAP2 SNP with five commonly 

studied network measures: characteristic path length (CPL), mean clustering coefficient 

(MCC), global efficiency (EGLOB), small-worldness (SW), and modularity (MOD). The 

allele dose at the SNP (i.e., the number of risk alleles) was significantly associated with 

the characteristic path length in the whole brain structural network (b=0.17, p=0.0069), as 

well as small-worldness (b=-0.6, p=0.00068) and global efficiency (b=-0.09, p=0.00099) 
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in the left hemisphere and the global efficiency in the right hemisphere (b=-0.077, 

p=0.0056). Here b represents the unnormalized slope of the regression coefficient, where 

the at-risk group is coded as 0 and the non-at-risk group is coded as 1. These results 

remained significant after correcting for multiple comparisons using the false discovery 

rate (FDR) procedure (Benjamini et al., 1995) across all 15 tests performed (5 in the left 

hemisphere, and 5 in the right hemisphere, and 5 for whole brain, q<0.05). Individuals 

homozygous for the risk allele (N=99) had greater global efficiency in both hemispheres 

and greater small-worldness in the left hemisphere. Individuals carrying one or no copies 

of the risk allele (N=229) had a greater characteristic path length in the whole brain 

structural network. The whole brain results, with significant results bolded, along with 

average values for each group, are shown in Table 1. They are visualized in Figure 1 and 

Figure 2.  

Results - Regional Efficiency 

Our association analysis of the rs2710102 CNTNAP2 SNP with the regional 

efficiency of each node, integrated across sparsities .2-.3, yielded results in 11 of 70 

nodes that passed p<0.05 but did not pass the more stringent FDR correction. These 

results, along with average values for each group, are shown in Table 2. To preserve 

space, only nodes passing p<0.05 are presented in Table 2. 

Results ï Eccentricity 

 To more fully examine the distribution of path lengths in the network, we tested 

the effect of CNTNAP2 on eccentricity, a nodal measure of the maximal shortest path 

length for each node, meaning the length computed between that node and the farthest 
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node it is connected to. Given the significant results in characteristic path length, global 

efficiency, and small-worldness, all of which are related to path length, we decided to 

look further into other measures related to path length. Of course these are not entirely 

independent analyses, and should be considered post hoc and exploratory. Our analyses 

of the associations between the rs2710102 CNTNAP2 SNP and the eccentricity of each 

node, integrated across sparsities .2-.3, yielded significant results for 60 of the 70 nodes, 

30 in the left hemisphere and 30 in the right hemisphere, as seen in Figure 3 (q<0.05).  

These results are displayed in Figure 3 along with averages and resultant b and p values 

in Table 3. To preserve space, only nodes passing q<0.05 are presented in Table 3.  

Post-hoc Analysis ï Additive and Dominant Models 

Based on evidence that only carriers of two risk alleles (CC) are affected (see 

SNPedia, at http://www.snpedia.com/index.php/Rs2710102), we started with a recessive 

model, with carriers of the CC genotype forming one group and those with CT or TT 

forming the other. However, we also ran post hoc analyses with the other two possible 

models: additive, in which each genotype forms one group, and dominant, in which the 

CC and CT genotypes form one group and participants with the TT genotype form the 

other group. In the additive model, we detected significant associations between allele 

dose and characteristic path length in the whole brain network (b=0.10, p=0.0096), and 

global efficiency (b=-0.062, p=0.00041) and small-worldness (b=-0.34, p=0.0030) in the 

left hemisphere. The global post hoc results that survive multiple comparisons correction 

are presented in Table 4 (q<0.05). For the whole brain measures in the dominant model, 

none of the measures were significantly associated with the allele dose at the SNP. For 

the regional efficiency analyses, the additive model yielded results in 14 nodes (p<0.05), 
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as shown in Supplementary Table 1. The dominant model yielded results in 5 nodes as 

well (p<0.05). Neither of these passed FDR correction. These results can be seen in 

Supplementary Table 2. For the analysis of nodal eccentricities, in the additive model 

there were results in 64 of 70 nodes that passed FDR correction. Six nodes were found to 

be significant here that were not originally found in the recessive model, and two were 

not found in the additive model that were found with the recessive. The two nodes that 

were significant in the recessive model but not in the additive model were the left 

fusiform and right insula. The six nodes that were significant in the additive model but 

not in the recessive model were the left inferior parietal lobule, left isthmus of the 

cingulate, left supramarginal gyrus, right bank of the superior temporal sulcus, right 

cuneus, and right pericalcarine cortex. In the dominant model, there were no significant 

associations with group membership.  

Post-hoc Analysis ï Fiber Density in Frontal, Parietal, and Temporal Lobes and FA 

 We had initially analyzed whether our two groups differed in their whole fiber 

density matrices, that is, the number of fibers per unit volume connecting each node, and 

found no significant differences. Given the promising findings suggesting associations 

with global and nodal network measures, we ran post hoc tests on the fiber density in the 

frontal and temporal lobes, where CNTNAP2 gene expression is enriched (Abrahams et 

al., 2007; Arking et al., 2008; Strauss et al., 2006; Vernes et al., 2008). Also, Scott-Van 

Zeeland et al. had found associations between this gene and measures of functional 

connectivity in the frontal and parietal lobes so we included parietal nodes in this analysis 

as well. The nodes counted in this subset are listed in Supplementary Table 3. There 

was a trend for greater fiber density in the non-risk subjects in all three lobes, but these 
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results did not pass FDR correction. We also checked whether our two groups differed in 

fractional anisotropy (FA) or apparent diffusion coefficient (ADC) along tracts 

connecting each node and found no association for any of the connections. One reason 

we focused our genetic analysis on FA was that we had completed a series of earlier 

papers that aimed to find out which DTI-derived measures were most highly heritable. In 

a twin sample scanned with DTI, it is possible to estimate the proportion of variance in a 

measure that is attributable to genetic variation, by examining covariances between 

different types of twins (mono- and dizygotic). In these early analyses, FA was found to 

be highly heritable (Lepore et al., 2008) and so were the 3 diffusion eigenvalues when 

treated as a multivariate vector (Lee et al., 2009a). The full tensor was also highly 

heritable, so long as the meaning of heritability was appropriately redefined using a Lie 

group metric to measure tensor differences (Lee et al., 2009b, 2010). As FA was more 

highly heritable than mean diffusivity, we preferred to use it as the target for our 

subsequent genetic association analyses (Braskie et al., 2011, Jahanshad et al., 2012). In 

addition, we weighted our fiber density matrices to emphasize those tracts that are 

expected to be more heavily myelinated by multiplying our fiber density and FA matrices 

element-wise; even so, we found no associations between CNTNAP2 dose and those 

values. Thus, the global and nodal network differences in carriers of the risk gene were 

not readily reducible to effects on more common network properties, such as fiber density.  

Post-Hoc Analysis ï Interhemispheric Connections 

Given evidence that individuals with autism may have abnormalities in 

interhemispheric connectivity (Just et al., 2007), we generated 35x35 matrices of 

interhemispheric connections for all participants. We analyzed these for differences in 
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fiber density for these interhemispheric connections between the two groups, and found 

no significant differences that passed FDR correction. We also analyzed whether the 

number of interhemispheric connections present differed between the groups, meaning 

the number of elements in the 35x35 matrix where >95% of subjects had non-zeros 

entries, again finding no significant differences.    

Discussion  

In this study, we found that carriers of a common variant in the autism risk gene, 

CNTNAP2, had differences in structural brain connectivity computed from high-field DTI. 

Graph theory measures differed in individuals homozygous for the risk allele. This 

higher-risk group had shorter characteristic path length in the whole brain network, 

greater small-worldness and greater global efficiency in the left hemisphere and greater 

global efficiency in the right hemisphere. These results may seem counter-intuitive given 

findings of higher efficiency but higher efficiency in structural networks may reflect 

more random connections in the risk-groupôs brain networks, as random networks have 

high levels of global efficiency (Bullmore & Sporns, 2009). Further analysis at the nodal 

level revealed that the homozygous at-risk participants had greater eccentricity across 60 

of 70 network nodes in the non-risk participants, and borderline significant results 

(passed p<0.05 but not FDR correction) in regional efficiency in 11 of 70 nodes. A final 

analysis attempted to further simplify the results by assessing FA and fiber density 

differences, but did not detect associations with these more common fiber measures. In 

other words, several global and nodal properties of the structural network were different 

in carriers of the risk gene, but they were not attributable to more common characteristics 

of fibers, such as fiber density or FA. A larger sample size might detect differences in FA 
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in carriers of the risk gene, but our findings suggest that differences are more prominent 

at the network level.  

In their recent study, Scott-Van Zeeland et al., (2010) found that a CNTNAP2 

SNP was associated with differences in the functional connectivity of frontal and parietal 

cortical networks, including effects on the strength of short- and long-range connections 

to the frontal and parietal cortex. In this case the range reflected the physical distance 

between two regions, while in graph theory, distance instead reflects the number of paths 

between one node and another. While path distance and physical distance are not the 

same, they both indicate distance between one brain region and another. As this is the 

property measured by characteristic path length and global efficiency using graph 

theoretical methods, we hypothesized that we could assess corresponding measures from 

structural networks using DTI, and that these measures might be altered in carriers of the 

CNTNAP2 risk allele. We found that carriers did have altered structural connectivity ï as 

measured by a number of graph theory metrics ï this may partly underlie the alterations 

in functional connectivity.  

Small-worldness is a well-developed concept from graph theory (Watts & 

Strogatz, 1998) that has more recently been applied to brain networks (Sporns et al., 

2004). A network with high small-worldness has high local clustering and a short 

characteristic path length. Subjects homozygous for the risk allele had greater small-

worldness and greater global efficiency in their left hemispheres, which are both driven in 

part or wholly by shorter characteristic path lengths. Risk subjects also had higher global 

efficiency in the right hemisphere as well as shorter characteristic path length on a whole 

brain level. As there were no significant differences in clustering, differences in path 
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length may drive the observed differences in small-worldness. Greater efficiency in those 

at risk is unexpected, as Hagmann et al., (2010) found greater efficiency as development 

progressed and Pollonini et al. (2010) found decreased global efficiency in autistic 

subjects. However, Hagmann et al. based their calculations on 1/ADC (apparent diffusion 

coefficient), while we based ours on fiber density, and Pollonini et al. was an MEG study 

with Granger causality, so the comparison is not direct. A random network has high 

efficiency (Bullmore & Sporns, 2009), but it may not be functionally advantageous if the 

proper connections are not made. Neural network complexity is typically achieved by a 

balance of randomness and regularity ï at either extreme, you have a system less able to 

learn because it is either never stable enough to remember or never flexible enough to 

adapt (Sporns, 2011). A more random network, while having a shorter average path 

length, will be less complex, and arguably further from ideal in terms of brain function. A 

more random network, while having a shorter average path length, will be less complex, 

and may not reflect the organization found in real functional brain networks. Individuals 

differ widely in brain structure and function, but complete órandomnessô of connections is 

not typical of functional circuitry in the brain. A random network, with no stability in 

time or logical set up, does not tend to make the most efficient use of the brainôs 

resources (Chialvo, 2010). While additional studies are required, higher global efficiency 

may reflect more random connections in the structural networks of the at-risk participants 

as random networks have low path lengths.  

Based on our global results, we decided to look further into various nodal 

measures of connectivity. In these post hoc tests, we did find a significant association 

between CNTNAP2 allele dose and the eccentricity at 60 of 70 nodes, with non-risk 
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carriers having greater eccentricity across all nodes. Eccentricity is the distance, in paths 

traversed, between a given node and the node farthest from it (Sporns, 2002). Non-risk 

participants had greater eccentricity across most of the brain. Studies of eccentricity in 

brain networks are few (Pollonini et al., 2010) and have not generated any significant 

results so far, so we have little context for these results. However, given that they are 

across a majority of nodes in the brain, they could underlie the global trends we found as 

well. We found 11 nodes with borderline significant differences (passed p<0.05 but not 

FDR correction) in regional efficiency, 8 of which were in the frontal lobe, 2 in the 

temporal lobe, and 1 in the parietal lobe. These are the areas where CNTNAP2 expression 

is especially enriched (Abrahams et al., 2007; Arking et al., 2008; Strauss et al., 2006; 

Vernes et al., 2008) and where Scott-Van Zeeland found differences in functional 

connectivity. 

In attempting to discover a simpler underlying cause of these results, we looked 

into possible differences in the fiber density matrices of the two groups. We had initially 

ruled out differences in overall connectivity by running our analysis of CNTNAP2 on the 

whole fiber density matrices. However, in trying to understand our results of greater 

global efficiency and shorter characteristic path length in the risk allele carriers, we 

decided to look only at those connections with at least one terminus in the frontal, parietal 

or temporal lobes. While we did find a trend for greater fiber density in the non-risk 

subjects in a large number of frontal, parietal and temporal connections, these results did 

not pass FDR correction.  Tan and colleagues (2010) conducted a study of a different 

CNTNAP2 SNP, rs7794745, in a large cohort of healthy subjects as well. Regional gray 

and white matter volumes were lower in those homozygous for the risk allele. We will 
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continue to search for an explanation for our unexpected findings but currently they do 

not appear to be reducible to more simple measures of structural connectivity. 

Our findings relating a common risk variant in CNTNAP2 with structural 

connectivity suggests that the protein it codes for, CASPR2, may be involved in white 

matter tract structure. This seems likely as CASPR2 has a role in neuroblast migration 

(Strauss et al., 2006) and in stabilizing K+ channels in the juxtaparanodal region (Poliak 

et al, 1999; Poliak et al., 2003). CNTNAP2 risk allele carriers may have aberrant 

neuroblast migration or K+ channel clustering early in development; this may even 

underlie the differences we see in structural connectivity. Abnormal neuronal migration 

early in development could lead to altered development of white matter, leading to the 

changes we see. Abnormal K+ channel clustering could affect axonal physiology for 

developing tracts, perhaps even affecting overall tract structure. The recent study 

characterizing the CNTNAP2 knockout found, along with various behavioral hallmarks of 

autism, neuronal migration abnormalities including abnormal clustering of neurons in the 

deep layers of the cortex (Peñagarikano et al., 2011). CNTNAP2 is a risk gene for autism 

but it also has effects in non-autistic populations with language disorders. It may be more 

appropriate to consider as a risk gene for language difficulties - a key component of 

autism. A disorder as complex and varied as autism most likely results from a 

constellation of genetic variations interacting with environmental influences (Szatmari et 

al., 2007). The SNP rs2710102 in CNTNAP2 may be one of these polymorphisms that, 

when combined with others, could increase risk for autism by increasing susceptibility to 

language difficulties. In this paper, our focus was the effects of CNTNAP2 on brain 

structural connectivity. Understanding why a gene increases risk for a disorder is as 
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crucial as determining that it increases risk in the first place, as a more mechanistic 

understanding is necessary for ultimately developing interventions. Here we discovered a 

mechanistic clue that might explain the association between CNTNAP2 and autism and 

language disorders. This altered connectivity may represent an intermediate phenotype 

for one source of language difficulties. Our participants were a large cohort of twins 

screened for psychiatric disorders and developmental conditions; thus, they fall within the 

normal range of language ability.  

Of the three different models, the recessive model yielded the strongest results. 

We chose this model based on information that individuals with the CC genotype have an 

increased risk of language impairment (http://www.snpedia.com/index.php/Rs2710102). 

However, Scott-Van Zeelandôs study supports a dominant effect of the CNTNAP2 SNP. 

Vernes et al., 2008, found that a haplotype of 9 SNPs including this CNTNAP2 SNP had 

a dominant effect, but no other studies have produced evidence on the dominance of 

CNTNAP2 rs2710102 by itself. Our analyses were in healthy subjects, while previous 

studies have been in autistic or language impaired participants, so we followed our 

analyses with post hoc tests to check the other two models in case the effect differed in 

our healthy population.  

Conclusions 

In this study, the first to link graph theory measures of brain structural 

connectivity with a specific genetic variant associated with autism, we searched for 

structural differences that might contribute to the reported effects of CNTNAP2 on 

functional networks. In our large cohort of healthy adults, the same CNTNAP2 SNP was 
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also associated with detectable differences in structural connectivity. In comparing 

findings from different imaging modalities, these efforts are leading to a better 

understanding of genetic liability for autism and related disorders. Our results add to prior 

work on the effects of CNTNAP2 on brain structure but also raise new questions 

regarding the underlying difference. A new approach to neuroimaging genetics is 

combining multiple polymorphisms ï in the same or different genes ï when testing for 

associations with phenotypes, leading to increased predictive accuracy (Hibar et al., 2011; 

Chiang et al., 2011b). Studies using this method have already been conducted on another 

autism risk gene (Kohannim et al., 2011) that was a top hit in a genome-wide scan for 

risk alleles (Anney et al., 2010). CNTNAP2 is classified as an autism risk gene but we 

have shown that it has effects in a healthy population as well. These results will further 

our understanding of how vulnerabilities for various genetically influenced disorders are 

displayed in the brain.  
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Eccentricity 

Node 
Risk 

average 
(CC) 

Non-risk 
average (CT 

and TT) 
b p value 

L banks of the superior temporal sulcus 
(lime green) 12.81 15.33 

2.4 0.013 

L caudal anterior cingulate (purple) 14.21 16.28 2.1 0.011 

L caudal middle frontal (dark blue) 16.66 18.79 2.1 0.0078 

L cuneus (magenta) 20.96 22.40 1.5 0.026 

L entorhinal (green) 21.17 22.38 1.3 0.011 

L fusiform (dark magenta) 21.30 22.34 1.0 0.014 

L inferior temporal (magenta) 21.66 22.89 1.3 0.012 

L lateral occipital (light blue) 21.66 22.95 1.3 0.013 

L lateral orbitofrontal (dark blue) 21.16 22.37 1.3 0.0017 

L lingual (magenta) 21.63 22.69 1.1 0.023 

L medial orbitofrontal (gold) 21.09 22.05 1.0 0.0072 

L middle temporal (red) 21.72 23.06 1.3 0.012 

L parahippocampal (pale yellow) 21.53 22.79 1.3 0.011 

L paracentral (gold) 21.25 22.30 1.1 0.0046 

L pars opercularis (dark blue) 21.93 23.18 1.3 0.017 

L pars orbitalis (orange) 22.00 23.41 1.4 0.026 

L pars triangularis (red) 21.78 23.15 1.4 0.013 

L peri-calcarine (pink) 21.67 22.77 1.1 0.025 

L postcentral (gold) 21.70 22.83 1.1 0.025 

L posterior cingulate (blue) 21.23 22.20 0.93 0.014 

L pre-central (blue) 21.41 22.45 1.0 0.013 

L precuneus (yellow-green) 21.38 22.28 0.9 0.026 

L rostral anterior cingulate (dark purple) 21.36 22.38 1.0 0.018 

L rostral middle frontal (orange) 21.50 22.73 1.2 0.0075 

L superior frontal (red) 21.29 22.23 0.93 0.017 

L superior parietal (green) 21.50 22.48 1.0 0.024 

L superior temporal (forest green) 21.71 22.91 1.2 0.015 

L temporal pole (dark blue) 21.85 23.17 1.3 0.017 

L transverse temporal (dark blue) 21.98 23.53 1.4 0.032 

L insula (lime green) 21.53 22.45 0.9 0.038 

R caudal anterior cingulate (purple) 21.46 22.58 1.0 0.021 

R caudal middle frontal (dark blue) 21.37 22.42 1.0 0.013 

R cuneus (magenta) 21.77 23.10 1.3 0.017 

R fusiform (dark magenta) 21.19 22.22 1.0 0.011 

R inferior parietal (yellow) 21.44 22.46 1.0 0.023 

R inferior temporal (magenta) 21.55 22.72 1.1 0.031 
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R isthmus of the cingulate (lime green) 21.28 22.39 1.0 0.017 

R lateral occipital (light blue) 21.45 22.47 1.0 0.02 

R lateral orbitofrontal (dark blue) 21.17 22.25 1.0 0.013 

R lingual (magenta) 21.42 22.47 1.0 0.025 

R medial orbitofrontal (gold) 21.02 22.03 1.1 0.0034 

R middle temporal (red) 21.80 23.01 1.2 0.034 

R parahippocampal (pale yellow) 21.41 22.70 1.3 0.0078 

R paracentral (gold) 21.35 22.36 1.0 0.017 

R pars opercularis (dark blue) 21.83 23.21 1.3 0.025 

R pars orbitalis (orange) 21.80 23.44 1.8 0.0093 

R pars triangularis (red) 21.83 23.09 1.3 0.03 

R postcentral (gold) 21.46 22.59 1.1 0.015 

R posterior cingulate (blue) 21.36 22.26 0.87 0.026 

R pre-central (blue) 21.34 22.29 0.92 0.022 

R precuneus (yellow-green) 21.33 22.29 0.91 0.024 

R rostral anterior cingulate (dark purple) 21.41 22.54 1.1 0.013 

R rostral middle frontal (orange) 21.46 22.55 1.1 0.019 

R superior frontal (red) 21.29 22.25 0.93 0.019 

R superior parietal (green) 21.39 22.35 0.92 0.024 

R superior temporal (forest green) 21.79 23.04 1.3 0.021 

R supra-marginal (green) 21.61 22.74 1.1 0.019 

R temporal pole (dark blue) 21.45 23.19 1.8 0.0027 

R transverse temporal (dark blue) 22.24 23.57 1.3 0.042 

R insula (lime green) 21.45 22.40 0.93 0.027 

 

Regional results showing CNTNAP2 SNP associations with node eccentricity   

 

 

 

Figure and Table Captions 
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Table 1: Global results from CNTNAP2 association analysis for integrated graph theory 

metrics for whole brain and left and right hemispheres separately. Significant results are 

bolded. Results pass FDR correction for multiple comparisons across all 15 p-values. 

Figure 1: Global results of CNTNAP2 association with graph theory metrics for the 

whole brain. The radius of each node is proportional to the inverse of the p-value for the 

comparison between risk (CC) and non-risk (CT, TT) subjects in the measure of 

eccentricity. Thus, larger radii indicate nodes showing significant differences between the 

two groups. Significant nodes are in blue, non-significant nodes in white. Nodes are 

labeled with numbers: the legend on the figure lists numbers as they correspond to 

regions in each hemisphere. Additionally, differences in paths are shown in this figure. 

Paths that both risk and non-risk groups have are in gray, those only present in risk group 

are in red, and those only present in non-risk group are in green Nodes are labeled with 

numbers; legend in figure lists numbers in each hemisphere as they correspond to regions. 

Figures 1 and 2 were generated at sparsity = 0.25, using the UCLA Multimodal 

Connectivity Package (https://github.com/jbrown81/umcp). 

Figure 2: Global results of CNTNAP2 association with graph theory metrics for each 

hemisphere separately. As in Figure 1, larger radii indicate nodes showing significant 

differences between the two groups in the measure of eccentricity. Significant nodes are 

in blue, non-significant nodes in white. Gray paths were present in both groups, red in 

risk only, and green in non-risk only. Nodes are labeled with numbers; legend in figure 

lists numbers in each hemisphere as they correspond to regions.  

 Page 44 of 54  

B
ra

in
 C

on
ne

ct
iv

ity
A

lte
re

d 
St

ru
ct

ur
al

 B
ra

in
 C

on
ne

ct
iv

ity
 in

 H
ea

lth
y 

C
ar

ri
er

s 
of

 th
e 

A
ut

is
m

 R
is

k 
G

en
e,

 C
N

T
N

A
P2

 (
do

i: 
10

.1
08

9/
br

ai
n.

20
11

.0
06

4)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.



45 

 

Figure 3: Image of nodes showing association between eccentricity and CNTNAP2 allele 

dose in recessive model. Results pass FDR correction for multiple comparisons across all 

70 nodes. Colors differentiate each node with the same color representing one node 

bilaterally. See Table 3 for color code. From top to bottom, left to right, slices are: Z=46, 

Z=60, Y=41, Y=52, Y=70, X=36, X=72. 

Table 2: Results from integrated regional efficiency analysis in recessive model. Non-

risk (CT and TT) coded as ó1ô and risk (CC) coded as ó0ô such that positive b value 

indicates greater average in risk participants. Only results passing p < 0.05 are presented. 

Table 3: Significant results from integrated eccentricity analysis in recessive model. 

Non-risk coded as ó1ô and risk coded as ó0ô, b value represents gain in eccentricity for 

risk group (CC) compared to non-risk group (CT and TT). All passing FDR corrected 

across all 70 nodes tested (q < 0.05). Only significant results are presented. Colors refer 

to Figure 3. 

Table 4: Results from post hoc analyses of additive models for integrated global 

measures that pass FDR. 
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Supplementary Material 

Table S1. Borderline significant results (p<0.05, but did not pass FDR correction) from 

post hoc analyses of additive models for integrated regional measures. 
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