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Head motion (HM) is a critical confounding factor in functional MRI. Here we investigate whether HM during
resting state functional MRI (RS-fMRI) is influenced by genetic factors in a sample of 462 twins (65% female;
101MZ (monozygotic) and 130 DZ (dizygotic) twin pairs; mean age: 21 (SD= 3.16), range 16–29). Heritability
estimates for three HM components—mean translation (MT), maximum translation (MAXT) and mean rotation
(MR)—ranged from 37 to 51%.Wedetected a significant common genetic influence onHMvariability, with about
two-thirds (genetic correlations range 0.76–1.00) of the variance shared betweenMR,MT andMAXT. A compos-
ite metric (HM-PC1), which aggregated these three, was also moderately heritable (h2 = 42%). Using a sub-
sample (N = 35) of the twins we confirmed that mean and maximum translational and rotational motions
were consistent “traits” over repeated scans (r= 0.53–0.59); reliabilitywas evenhigher for the compositemetric
(r = 0.66). In addition, phenotypic and cross-trait cross-twin correlations between HM and resting state func-
tional connectivities (RS-FCs)with Brodmann areas (BA) 44 and 45, inwhich RS-FCswere found to bemoderate-
ly heritable (BA44: h2 = 0.23 (sd = 0.041), BA45: h2 = 0.26 (sd = 0.061)), indicated that HM might not
represent a major bias in genetic studies using FCs. Even so, the HM effect on FC was not completely eliminated
after regression. HM may be a valuable endophenotype whose relationship with brain disorders remains to be
elucidated.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Headmotion (HM), defined as small headmovements (from μm to a
few mm), can be detected in every individual, despite the restraint of
the head during magnetic resonance imaging (MRI). HM is routinely
computed and analysed in resting state functional MRI (RS-fMRI) stud-
ies, where it is known to be a confounding factor in themeasurement of
brain connectivity. Participants with excessive HM are often excluded,
and spurious sources of variance caused by HM are removed using lin-
ear regression. However, it has been shown that these steps do not re-
move all the bias introduced by HM in functional connectivity (FC)
;MAXT,maximum translation;
ter that 0.1 mm; FC, functional
onozygotic; DZ, dizygotic; ICC,
iddle frontal cortex; SMA, sup-
superior parietal cortex; ITC, in-
occipital cortex.
rston, Queensland, Australia.
er.edu.au (B. Couvy-Duchesne).
analyses (Bright and Murphy, 2013; Mowinckel et al., 2012; Power
et al., 2012, 2014; Satterthwaite et al., 2013; Satterthwaite et al., 2012;
Van Dijk et al., 2012; Yan et al., 2013). For example, in young adults
with greater headmotion, FCmeasures in long-range networkswere re-
duced and local FC between nearby voxels increased. This suggests that
HM may weaken the long-range signal and create false positive local
correlations, at least in those with relatively high HM (Van Dijk et al.,
2012; Yan et al., 2013). Similar results have been reported in adoles-
cents using various FC analysis methods (seed based, amplitude of
low-frequency fluctuation (ALFF & fALFF) or Independent Component
Analysis) (Satterthwaite et al., 2012). In addition,motion has been asso-
ciated with long term (up to 10 s) BOLD signal changes in grey matter,
white matter and cerebrospinal fluid, drawing a more complex picture
of the spurious effect of motion (Power et al., 2014). This translates
into RS-FC, with a manifest motion bias up to 10 s after motion
(Power et al., 2014), longer than previously reported (Satterthwaite
et al., 2013) and a lowering of the reliability of the FC estimates (Yan
et al., 2013).

HM is fairly consistent across RS-fMRI sessions, with reliability esti-
mates in the moderate range (rMT = 0.66) (Van Dijk et al., 2012). This
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suggests that HM is a trait that is consistent enough to study. In addition,
an association of HMwith age has been reported. HM is higher in youn-
ger individuals (8–23 years old) (Satterthwaite et al., 2012) and in-
creases with age in older individuals aged 61 years and over (Seto
et al., 2001). Furthermore, males tend to exhibit more head movement
than females (Van Dijk et al., 2012).

So far, only a few studies have investigated HM in neurological or
psychiatric diseases associated with motor control difficulties. Patients
recovering from stroke with a hemiparesis exhibit greater task-related
HM, perhaps because they may need to recruit more proximal muscles
to respond to a stimulus (Seto et al., 2001). In amore general way, task-
related fMRI is likely to provoke more motion when individuals (both
cases and controls) know they have made a mistake (“whoops”
phenomenon), complicating analyses of error-monitoring and related
processes (Epstein et al., 2007). This limitation can be evenmore impor-
tant in schizophrenia or ADHD, in which impulsiveness on Go-NoGo
tasks is increased (Greene et al., 2008). In addition, the proportion of
ADHD and autism subjects excluded because of excessive (gross) head
movements is significantly higher than for controls (Durston et al.,
2003; Epstein et al., 2007; Jones et al., 2010; Yu-Feng et al., 2007). In
schizophrenia, head rotation in particular appears to be significantly
higher among patients than healthy controls (Bullmore et al., 1999).

Here we investigated the “trait” aspect of HM during RS-fMRI, by
analysing a sample of 462 healthy adolescent and young adult twins
(mean age: 21 years). In the twin design, we included both monozygotic
(MZ) and dizygotic (DZ) twins. This enables the familial similarities in a
trait to be decomposed into genetic (heritability) and environmental
sources (Neale and Cardon, 1992; Verweij et al., 2012). We estimated
the heritability of three translational and rotational HM measures (Van
Dijk et al., 2012). Phenotypic correlations between HM parameters were
decomposed into common (shared) and specific (non-shared) sources
of genetic and environmental variance. In a post-hoc analysis we then
examined how strongly genetic influences on HM affect FC, by focusing
on the language production networks, organised around Broca's area
(Broca, 1861), which comprises Brodmann areas (BA) 44 and 45. These
resting state (RS) networks have been characterised previously using
seed-based approach (Kelly et al., 2010; Tomasi and Volkow, 2012) and
parallel ICA (Jamadar et al., 2013). In addition,we examined the reliability
of the HM measures in a sub-sample of the twins who were scanned
twice.
Materials and methods

Participants

Data were collected as part of the Queensland Twin Imaging Study
(QTIMS), which has acquired MRI scans on more than a thousand indi-
viduals, including twins and their non-twin siblings (de Zubicaray et al.,
2008). For the present study, we included all twin pairs aged between
16 and 30 (years) for which RS-fMRI scanswere available. We excluded
individuals (n = 30) with very large overall HM (i.e., maximal rigid
body parameter (Collignon et al., 1995) greater than 3 mm or 2°, the
centre of rotation being the centre of the FOV) prior to any analyses.
This censoring was performed on absolute motion (measured from a
volume of reference) as available in Statistical Parametric Mapping
SPM8 (Friston et al., 2006).1 Our final sample comprised 101 (73 female
1 Using absolute (versus frame to frame) rigid body parameters for “gross motion” ex-
clusion is not themost pertinent approach in fMRI as thismay lead tomore individuals be-
ing excluded and does not guarantee that themotion occurring during a repetition time is
smaller to the voxel size. In our case, using frame to frame parameters, wewould have ex-
cluded only 9 individuals, and these were all excluded using absolute motion parameters.
We therefore believe that our use of absolute motion should have a limited impact on the
results and the statistical power.
and 28 male) monozygotic (MZ) and 130 (49 female, 26 male and 55
opposite-sex) dizygotic (DZ) twin pairs (65% females, mean age = 21,
SD = 3.16, range 16–29). Sixteen percent of the twins were aged 16
(38 pairs, 15MZ, 23 DZ). In addition, a sub-sample (35 twin individuals
(7MZ and 3 DZ pairs) and 15 siblings; mean age= 22.5, SD= 2.5, 58%
females) of the participants were scanned twice for RS-fMRI in order to
assess the reliability of the measurements. The median interval be-
tween the two scans was ~3 months (median = 96 days, range 35–
203).

Zygosity was established objectively by typing nine independent
microsatellite polymorphisms (PIC N 0.7) in the ProfilerPlus™ set
using standard methods, and was later confirmed for N80% of the sam-
ple genotyped on the 610 K Illumina SNP chip (Medland et al., 2009).
Participants were screened (by self-report) for significantmedical, psy-
chiatric or neurological conditions, including head injuries, a current or
past diagnosis of substance abuse, and for current use of medication
that was likely to affect cognition. Written informed consent was ob-
tained from all participants. The study was approved by the ethics re-
view boards of the Queensland Institute of Medical Research, the
University of Queensland, and Uniting Health Care, Wesley Hospital,
Brisbane. Participants received an honorarium, in appreciation of their
time.

Image collection

The images were acquired on a 4 T Bruker Medspec whole-body
scanner in Brisbane, Australia. RS-fMRI was performed with a repe-
tition time TR = 2100 ms, echo time TE = 30 ms, flip angle = 90°,
field of view FOV = 230 mm, and total acquisition length of
5 min: 19 s. Thirty-six 3 mm-thick transverse slices, with 0.6 mm
gap, were acquired per volume, yielding a voxel size of 3.6 × 3.6
× 3.0 mm. In total, 150 volumes were collected, with the first 5 vol-
umes discarded from the analysis to allow time for steady state to
occur. During the scan participants were asked to close their eyes,
empty their minds, and to try not to fall asleep. Participants who re-
ported having fallen asleep were excluded, to ensure a consistent
experimental procedure. The RS scan was part of a larger protocol
lasting approximately 60 min, including a 3D T1-weighted scan to
which the functional scans were coregistered. Structural scans
were acquired with TR = 1500 ms, TE = 3.35 ms, TI = 700 ms,
flip angle = 8°, 256 or 240 (coronal or sagittal) slices, FOV =
240 mm, 256 × 256 × 256 (or 256 × 256 × 240) matrix, slice thick-
ness = 0.9 mm and voxel size 0.9 mm3.

Head motion measurement

Six headmotion parameterswere obtained from rigid body transfor-
mation (Collignon et al., 1995) of fMRI volumes with Statistical Para-
metric Mapping SPM8 (Friston et al., 2006). Three translation (sagittal
or left-right, coronal or front-back, and axial or up-down directions)
and three rotation parameters (pitch, roll and yaw) were extracted by
comparing each of the remaining 145 volumes of the time series to
the first. For each participant, 4 aggregatedmeasures of theHM time se-
ries were then computed, adapted from the description by (Van Dijk
et al., 2012): mean translational head motion (MT), maximum transla-
tional motion (MAXT), number of movements greater than 0.1 mm
(NUMO) and mean rotation (MR).

We calculated the motion from frame to frame (i.e. relative transfor-
mation parameters), and not the absolute parameters that measure the
displacement from a reference frame. This approach accounts for most
of the movement that is responsible for the bias in RS-FC. While absolute
motion parameters that capture the position of the head are responsible
for shifts in the intensity of the BOLD signal, these have little effect on
RS-FC (Power et al., 2014). Calculating the motion metrics from the
differenced time series of rigid body parameters also has the added ad-
vantage of stabilising the mean and variance over time (1st order
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integration often results in enhancing processes stationarity). MT and
MAXT were calculated for each participant using the following formulas:

MT ¼ 1
N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xi−1ð Þ2 þ yi−yi−1ð Þ2 þ zi−zi−1ð Þ2

q

MAXT ¼ maxi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xi−1ð Þ2 þ yi−yi−1ð Þ2 þ zi−zi−1ð Þ2

q� �
:

MRwas defined similarlywithΔθ,Δφ and Δϕ the differenced rota-
tion angles (Δθi = θi − θi − 1) and N = 144 the number of frames.

MR ¼ 1
N

XN
i¼1

cos−1 cosΔθi cosΔφi þ cosΔθi cosΔϕi þ cosΔϕi cosΔφi þ sinΔθi sinΔφi sinΔϕi−1
2

� �� �

Variables were log-transformed to ensure normality of the distribu-
tion. In the following MR, MT, MAXT and NUMO refer to the log-
transformed variables, if not stated otherwise. NUMOdid not reach nor-
mality but was strongly correlated with MT (r = 0.92) and therefore
was not analysed further. Out of the 462 individuals, five observations
(1 for MT, 4 for MAXT) were classified as outliers (N3 SD from the
mean) and Winsorised (by imputing their values to ±3SD). None of
the outliers were from the same participant or the same twin pair.
Using the same criterion, we checked the data for twin-pair outliers
by considering the mean value of the pair. We identified 2 outlying
twin pairs, one forMT and one forMAXT. ForMT, the pair of DZ opposite
sex twins, aged 20 years, additionally showed high rotational move-
ments (top 10% of the distribution). For MAXT, the outlying MZ female
pair, aged 16 years, had normal MT andMR (just above average). In ad-
dition, both of these twin pairswere identified as outliers in their zygos-
ity group. Thus, for these pairs, MT and MAXT respectively were set to
missing, due to their possible strong impact on variance and mean
estimation.Using a principal component analysis (PCA)we then showed
the first principal component (PC) of the PCA (HM-PC1) represented a
“size effect”, keeping most of the information carried by MR, MT and
MAXT, and defined a composite metric of motion (accounting for both
rotational and translational motion). The second PC (HM-PC2) differen-
tiated rotation from translation, where individuals exhibited asymmet-
ric motion (rotation without translation and conversely) with the third
PC capturing the residual variance and extreme motion (MAXT vs MR
and MT) (see Inline Supplementary Figure S1).

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.08.010.

Several composite HM metrics have been proposed to summarise
the information from the rigid body parameters (Jenkinson et al.,
2002; Power et al., 2012; Van Dijk et al., 2012; Yan et al., 2013). A recent
comparison (Yan et al., 2013) showed very good performance of
Jenkinson et al. 's composite metric against Yan et al.'s metric of refer-
ence. Mathematically, the 2 approaches are very similar: they consist
of averaging, over all the voxels of the brain, the displacement occurring
between two frames. Their only difference is that Yan et al. average the
displacement of each voxel while Jenkinson et al. assume that the brain
is a sphere of radius 80 mm. Thus, the very strong agreement between
metrics (Yan et al., 2013) suggests that the simplification of the brain
into a sphere or radius 80 mm is valid, at least for young adults. Here,
we use a sample very close in age to Yan et al. (2013), and can therefore
reasonably assume the equivalence of the Yan et al. and Jenkinson et al.
metrics. We chose to use the Jenkinson et al. metric, which is the faster
of the two to compute, as the motion measurement of reference, to ex-
pand on prior work that compared the metrics (Yan et al., 2013). We
showed that the Power et al. metric (aka. FD: “framewise displace-
ment”), HM-PC1 as well as MT were highly correlated with the metric
of reference (rPearson N0.90, τKendall N 0.80) and that all metrics showed
similar reliability and heritability. We suggest that residual differences
between MT, HM-PC1, Power et al. and Jenkinson et al. arise from the
weight given to rotation over translation, since all the metrics are built
upon equivalent norms (2-norm (Euclidian) for Jenkinson et al., Yan
et al., MT, MR and HM-PC1; 1-norm (“taxicab”) for Power et al. metric).
As previously found, we also show that there is poor agreement be-
tween Yan et al.'s metric and their definition of mean translation, and
we attribute this to their choice of parameterisation (Inline Supplemen-
tary Table S1). Thus, using the Jenkinson et al. metric as a reference, we
found only very small differences in the correlations between metrics.
We attribute this to the different weight given to rotation over transla-
tion, which depends on the brain radius for Power et al. and on the PCA
decomposition for HM-PC1. Ultimately, and despite these small differ-
ences, we show very similar estimates, reliability and heritability for
the metrics (Inline Supplementary Table S1). Further, even if validity
and comparability still remain to be assessed in adolescents and youn-
ger children, the robustness shown here for young adults suggests
that all composite metrics (and MT) might also be a good proxy for
HM in younger subjects. (Detailed results are presented in Inline Sup-
plementary Table S1 and Inline Supplementary Figure S2).

Inline Supplementary Table S1 and Fig. S2 can be found online at
http://dx.doi.org/10.1016/j.neuroimage.2014.08.010.

Resting-state functional image processing

Resting state fMRI images were processed using the DPARSF-A
(Chao-Gan and Yu-Feng, 2010) toolbox for SPM8 (Wellcome
Department of ImagingNeuroscience, 2009). Thefirst 5 imageswere re-
moved and slice timing correction was applied. Functional volumes
were realigned and coregistered with the structural scans using
DARTEL (Ashburner, 2007). Then, using General Linear Model (GLM),
we regressed out sources of physiological (white matter, cerebrospinal
fluid) and non-physiological noise (trend, HM rigid body parameters,
global mean signal) from the BOLD signal and band pass filtered
([0.01–0.08 Hz]) after linear regression (Weissenbacher et al., 2009).

Functional connectivity maps were computed in a seed-based anal-
ysis using BA44 and BA45, as the seed regions. The seeds were defined
using cytoarchitectonic maximum probability maps (MPMs) as masks
(from SPM8's Anatomy toolbox (Zilles and Amunts, 2010)) merged
with the grey matter mask created from structural scans (inclusive
masking). The average time course in each seed region was calculated
and the correlations were estimated with all the voxels of the brain
(r-map). Fisher's z transformation (z = arctanh(r)) was applied to the
correlation map to centre and normalise the distribution (z-map).

We performed a one-sample t-test voxel-wise among the partic-
ipants' z-maps to discard the voxels showing non-significant z-
correlations, correcting for multiple testing using a topological esti-
mate of the Family Wise Error (FWE) rate: the Euler characteristic
(Worsley et al., 1992), which takes into account the volume tested
and the smoothness (i.e., local correlation) of the image (Nichols
and Hayasaka, 2003). Outlier detection and deletion was performed
voxel-wise. For each observation a chi-squared test (chi-squared dis-
tance, 1 degree of freedom) was performed with a risk alpha set at
0.001 and outlier values set to missing.

We further masked the FC results according to their reliability using
the sub-sample of participants scanned twice, adopting an Intra-Class
Correlation (ICC), threshold of N0.4, with random effect on subjects.
Analyses were performed using the R package “irr” (Gamer et al.,
2010). This step aimed to limit the number of false positive in our anal-
ysis by ensuring that the observed FCwas corresponding to a robust co-
activation with the seed. In doing so, we assume that RS-FC must be
fairly consistent across a short period of time (3 months in median be-
tween test and retest MRI), even in presence of brain plasticity or brain
maturation. This strong assumptionmaypartially explainwhy the over-
all reliability of the RS-FC was never strong (b0.8 across the brain) and
why it can be justified to set a “low” reliability threshold (ICC N 0.4 is, at
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best, described as “fairly reliable” in the literature). It is true that this ap-
proach may exclude from the analysis the regions of BA44 and BA45's
networks that evolve the most (or the faster) with age, but we think it
is a fair price to pay considering the gain in power that the pruning of
voxels represents.

For BA45, 31,671 voxels (67% of the 47,279 grey matter voxels)
showed a significant correlation with the seed, 2902 of which reliably
(ICC N 0.4) defined BA45's network. The 10 largest clusters (size greater
than 50 voxels) comprised 64% of BA45's reliable network (1855 voxels
out of 2902) and allowed a good description of the network. From these
10 clusters we identified 8 brain regions using SMP8's Anatomy toolbox
(Eickhoff et al., 2007): Inferior Frontal cortex (IFC; BA44, BA45 and pars
Orbitalis), Middle Frontal cortex (MFC), Supplementary Motor Areas
(SMA; BA6); Inferior Parietal (IPC: PGa, PF, PFm, hIP1-3), Superior Pari-
etal (SPC: BA7a, BA7pc), Inferior Temporal (ITC) and Middle Temporal
cortex (MTC); Occipital/Visual cortex (OC; BA17, 18, hOC5).

For BA44, 32,775 voxels passed the significance threshold, of which
only 4422 reliably defined BA44's network. Again, the 10 largest clusters
(size N 50) comprised most (73%) of the network that covered 9 brain
regions: Inferior Frontal cortex (IFC; BA44, BA45 and right pars
Orbitalis), Middle Frontal cortex (MFC), Supplementary Motor Area
(SMA; BA6); Inferior Parietal (IPC: PGa, PF, PFm, PFcm, PFt), Superior Pa-
rietal (SPC: BA7M, 5M, 5Ci, 5L); Inferior Temporal (ITC) and Middle
Temporal cortex (MTC); Occipital/Visual cortex (OC; BA17, 18, hOC5)
and Cerebellum (Lobule VIIa, crus 1-2).

Similar areas were activated in the left and right hemispheres, ex-
cept for the Cerebellum Lobule where only the right side of the cerebel-
lum was correlated with BA44. However, the extent of the activation
was greater in the left hemisphere. Furthermore, all the clusters, except
for the occipital cortex and superior parietal areas, were positively cor-
related with the seeds.

These findings replicate those of resting-state FC studies on Broca's
language area, with similar positive correlation of Broca's area with
the IFC (pars opercularis, triangularis and orbitalis) (Jamadar et al.,
2013; Kelly et al., 2010; Tomasi and Volkow, 2012), the MFC (Jamadar
et al., 2013; Tomasi and Volkow, 2012), the SMA (pre-SMA and BA6
(Kelly et al., 2010)); the IPC (supramarginal and angular gyrus)
(Jamadar et al., 2013; Kelly et al., 2010; Tomasi and Volkow, 2012),
the ITC (Jamadar et al., 2013; Tomasi and Volkow, 2012) and the MTC
(Kelly et al., 2010). Significant FC between Broca's area and the cerebel-
lum (crus) has been reported (Tomasi and Volkow, 2012), however the
authors used a 3.4 cm3 seed centred in BA45while we only observed an
association with BA44. We did not replicate findings of positive associ-
ation with the superior frontal cortex (medial frontal gyrus with BA8,
9, 32 (Kelly et al., 2010), BA8 (Tomasi and Volkow, 2012)). Kelly et al.
reported positive correlation with the caudal part of the superior tem-
poral gyrus and sulcus while Tomasi and Volkow reported non-
significant correlation, coherent with our observations.

Anti-correlations replicated previous results showing anti-activation
in the SPC (BA7 (Jamadar et al., 2013), BA7 and BA5 (Tomasi and
Volkow, 2012)) and with the OC (Tomasi and Volkow, 2012).

Genetic analyses of head motion

Saturated models were fitted to compare HMmeans, variances and
covariances for the five zygosity groups (MZ males, MZ females, DZ
males, DZ females and DZ opposite-sex), with age, age2 and sex includ-
ed as covariates. Model fit was assessed based on the difference in the
−2 log likelihood between the full model (ACE or ADE) and any nested
model (AE, CE or DE and E), which follows a chi-squared distribution
under the null hypothesis (of no difference of fit). At the univariate
level, using two zygosity groups (i.e., MZ and DZ, after ensuring the ho-
mogeneity of each of these groups in the saturated model), we
decomposed the variance of each of the HMmeasures (MR, MT, MAXT
and HM-PC1) into additive genetic (A), common environmental (C),
and unique environmental (E) sources of variance. We also estimated
a dominant genetic (D) effect (instead of the shared environment)
when theMZ andDZ correlation indicated a possible non-additive effect
(rDZ b 0.5 × rMZ). The dominant effect models the alleles' interaction at
one locus (dominance) or at different loci (epistasis).

We then examined the covariation amongMT, MAXT, and MR using
a Cholesky decomposition followed by independent and common path-
waymodelling (Neale and Cardon, 1992; Verweij et al., 2012). Cholesky
decomposition is the standard general approach to decompose variance
into genetic and environmental sources, so we used this model to test
the significance of shared A and C influences and to estimate the genetic
correlations. In our Cholesky decomposition, the three dimensional ge-
netic and environmental variance/covariance matrices are decomposed
into the product of a lower triangular matrix and its transpose. This de-
composition involves a first factor that influences all variables, a second
factor (independent of the first) that influences the second and third
variables, and a third factor (independent of the two first) that influ-
ences only the third variable.

Common and Independent pathway models represent a different
approach from the Cholesky decomposition in that they distinguish,
for each variable, the shared sources of variance from the specific. How-
ever, the Independent pathwaymodel contains the same number of pa-
rameters than the Cholesky and is equivalent in term offit. The common
pathway model is different from the Independent pathway model, in
that the co-variation between the HMmeasures is determined by a la-
tent variable: a global HM factor. This latent HM factor has genetic and
environmental sources of variance, which account for a proportion of
the MR, MT and MAXT variance (Arseneault et al., 2003). The Bayesian
Information Criterion (BIC) was used to compare model fit between
these two models, taking into account the number of parameters to es-
timate.2 All genetic modelling was performed in OpenMx (Boker et al.,
2011) using a full information maximum likelihood (FIML) estimator,
under the R 3.1.0 distribution (R Development Core Team, 2012).

Reliability of the four HMmetrics was assessed using the ICC, which
corresponds to amixed effectmodel (randomeffect of subjects,fixed ef-
fect of experiment). Since ICC coefficients are highly sensitive to out-
liers, extreme values in the series were identified, based on visually
inspecting the test-retest scatter plots. All the identified outliers were
excluded from the reliability analysis if their value was greater than
±3SD from the mean. Two unrelated individuals were excluded for
MR and HM-PC1, none for MT and MAXT.

Genetic multivariate modelling of head motion and heritable functional
connectivity

Using FC measures extracted from the same dataset as HMwe ran a
voxel-wise heritability analysis in OpenMx (Boker et al., 2011), fitting
univariate ACE models with HM, age and sex as covariates, for each
voxel of BA45 and BA44's networks.

Homogeneity of sampling across groups (female–male, MZ–DZ), co-
variate effects and significance of the heritability estimates were tested
voxel-wise (likelihood ratio test) and corrected for multiple testing,
controlling the FWER. We used the Monte-Carlo simulation protocol
of 3DClustSim (AFNI) (Cox, 1996), to estimate the volume threshold
such that the chance of larger clusters of contiguously significant voxels
(individual levelα=5%; i.e., “discovery clusters”) occurring at random
is smaller than 5%. The FWHM, as an estimate of spatial correlation, was
calculated from the square root of the network residual map from the
GLM regression using 3dFWHMx (AFNI) (Cox, 1996) and used as a
3DClustSim input. The significance volume threshold was 47 voxels
for BA45's network, and 58 voxels for BA44.

In each network, to explore common sources of variance between
HM and all heritable FC measures, we estimated cross-trait (phenotyp-
ic) and cross-trait cross-twin (ct–ct) correlations. At first, we used HM-
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PC1 as a composite measure of HM. Then, we made the distinction
between rotational and translational confound by calculating the corre-
lations withMR andMT separately. Thus, for each FC and HMmeasure-
ment (HM-PC1, MR and MT), we tested, using a likelihood ratio test
whether: a) the MZ and DZ phenotypic correlations are equal and
null, and b) the MZ and DZ ct–ct correlations are equal. The ct–ct corre-
lations can shed light on the genetic and environmental contributions to
the phenotypic correlations and represent a simpleway of assessing the
presence of genetic correlation. Indeed, where phenotypic correlation is
observed, a MZ ct–ct correlation greater than DZ indicates a genetic ef-
fect, a DZ ct–ct correlation greater than half the MZ suggests a signifi-
cant effect of the shared environment. Finally, if the traits are driven
by independent individual environmental factors the ct–ct correlations
should be null. Phenotypic and ct–ct correlations, as well as the p-
values, were estimated using OpenMx (Boker et al., 2011), which
takes into account the relatedness in the sample.

We used the same previousmultiple testing approach to identify re-
gions of significant correlation. The significance threshold and smooth-
ness were re-estimated on the sub-maps of significant heritability, with
a resulting threshold of 29 voxels for BA45's connectivity map and
24 voxels for BA44.
Results

Head motion characteristics of the sample

Table 1 shows the motion characteristics for the sample. The HM
means and variance were similar to those reported in a previous study
(Van Dijk et al., 2012) and exhibited similar magnitude with a mean
MT= 0.064 (SD= 0.025). Assumption testing supported homogeneity
of means and variances, across zygosity and sex. For MR there was a
subtle significant negative effect of age (−0.013 [−0.014,−0.012]; p-
values = 0.02) and age2 (−0.00027 [−0.00028,−0.00026]; p-
values = 0.03) but no difference between males and females. Age,
age2 and sex were not significant for either MAXT, MT and HM-PC1.
HMmeasures were moderately to highly correlated (Table 1).

Test–retest ICCs for all four HMmeasures indicatedmoderately good
reliability, improved by the exclusion of outliers on MR (ICCMR = 0.46,
ICCHM-PC1 = 0.65, in the overall sample, ICCMR = 0.53 and ICCHM-PC1 =
0.66 when excluding outliers) (Table 1).
Table 1
Motion characteristics of the twin sample.

MT (mm) M

Descriptive statistics
Raw Mean (SD) 0.06 (0.02) 0.2
Range [0.03,0.28] [0

Log-transformed Mean (SD) −2.83 (0.35) −
Range [−3.63,−1.89] [−

Covariate effects
p-ValueAge 0.61 0.5
p-ValueAge2 0.67 0.5
p-ValueSex 1 1

Reliability
ICC [95% CI] 0.59 [0.32,0.77] 0.5

Phenotypic correlations [95% CI]
MT – 0.7
MAXT –

MR
Twin correlations

rMZ [95% CI] 0.50 [0.39,0.60] 0.3
rDZ [95% CI] 0.25 [0.13,0.36] 0.1

Means, standard deviations, and ranges of the HMmeasurements (raw and log-transformed), a
(Pearson) and ML twin correlations are presented. Exclusion of 2 outliers improved the reliabil
overall sample). No outlier was identified in test–retest MT and MAXT distributions. Our samp
⁎ p-Value b 0.05.
Genetic modelling of head motion

Univariate modelling indicated neither a significant common envi-
ronmental (C), nor a dominant genetic effect (D) on the HMmeasures
(ACE vs AE model for MT: p = 1, for MAXT: p = 0.71; ADE vs AE
model for MR: p = 0.82, for HM-PC1: p = 0.46) (Table 2). Similarly,
using Cholesky decomposition of MR, MT andMAXT, common environ-
mental effects were not significant. Therefore, all subsequentmodelling
included A and E components only, knowing that wemay slightly over-
estimate the additive genetic effect, as it would include the non-
significant C or D variance.

Additive genetic estimates in the AE Cholesky model were highly sig-
nificant (p b 0.001). High genetic correlations (rg) (rgMT − MAXT = 0.99
[0.65,1.00]; rgMR − MAXT = 0.77 [−0.32, 1.00] and rgMT − MR = 0.82
[0.18,1.00]), indicated that the three HMmeasures shared, to a large ex-
tent, common additive genetic factor(s). The environmental correlations
(re) were lower (reMT − MAXT = 0.64 [0.55, 0.74], reMR − MAXT = 0.56
[0.45, 0.66] and reMT − MR = 0.61 [0.50, 0.70]). Thus, the environmental
factors influencing MT head motion were mostly common to the 3
measures.

A common pathwaymodel provided a similar overall goodness-of-fit
to the independent pathway decomposition (AICIndependent = 2891.8
and AICCommon = 2891.9). However, with only 14 parameters to esti-
mate (versus 15) the common pathway model was the simplest for a
similar fit, and minimised the BIC criterion (BICIndependent = −1730.7
versus −1724.0). Therefore, we used the more parsimonious AE com-
mon pathway model to examine the covariation between the HM mea-
sures, and to test the significance of common (Ac) and specific additive
genetic sources of variance (As). Both specific and shared A and E esti-
mateswere significant in themodel (p b 0.001). Estimates are presented
in Fig. 1.

The latent HM factor explained a high proportion of the observed
variance: 70% for MT, 72% for MAXT and 50% for MR. This result con-
firms that a substantial amount of the variance in MT, MAXT and MR
is due to a common source. Forty-six percent of the variance in this la-
tent HM factor was due to an additive genetic factor (A) and 54% due
to non-shared environmental (E) variance, some of which is correlated
measurement error. The variance explained by specific factors was as
low as 30% (19% As and 11% Es) for MT and 28% (2% As and 26% Es)
for MAXT. Specific variance was slightly higher for MR (50% [14% As
and 36% Es]).
AXT (mm) MR (degrees) HM-PC1

7 (0.22) 0.04 (0.01)
.06,1.35] [0.02,0.10]
1.54 (0.65) −7.32 (0.32) 0.00 (1.50)
2.75,0.30] [−8.24,−6.39] [−3.63,4.46]

4 0.02⁎ 0.18
7 0.03⁎ 0.22

1 1

3 [0.24,0.73] 0.53 [0.24, 0.74] 0.66 [0.42,0.82]

1 [0.66,0.75] 0.58 [0.52,0.64] 0.88 [0.86,0.90]
0.60 [0.54,0.66] 0.89 [0.87,0.91]
– 0.83 [0.80,0.86]

3 [0.20,0.45] 0.29 [0.16,0.41] 0.38 [0.20,0.54]
9 [0.07,0.30] 0.14 [0.02,0.26] 0.18 [0.01, 0.34]

s well as sex, age2 and age effects, repeatability coefficients (ICC), Phenotypic correlations
ity of MR and HM-PC1 (ICCMR = 0.46 [0.15, 0.68] and ICCHM-PC1 = 0.65 [0.40, 0.80] in the
le exhibited similar amount of motion to that reported previously (Van Dijk et al., 2012).



Table 2
Model fit and parameter estimates of the univariate genetic models for HM.

Variable Model Parameter estimates Model fit

A C/D E df −2LL AIC p-Values

MT ACE 0.54 [0.21,0.65] 0.00 [0.00,0.24] 0.46 [0.35,0.61] 4 302.06 −609.9
AE 0.54 [0.39,0.65] 0.46 [0.35,0.61] 3 302.06 −611.9 p = 1
CE 0.35 [0.23,0.46] 0.65 [0.54,0.77] 3 310.51 −603.5 p = 0.003
E 2 340.25 −575.7 p b 0.001

MAXT ACE 0.26 [0.00,0.48] 0.07 [0.00,0.35] 0.67 [0.51,0.85] 4 886.35 −25.7
AE 0.34 [0.19,0.48] 0.66 [0.52,0.81] 3 886.48 −27.5 p = 0.71
CE 0.26 [0.13,0.37] 0.74 [0.63,0.87] 3 887.54 −26.5 p = 0.27
E 2 903.26 −12.7 p b 0.001

MR ADE 0.19 [0.00,0.42] 0.09 [0.00,0.44] 0.72 [0.56,0.89] 4 236.14 −679.9
AE 0.27 [0.10,0.42] 0.73 [0.58,0.90] 3 236.19 −681.8 p = 0.82
E 2 246.22 −673.8 p = 0.006
ACE 0.28 [0.00,0.42] 0.00 [0.00,028] 0.72 [0.58,0.90] 4 234.46 −677.5

HM-PC1 ADE 0.32 [0.01,0.55] 0.08 [0.00,0.29] 0.60 [0.45,0.78] 4 1653.13 745.1
AE 0.42 [0.25,0.56] 0.58 [0.44,0.75] 3 1653.67 743.7 p = 0.46
E 2 1673.05 761.4 p b 0.001
ACE 0.39 [0.00,0.53] 0.00 [0.00,0.00] 0.61 [0.47,0.78] 4 1653.32 745.3

The parameter estimates are followed by the 95% CI between brackets. All the estimates are standardised (percentage of variance). df gives the degree of freedom i.e. the number of es-
timates in themodel.−2LL is−2 times the log-likelihood of themodel, AIC theAkaike criterion for eachmodel. Thep-value corresponds to the likelihood ratio test of the fullmodel versus
any nested model. For each HM variable, the best model (p-value N 0.05 and AIC minimal) appears in bold.
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Following this evidence for large common underlying genetics (and
environmental) factors in rotational and translationalmovementwe in-
vestigated the heritability difference between MT (h2 = 0.51) and MR
(h2 = 0.37) by coming back to the distributions of frame-to-frame
rigid body parameters. It became clear that the extent (amplitude) of
movement during anMRI session is not the same in all directions: trans-
lation along the X axis (left–right translation) and rotation around the Y
(“maybe” rotation) and Z axis (“no” rotation) exhibited reduced vari-
ance (See Inline Supplementary Figure S3). These differences in vari-
ance are likely due, at least in part, to the head coil restraining
rotation more than translation.

In addition, heritability ofMAXT (h2= 0.35)was also lower than for
MT, likely arising from MAXT being (by construct) more sensitive than
themean to the presence of rare and extrememovement, which results
in greater within-pair variability.

Inline Supplementary Fig. S3 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.08.010.
3 In our case, the histogram of p-values can be misleading and a non uniform distribu-
tion can correspond to non-significant effect (when the significant voxels do not cluster).
This is because we use topological properties (clusters) to correct for multiple testing in-
stead of correcting voxel-wise.
Genetic modelling of Broca's functional connectivity

Saturated univariate models estimated on each voxel indicated no
mean or variance differences for either sex or zygosity groups. Common
or shared environment (C) had no significant influence across the brain
and was dropped from the models. There was a significant effect of age
and sex in 3 regions of BA45's network (see Inline Supplementary
Table S2, Inline Supplementary Figure S4). The principal components
of HMwere not significant across the brain (the biggest cluster of signif-
icant voxels for HM-PC1 effect was of size k = 32 voxels, the discovery
clusters were even smaller for HM-PC2: k ≤ 28 and HM-PC3: k ≤ 24,
none of them reaching the significance threshold). Fitting AE models
we identified 3 regions of BA45's network with significant heritability:
left IPC (k = 254 voxels, h2 = 0.27 (sd = 0.069)), left SMA (k =
133, h2 = 0.23 (0.048)), right IPC (k = 82, h2 = 0.25 (0.043))
and right IFC (k = 53, h2 = 0.22 (0.034)) (see Fig. 2 and Inline
Supplementary Table S2).

Inline Supplementary Table S2 and Fig. S4 can be found online at
http://dx.doi.org/10.1016/j.neuroimage.2014.08.010.

In BA44's network, age, sex and the first PC of HM were kept as co-
variates. 5 regions showed a significant effect of age or sex on FC (see
Inline Supplementary Table S3, Inline Supplementary Figure S5). In
one region therewas a significant effect of the first principal component
of HM (HM-PC1) that corresponds to HM effect size and therefore can
be interpreted as the global amount of motion. The region was located
in left/right SPC (k = 98, β = 0.025 (0.0069)). We identified three re-
gions of the BA44 network that showed significant heritability, and
contained 4 significant clusters: left SMA (k = 123, h2 = 0.23 (sd =
0.043)), IPC (k = 90, h2 = 0.23 (0.036); k = 69, h2 = 0.23 (0.042))
and left/right OC (k= 62, h2 = 0.21 (0.045)) (see Fig. 3 and Inline Sup-
plementary Table S3).

Inline Supplementary Table S3 and Fig. S5 can be found online at
http://dx.doi.org/10.1016/j.neuroimage.2014.08.010.

Histograms of p-values for BA44 and BA45's ACE model parameters
were coherent with the previous results: the p-values exhibit a uniform
distribution when no significant effect. Conversely, a significant effect is
associated with a peak in the histogram for low p-values (see Inline
Supplementary Figures S4 and S5). In BA45's network, even if HM-PC1
p-values histogram may have suggested a significant effect, no cluster
of voxels passed multiple testing correction.3

Inline Supplementary Figs. S6 and S7 can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2014.08.010.
Sources of covariation between head motion and functional connectivity

No clusters of phenotypic correlation between FC and HM-PC1
passed the significance threshold for BA44 (24 voxels) and BA45
(29 voxels). In BA44's heritable network, the significant correlations
were positioned randomly in the network (k≤ 2 voxels for the discov-
ery clusters of phenotypic correlation, k ≤ 7 for the ct–ct correlation,
k ≤ 2 for the genetic correlations). The absence of a significant correla-
tion was confirmed by the histogram of p-values (See Inline Supple-
mentary Figure S8). We also examined the correlation between FC
with both MR and MT, and again, no significant correlations were
observed.

Inline Supplementary Fig. S8 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.08.010.

In BA45's heritable network, the size of the discovery clusters for phe-
notypic correlation reached k = 24 voxels, k ≤ 17 for the ct–ct correla-
tions but only isolated genetic correlations were observed (k ≤ 2).
Therefore, we could not reject the null hypothesis of no correlation be-
tween FC and HM across the brain. The histograms of p-values may
have suggested a significant phenotypic correlation (See Inline

http://dx.doi.org/10.1016/j.neuroimage.2014.08.010
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Fig. 1. The Common pathway model showing parameter estimates and covariation between MT, MAXT and MR. In the path diagram, the square boxes represent the observed variables
(phenotypes), and the circles the latent variables (A, C, E). Ac and Ec are the Additive genetic and Environmental effects common to the 3HMmeasures through the latent HM factor (oval).
As and Es are, for eachHMvariable the specific additive genetic and environment effects. Path coefficients (standardised) are presented in bold. Below each is the percentage of variance for
the HM measurement and the latent variable, followed by its 95% confidence interval. Heritability estimates for each HM measure are shown below each HM variable name.
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Supplementary Figure S9); however no area passed the significance
threshold (that accounts for multiple testing).

We broke down the HM into rotational and translational components
by considering the correlations of FCwithMT andMR.MT showed no sig-
nificant correlation with the FC in heritable voxels. However, we identi-
fied a area, in the left IPC, showing significant differences in MZ and DZ
phenotypic correlation between FC andMR (k=42 voxels, rMZ ¼ 0:090
sd ¼ 0:061ð Þ, rDZ ¼ −0:16 sd ¼ 0:039ð Þ). The sign difference between
MZ and DZ correlations suggested a false positive, which was confirmed
by the low ct–ct and non-significant genetic correlations (on k =
42 voxels, ctctMZ ¼ 0:056 sd ¼ 0:050ð Þ , ctctDZ ¼ −0:033 sd ¼ 0:042ð Þ
and only 3 voxels were significantly correlated with MR).

Inline Supplementary Fig. S9 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.08.010.

Discussion

Here, we show for the first time that individual differences in small
movements of the head during RS-fMRI are influenced by genetic fac-
tors. Using a healthy population sample, comprising 462 largely young
adult twins, we demonstrated significant low to moderate heritability
of three HMmeasures: mean translation, mean rotation, andmaximum
translation. The strong covariation across MR, MR and MAXT was cap-
tured by a latent head motion factor for which half of the variance
was found to be due to genes. Heritability of HM-PC1 (0.42) was very
similar to the latent HeadMotion factor (0.46) from the Common Path-
waymodel, suggesting HM-PC1 captured well the genetic dimension of
head motion. We confirmed that HM measurements are reliable, and
showed that there was little effect of age or sex on small head
movements.

Our finding that each of the three HMmeasures is significantly her-
itable (MT= 54%, MAXT= 35%, MR= 37%) is consistent with the pro-
posal that small movements of the head are stable traits (Van Dijk et al.,
2012). Interestingly, we found that a large proportion of translational
and rotational HM is under the control of the same genetic factors (ge-
netic correlations ranging 0.76 to 1.00). Common variability, represent-
ed by a latent HM factor, was equally explained by the genes and the
environment (h2 = 46% [0.27, 0.61]). Thus, variation in HM in the pop-
ulation can be partially explained by an additive effect of several genetic
loci common to the 3 HM measures. In contrast, specific genetic
influences explained only a small proportion of the variance in HM
(19% forMT; 2% forMAXT and 14% forMR). In addition to a common ge-
netic influence, we also showed that both translation and rotation head
movements were significantly influenced by the same environmental
factors (environmental correlations about 0.6) some of which may re-
flect correlated measurement error. Specific environmental factors ex-
plained a minor proportion of the variance in MT (11%) but a greater
amount of the extreme and rotational displacements (26% for MAXT,
36% forMR). Thiswas likely to be the case forMAXT since itmay capture
some voluntarymovement. Onemust keep inmind that all these results
were obtained for HM constrained by the head coil; a study of uncon-
strained HM might reveal a slightly different pattern of genetic and
environmental factors.

Our heritability estimates for HM are consistent with those for an-
other non-voluntarymovement such as eye blink startle reflex suppres-
sion, which has a heritability of 50% (Anokhin et al., 2003). However,
our estimates for HM are somewhat less than those reported for resting
tremor (i.e., 93–99%) (Lorenz et al., 2004), which is caused by contrac-
tion of opposing muscle groups (Walker, 1990), or eye blink startle
magnitude (i.e., 70%) (Anokhin et al., 2003). Eye blink startle reflex sup-
pression and resting tremor are frequently associated with Parkinson's
disease (Anokhin et al., 2003; Lorenz et al., 2004). Furthermore, eye
blink startle reflex suppression is implicated in the biological bases of
schizophrenia and has been proposed as a possible endophenotype for
genetic studies (Anokhin et al., 2003). Both types of non-voluntary
movement are associated with impaired cerebellum connectivity
(Manto et al., 2012; Walker, 1990).

Moderate test–retest reliability for all HMmetrics (range 0.53–0.66)
confirmed the results of a prior study (Van Dijk et al., 2012). Higher
test–retest reliability (ICC = 0.73) has been reported for the Yan et al.
metric of HM (Yan et al., 2013). However, the reliability of the concur-
rent metrics on the same sample was not reported and thus could also
be higher (e.g. due to better controlled experimental parameters across
sessions or longer RS scans). We also found similar magnitude of HM in
the twins to those previously reported (Van Dijk et al., 2012), despite
having possibly made different choices for the centre of rotation and
the motion used (absolute or frame-wise). However, contrary to their
study, we found little indication of any sex difference in HM. Similarly,
and only for rotational motion did we find a subtle decrease with age.
This may reflect the fact that the twins in our sample were largely

http://dx.doi.org/10.1016/j.neuroimage.2014.08.010
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Fig. 2.Heritability map of BA45's network and effect of headmotion on the network's FC. (A) Heritability map of the BA45's network (heat-map) and corresponding−log(p-values) map
(purple). (B) HM-PC1 effect on BA45's FCwith betamaps and corresponding−log(p-values). The negative betas are shown in cold colours (with strongest effect corresponding to green),
positive betas are plotted with warm colours (the strongest effect being white). Therefore, all the colorbars rank effect/significance from low to high (i.e. left to right). Effect size and sig-
nificance are plotted voxel-wise. Heritability andHMeffects are projected onto brainmaps after averaging the signal (using 12 voxels depth resolution) usingMRIcron (Rorden and Brett,
2000).We plotted the top 80% of voxels for heritability andmotion effect to facilitate the reading of the image. No thresholdingwas applied on the p-valuesmaps and significance of all the
voxels considered is presented.
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young adults, with the youngest participants aged 16 (i.e. mean age =
21, SD= 3.16, range 16–29). A prior study that reported significant lin-
ear and quadratic effects of age (Satterthwaite et al., 2012) had a much
younger sample (8–23 years old). Further studies are needed to investi-
gate the effects of age and sex on HM, but our findings suggest that at
least in healthy young adults, variability in HM due to age and sex are
likely to be small.

HM is a known confound for RS-fMRI. Linear regression of HM is in-
sufficient in removing all bias (Bright and Murphy, 2013; Mowinckel
et al., 2012; Power et al., 2014; Satterthwaite et al., 2013; Van Dijk
et al., 2012; Yan et al., 2013) so the real effect ofmotion on FC is still un-
known and is likely to be expressed differently according to the FCmet-
ric used (Van Dijk et al., 2012; Yan et al., 2013). Here, in a post-hoc
analysis we investigated the extent that heritable HM could confound
seed-based FC heritability studies by creating a bias related to sample
zygosity. Overall, we found that the FC and HM correlations indicated
little common genetic sources of variance between those traits,
indicating no major motion induced bias in the genetic estimates of
FC. However, some sparse residual associations were found in BA44's
network (HM-PC1 was a significant covariate in SPC). While these re-
sults require confirmation on a larger sample (greater power) and at a
larger scale (we focussed on seed-based resting-state FC and did not in-
vestigatemore complex [non-linear] relationships), our findings should
encourage controlling for and minimising HM influences on FC esti-
mates. Thus, including HM measures as covariates (in pre-processing
and further analyses) can reduce the confound with fMRI measure-
ments (Beall and Lowe, 2014; Bright and Murphy, 2013; Mowinckel
et al., 2012; Power et al., 2012; Power et al., 2014; Satterthwaite et al.,
2013; Yan et al., 2013), and even more when slice-wise motion is
used (Beall and Lowe, 2014), but knowing the complex andwide spread
effect of HMon brain signal (Power et al., 2014) and its associationwith
other regressors (Hallquist et al., 2013; Power et al., 2014), a complete
removal of the spurious effect of motion through regression only is illu-
sory. To this effect, a new approach, based on post-hoc deletion



Fig. 3.Heritability map of BA44's network and effect of headmotion on the network's FC. (A) Heritability map of the BA44's network (heat-map) and corresponding−log(p-values) map
(purple). (B) HM-PC1 effect on BA44's FCwith betamaps and corresponding−log(p-values). The negative betas are shown in cold colours (with strongest effect corresponding to green),
positive betas are plotted with warm colours (the strongest effect being white). Therefore, all the colorbars rank effect/significance from low to high (i.e. left to right). Effect size and sig-
nificance are plotted voxel-wise. Heritability andHMeffects are projected onto brainmaps after averaging the signal (using 12 voxels depth resolution) usingMRIcron (Rorden and Brett,
2000).We plotted the top 80% of voxels for heritability andmotion effect to facilitate the reading of the image. No thresholdingwas applied on the p-valuesmaps and significance of all the
voxels considered is presented.
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(censoring) of highly noisy volumes, has been developed to reduce the
residual effect of HM on FC and shows significant promise (Power et al.,
2012; Power et al., 2014).

As a consequence, we can interpret our findings of a significant ge-
netic influence on FC for both BA44 and BA45's network with greater
confidence. In previous MRI studies, a similar level of heritability has
been reported on RS-FC based graph theory metrics (van den Heuvel
et al., 2013) and group-ICA FC (Glahn et al., 2010; Korgaonkar et al.,
2014). This is the first genetic study of seed based RS-FC andwe provid-
ed heritability maps of the Broca's networks at rest. They showed that
several regions across Broca's resting state networks were heritable
with the genetic influence on FC for BA45 and BA44 distributed differ-
ently. It would be of interest for other studies to replicate these findings
aswould heritability studies of additional RS brain network. In addition,
it could be worthwhile investigating the extent of any genetic covaria-
tion between RS-FC and cognitive ability scores, such as vocabulary or
language skills (Hart et al., 2010; Haworth et al., 2009). This could
shed light on the network's organisation and performance.

Besides, themoderate heritability of HMand FC has to be considered
in light of the (moderate) reliability of these traits. Reliability (or repeat-
ability) represents, in most cases, an upper bound for heritability esti-
mates (Dohm, 2002). Here, for both type of measures the similarity of
MZ correlation and reliability estimates suggests that most of the reli-
able signal is heritable and it would be of interest to see how the herita-
bility estimates evolve when the reliability of the measurement is
increased (by acquiring longer RS fMRI for instance, or by using a
more reliable metric if available).

Finally, together with the work showing an association between
gross HM level and case status for diseases such as schizophrenia
(Bullmore et al., 1999), autism (Jones et al., 2010) and ADHD (Durston
et al., 2003; Epstein et al., 2007; Yu-Feng et al., 2007), we suggest that
HM may be considered a possible endophenotype for brain disorders,
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especially if the diseases are known or suspected to impact motor
functions.

Conclusion

We estimated, for the first time, the heritability of HM measured
during RS-fMRI. HM was found to be a trait rather than a state, with
good reliability and a significant genetic influence. Most of the variance
in the three HM measures (mean translation, rotation and maximum
translation) was due to common genetic and environmental influences,
through a latent HM factor. Genetic and environmental influences spe-
cific to each HMmeasure were significant, but could be biased upwards
in our experimental protocol. No clear sex or age effects on movement
amplitude were observed in our largely young adult sample. Further,
while post-hoc analyses showed that FC inmultiple areas of Broca's net-
work is heritable, there was little evidence of shared genetic influences
between HM and FC of this network.

HMcould help to describe and characterise heritable brain disorders,
and therefore may be a valuable endophenotype in future fMRI studies.
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