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ABSTRACT

Motivation: Gene expression data offer a large number of potentially

useful predictors for the classification of tissue samples into classes,

such as diseased and non-diseased. The predictive error rate of

classifiers can be estimated using methods such as cross-validation.

We have investigated issues of interpretation and potential bias in

the reporting of error rate estimates. The issues considered here are

optimization and selection biases, sampling effects, measures of

misclassification rate, baseline error rates, two-level external cross-

validation and a novel proposal for detection of bias using the

permutation mean.

Results: Reporting an optimal estimated error rate incurs an

optimization bias. Downward bias of 3–5% was found in an existing

study of classification based on gene expression data and may be

endemic in similar studies. Using a simulated non-informative

dataset and two example datasets from existing studies, we show

how bias can be detected through the use of label permutations and

avoided using two-level external cross-validation. Some studies

avoid optimization bias by using single-level cross-validation and a

test set, but error rates can be more accurately estimated via two-

level cross-validation. In addition to estimating the simple overall

error rate, we recommend reporting class error rates plus where

possible the conditional risk incorporating prior class probabilities

and a misclassification cost matrix. We also describe baseline error

rates derived from three trivial classifiers which ignore the predictors.

Availability: R code which implements two-level external cross-

validation with the PAMR package, experiment code, dataset details

and additional figures are freely available for non-commercial use

from http://www.maths.qut.edu.au/profiles/wood/permr.jsp

Contact: i.wood@qut.edu.au

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Recent studies suggest that a number of complex diseases can

be accurately diagnosed on the basis of measurements of gene

expression levels from microarrays and similar technology.

Furthermore, they often suggest lists of the genes likely to be

involved in the disease. Methods used include support vector
machines (SVMs) (Guyon et al., 2002; McLachlan et al., 2004)

nearest shrunken centroids (NSC) (Sharma et al., 2005;
Tibshirani et al., 2002) neural networks (Khan et al., 2001)

classification trees and mixture models (McLachlan et al.,
2004).

These studies typically report estimates of classifier accuracy.
However, it is not always clear how these results should be

interpreted. There are a number of possible sources of bias in
such estimates. In this study, we examine some of these,

focusing particularly on optimization bias and sampling effects.
We review existing methods for estimating and reporting

prediction accuracy. We then give suggestions for improve-
ments and examples of their effectiveness in the large p (number

of features or predictors), small n (number of labelled samples)

case common in gene expression analyses.

2 THEORY

2.1 Classification and error rates

Given a dataset of n observations, each comprising the

measurement of p predictors and an expert-based classification
of each point into one of G classes, we can fit a model and use

this to classify these observations and future data of the same
type. Methods of this type are known as classifiers or

discriminant rules. Following Efron (1983), we let the dataset
be x ¼ fx1; . . . ;xng, drawn from a distribution F, with each

xi ¼ ðti; yiÞ comprising the row vector of predictors

ti ¼ ðti1; . . . ; tipÞ and the class label yi 2 1; . . . ;G. The classifier
can then be described in terms of its predictive function �ðt, xÞ,
which allocates a class to a new predictor vector t, based on the
training set x.
We often wish to estimate the misclassification or error rate

we could expect, if the classifier were asked to predict the class

of a new set of predictors drawn from the same distribution as
the original dataset. Let (t, y) be a new point drawn at random

from F and define the zero-one loss function Q for the classifier
� as follows:

Q½y,�ðt,xÞ� ¼
0 �ðt, xÞ ¼ y
1 �ðt, xÞ 6¼ y

�
ð1Þ
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We define the conditional true error rate Err of � to be the

expectation of Q over F given x (Efron, 1983).
There are many ways to measure and report the misclassi-

fication rate of a classifier when applied to a labelled test set of

data. The class of each test observation is predicted based on

the selected predictors, then compared against the given label.

Q is the simplest type of error function which treats all errors

as equally important.
It is generally informative to decompose the misclassification

rate into a rate for each (true) class. This is particularly useful

when the observed number of data points per class is unequal.

For example, if a non-diseased class contains 80% of the data

and a diseased class contains 20%, then the trivial classifier

which predicts every observation to be non-diseased will have a

20% misclassification rate. Examined more closely, it will have

a 0% rate of false positives and a 100% rate of false negatives.

Observational studies will often produce this type of unba-

lanced data since some classes of response will be rarer than

others in the population of interest.

The cost of errors in misclassifying observations may also

vary from (true) class to class, and we may wish to report an

overall estimated error rate or risk which variously weights the

errors on each class. This can be done retrospectively if the

error rate on each class is reported. In a more sophisticated

version, we may have a matrix of misclassification costs

C ¼ fcgh, g, h ¼ 1; . . . ;Gg, where cgh is the cost of misclassifying

a data point of class g into class h. This can be applied

retrospectively if a matrix of misclassification rates is reported.

For two class problems, Wessels et al. (2005) suggest

reporting the average of the sensitivity and the specificity so

that the aforementioned trivial classifier does not appear too

successful. Here, we report estimates of the simple overall

misclassification rate, error rates for each class and the average

of the class error rates. The latter can also be motivated by

decision-theoretic considerations regarding the construction of

a Bayes optimal rule (McLachlan et al., 2004) (p. 188).

Let � ¼ f�g; g ¼ 1; . . . ;Gg be the true proportions of each

class in the population of interest. These will often be known

with high precision, but sometimes must be estimated from the

data. Let �̂g be the observed proportion of responses in class g.

For simplicity, assume that all misclassifications of a given class

have equal cost, i.e. cgh ¼ cg, g 6¼ h and that cgg ¼ 0, 8g (see

McLachlan (1992) p. 8 for more generality). If the error rate

conditional upon the true class being g is Errg, then the

expected cost per observation is
P

g �gcgErrg. As argued by

McLachlan et al. (2004), misclassification cost is often nearly

inversely proportional to relative frequency, so �gcg may be

near constant for all g. In this case, the expected cost will be

approximately a multiple of the average of the class error rates

Ea, so an estimate of this is a useful summary measure.

2.2 Cross-validation

Some of the most popular methods for estimating error rates

are cross-validation (Breiman et al., 1984; Stone, 1974), the

bootstrap (Efron, 1983), the holdout method (McLachlan,

1992) (p. 341) and the 0.632 estimator (Efron, 1983; Efron and

Tibshirani, 1997). All of these rely on training the classifier

based on a subset of the data, and testing it on a separate subset

of the data. Here, we consider only cross-validation since it

is popular and effective (Molinaro et al., 2005) and uses the

data efficiently and is almost unbiased when used correctly

(McLachlan, 1992). However, it does have significant variance

when used with small sample sizes (Braga-Neto and Dougherty,

2004) and can be subject to bias if used naively, as we show

in the following sections.
Cross-validation can be formalized as follows. The dataset

x will be split into K disjoint ‘folds’ xk ¼ ðtk, ykÞ,

k ¼ 1, . . . ,K, 2 � K � n, of approximately equal sizes nk. One

then fits the classifier and tests it K times, such that in

iteration k, the classifier is fitted based on the data in the

training folds x0k ¼ xnxk and evaluated on the test fold xk. The

cross-validated error rate estimates Êrr and Êa are obtained by

averaging over the performance on the K test folds as follows:

Êrr ¼

PK
k¼1

Pnk

i¼1 Q½yki , �ðt
k
i , x

0kÞ�

n
ð2Þ

Êa ¼
1

g

Xg
i¼1

PK
k¼1

Pnk

l¼1 Q½ykl , �ðt
k
l , x

0kÞ�IIðykl , iÞPn
l¼1 IIðyl, iÞ

 !
ð3Þ

where IIðÞ is the identity function, being 1 when its arguments

are equal and 0 otherwise.

The simplest method of forming the folds is to split the

randomly ordered data into K pieces with the largest fold

containing at most one element more than the smallest. The

bias due to the uneven distribution of classes within folds can

be reduced by attempting to balance or stratify the folds, so

that the empirical distribution of classes in each fold is similar

to that of the whole dataset (Breiman et al., 1984).
In standard K-fold cross-validation, folds of size bn=Kc are

created by sampling from the data without replacement and

each of the remaining n mod K data points is assigned

randomly to a different fold. In stratified or balanced cross-

validation (Breiman et al., 1984) (p. 246), the data are first

ordered by the response value or class. This list is broken up

into bn=Kc bins each containing K points with many similar

response values. Any remaining points at the end of the list are

assigned to an additional bin. A fold is formed by sampling one

point without replacement from each of the bins. Except for

the ordering of the data, this is equivalent to standard

cross-validation.
For a classifier � and dataset x, we define the bias in the

estimation of the error rate using cross-validation to be:

B ¼ EFðÊrr� ErrÞ. This is typically intractable, but some

contributing components in Êrr can be described and efforts

made to reduce jBj.
The number of folds K can be any integer between 2 and n,

the number of data points. The use of cross-validation to

estimate error introduces a small positive component into B

since each training set has mean size nðK� 1Þ=K rather than the

n used to construct the final classifier. As K is reduced, the

mean training set size shrinks, and this positive bias component

grows. The training sets also become more different from each

other, which tends to reduce the variance of the error estimate.

It is common practice (e.g. McLachlan et al., 2004 p. 214) to
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compromise between minimizing the bias and variance by using
K¼ 5 or 10 folds.

2.3 Selection bias

Cross-validation can be used to estimate model or classifier
parameters as well as perform model and variable selection.

However, combining these steps with error estimation for the
final classifier can lead to bias unless one is particularly careful.

‘External’ cross-validation (Ambroise and McLachlan, 2002)
(1-external cv) leaves out a single ‘test fold’ of the data, selects

the model, variables and parameters based on the remaining
‘training folds’ and then evaluates the misclassification rate on

the test fold. When averaged over K folds, this should provide a
nearly unbiased estimate of the true error rate of the final

classifier.
‘Selection bias’ (McLachlan et al., 2004) (p. 218) can occur

when cross-validation is used ‘internally’. In this case, all the
available data are used to select a subset of the available

predictors. This subset of predictors is then fixed and the error
rate is estimated by cross-validation.

2.4 Optimization bias

When largely following the above advice, it is still easy to allow
a subtler bias to emerge, which we call ‘optimization bias’. This

can occur if cross-validation or other methods are used to
estimate the error rate for multiple values of a set of free

parameters, and then the set of parameter values with the
lowest (optimal) estimated error rate is chosen for use in the

final classifier. The free parameters can be involved in any
aspect of model selection, variable selection or model fitting

and include parameters as general as the index of a model or a
variable subset. This method is reasonable for choosing the

final classifier, but provides a downwardly biased estimate of its
error rate. Varma and Simon (2006) have independently

investigated this bias and call it ‘parameter selection bias’.
As an example of how one might incur optimization bias,

assume we have a procedure which, given a fixed b� 0, can
select b predictors and fit a classifier based on the available

data. The error rate for this classifier can be estimated using
cross-validation. However, we may then decide to also choose

an optimal value by; from a set of values fbr, r ¼ 1, . . . , lg via
by ¼ argmin ÊrrðbrÞ.
For each r, the error estimate ÊrrðbrÞ will be nearly unbiased,

but the estimate Êrr(by) is now slightly biased. This happens
because the same data is used to both estimate the error rate

and to select a parameter, namely b. For similar examples
involving the use of SVMs with recursive feature elimination

on gene expression data, see Zhu et al. (2007).
Stone (1974) (p. 115) described how to carry out cross-

validatory assessment of cross-validatory choice in his seminal
paper. While describing only leave-one-out (LOO) cross-

validation, he made clear that while one level of cross-
validation is satisfactory to optimize the set of free parameters

for the final classifier, a separate two-level cross-validation is
needed to estimate its error rate. Failure to do this leads to

optimization bias.
Two-level external cross-validation (2-external cv) can be

used to avoid both selection and optimization bias in these

circumstances. By two-level external cross-validation, we mean
the following. At the top level, one of K1 folds of data is left out
for the purpose of assessing the error rate of the finished

classifier. At the lower level, K2-fold cross-validation is then
performed on the remaining data to select the optimal value of
any free parameters. When all parameters are selected, the

classifier can be tested on the left out fold at the top level. By
repeating this for all K1 folds at the top level, one can construct
a cross-validatory assessment of the cross-validatory choice.

The same two-level procedure can be used with any method for
estimating the error rate, where there are free parameters to be
chosen and an overall assessment of error rate, is desired. If

using cross-validation it is easiest to choose K2 ¼ K1 � 1, so
that the same fold structure can be used for both levels. The use
of two levels of cross-validation to avoid bias is also discussed

by Dudoit and Fridlyand (2003), Statnikov et al. (2005) and
Wessels et al. (2005). If instead the whole model selection,
variable selection and parameter fitting process is performed

without cross-validation, then only one level of external cross-
validation is needed to estimate error rates of prediction.
Optimization bias will increase in magnitude with the

variability of the error estimate and with the number of
parameter values considered, especially those whose true error
rate is near the minimum value (within the range of variability).

In the analysis of gene expression, SNP (single nucleotide
polymorphism) chip and mass spectroscopy data, the number
of available predictors is large, so careful variable selection is

needed to avoid optimization bias.
Sharma et al. (2005) built a system to classify patients into

those with or without breast cancer based on gene expression

levels in blood. They considered 1368 genes and used the NSC
method of Tibshirani et al. (2002) to both select a subset of
genes for classification and for the classification itself. Sharma

et al. (2005) used 10-fold cross-validation to estimate a
prediction error rate of 18% based on 102 labelled samples.
However, they did this for multiple gene subset sizes controlled

through a threshold parameter. The optimal value of the
threshold was chosen to be that producing the lowest cross-
validation error rate estimate. They reported the error rate

estimate for this optimal choice and constructed the final
classifier using the whole dataset.
Based on the discussion above, it seems likely that these

authors have incurred optimization bias. They could have
avoided this bias by choosing the threshold using cross-
validation based on a subset of the data as some of the same

authors did in Tibshirani et al. (2003). This is the holdout
method of assessing cross-validatory choice, which is effectively
one fold of 2-external cv with a small K1. One could make even

better use of the data by completing a two-level external cross-
validation. The resulting estimates would be more accurate
since they would be based on K1 holdout estimates, with each

observation being used once in a test set.
A number of authors (e.g. McLachlan et al., 2004 (p. 240),

Dabney, 2005) estimate and report error rates for various

numbers of genes b where for each value of b, an optimal subset
of b predictors is selected. The natural response to a table of
estimated error rates for various values of b is to choose by with

the minimal estimated error rate and select by variables in the
final classifier. In the absence of other information, one is also
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likely to take the reported error rate estimate for this number of

genes to be indicative of that final classifier’s error rate. As

discussed previously, this estimate will be subject to optimiza-

tion bias due to the process of choosing the optimal value for b.

The study of McLachlan et al. (2004) was repeated using two-

level cross-validation to avoid optimization bias, with the

results reported in Zhu et al. (2007).
Varma and Simon (2006) investigated the same bias by

applying the NSC and SVM to simulated datasets containing

two classes of exactly 20 points each. Using 1-external cv, they

estimated a bias of �0.122 with K¼ 10 and an NSC and a bias

of �0.083 with K¼ n and an SVM. Using 2-external cv, they

estimated biases of 0.042 and 0.033 for the NSC and SVM,

respectively, which they attributed to cross-validation leaving

some data out.

2.5 Sampling effects on error rate estimation

If a dataset of size n consists of a sample of two classes, each

occurring with probability �1 ¼ �2 ¼ 0:5, then in most cases,

the number of observations from each class will be different, i.e.

�̂1 6¼ �̂2. Assuming independence, the number of observations

n1 in class 1 can be described by the binomial distribution, i.e.

n1 � Binðn,�1 ¼ 0:5Þ, and the size of the second class is simply

n2 ¼ n� n1. Then Eðn1Þ ¼ n�1 and Eðn2Þ ¼ nð1� �1Þ. For

larger samples and �1 not too close to 0 or 1, the binomial

distribution Binðn,�1Þ can be approximated by a normal

distribution with mean n�1 and variance n�1ð1� �1Þ.
Let m1 be the absolute difference in class size 1 from

the expected size, i.e. m1 ¼ jn1 � Eðn1Þj, and similarly

m2 ¼ jn2 � Eðn2Þj. Using the normal approximation to the

binomial distribution, the distributions for m1 and m2 are both

half-normal. For m1, this is the renormalized right-half of a

normal distribution with mean 0 and variance n�1ð1� �1Þ.

As a half-normal distribution, it has mean Eðm1Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�1ð1� �1Þ=�

p
and variance varðm1Þ ¼ n�1ð1� �1Þð1� 2=�Þ

(Johnson et al., 1994).
As an example, if we have a sample size of 60 with two

equiprobable classes (�1 ¼ �2 ¼ 0:5), the mean absolute differ-

ence in class size from the expected 30 is 3.1, with a variance of

5.45. Thus, class sizes of 33 and 27 would be typical for a

random sample from this population and on average one class

is 22% larger than the other. Through balanced cross-

validation, one might expect the following numbers of each

class in each fold (n1, n2): (4,2),(4,2),(4,2),(3,3),(3,3),(3,3),(3,3),

(3,3),(3,3),(3,3). Hence 3 out of 10-folds would have a majority

from the class which was larger in the sample; the other 7-folds

would have equal numbers of each class. These types of

sampling effects have an impact on the estimation of

classification error rates and their interpretation.
In the above example, if the available predictors were

independent of each other and of the response and the

method of classification ignored the predictors, it would be

likely to use the apparently different class probabilities, as

estimated from the training data. Each fold of 10-fold cross-

validation would contain on average 3.3 of one class and 2.7 of

the other. In the combined training folds, one would expect

29.7 of the larger class and 24.3 of the smaller. Even with n-fold

(or LOO) cross-validation, the excluded data point will have

the same class as the larger class in the training folds in 33/60

�55% of cases. A classifier that assigns every point to the larger

class in the training set can thus be expected to show an error

rate of 45% under this type of cross-validation. However, we

know that it would achieve an expected error rate of 50% if

applied to new data from the same population or underlying

distribution.
Efron and Tibshirani (1997) (p. 552) define the

no-information error rate � to be the error rate if the true

response or classification is independent of all the predictors.

They estimate � by

�̂ ¼
XG
g¼1

�̂gð1� q̂gÞ, ð4Þ

where, �̂g is the observed proportion of responses in class g and

q̂g is the observed proportion of predictions in class g. In the

above example, we might have �̂1 ¼ 33=60, q̂1 ¼ 1,

�̂2 ¼ 27=60, q̂2 ¼ 0, so �̂ ¼ 27=60 �0.45.

Consider the following three trivial classifiers. These are

simple to implement and use no predictor information. They

are presented here in order of expected increasing error rate.

The first trivial classifier can be seen as providing a baseline

for classifier error rates.

Trivial classifier 1 (TC1): classify all observations as

belonging to the largest class in the sample. Without loss of

generality let this be class 1, so q̂1 ¼ 1, �̂ TC1 ¼ 1� �̂1 and

ErrTC1 ¼ 1� �1.

Trivial classifier 2 (TC2): classify observations randomly with

class probabilities equal to the sample proportions, so

qg ¼ q̂g ¼ �̂g, g ¼ 1, . . . ,G. Then �̂TC2 ¼ 1�
PG

g¼1 �̂
2
g and

ErrTC2 ¼ 1�
PG

g¼1 �g�̂g.
Trivial classifier 3 (TC3): classify observations randomly with

equal probability for each class, so qg ¼ 1=G, g ¼ 1, . . . ,G.

If we use qg in equation (4) instead of q̂g, we obtain:

�̂ TC3 ¼ ðG� 1Þ=G ¼ ErrTC3.
Using �̂1 � �̂g, g 6¼ 1 and the Cauchy–Schwartz inequality, it

can be shown that �̂ TC1 � �̂ TC2 � �̂ TC3. If �1 � �g, g 6¼ 1, then

ErrTC1 � ErrTC2 and if �1 � 1=G, ErrTC1 � ErrTC3. The true

averages of the class error rates are the same for all three trivial

classifiers and will equal the estimated average for trivial

classifier 3, i.e. ÊaTC3 ¼ EaTCg ¼ ðG� 1Þ=G, g ¼ 1, 2, 3.

Efron and Tibshirani (1997) (p. 552) studied classification

based on uninformative data with responses of 0 or 1 with

probability 0.5. They erroneously claim that on this type of

data, the leave-one-out cross-validation estimate Êrr for the

nearest neighbour classifier would have the correct expectation

of 0.5. In fact, as described above, it will generally be slightly

lower for this and most other classifiers since sampling

variation will usually produce one class larger than the other.

Classifiers will tend to exploit this imbalance and cross-

validation estimates of the error rate derived from the same

dataset will be unable to correct for its effect. By default, the

NSC takes the prior class probabilities to be the sample class

proportions. If no genes are selected, a prior term causes the

NSC to classify all observations into the largest sample class,

so becoming TC1.
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2.6 Permutation assessment

The permutation or randomization test is an exact test which

can be used to determine a significance level for the acceptance

or rejection of a null hypothesis (Good, 1994). The statistic of

interest here is the estimated error rate of the classifier. The null

hypothesis is that the value of this statistic does not depend

upon the given set of labels, i.e. there is no meaningful

relationship between the predictors and the given labels. This

implies that the classifier would be expected to yield a similar

estimated error rate even under a random permutation of the

labels.
We can obtain a reasonable approximation by taking a

subset of the possible permutations chosen via a uniform

distribution over the n! possible relabellings. The p-value for

this test is then given by the fraction of the statistics obtained

under permutation which are more extreme than the value

obtained using the original labelling.
The mean of a statistic under a large number of permutations

is also worth consideration. If the permutations successfully

remove the relationship between predictors and response, and

the trivial classifiers dominate as expected, then we can expect

the permutation mean of Êa to be close to ðG� 1Þ=G. If it is
not, then the method used to estimate error is likely to

be biased.

3 METHODS

We performed computer experiments to test for bias in the estimation

of error rates using 1-external and 2-external cv. In addition, the

experiments were designed to test for differences between Êrr and Êa

(see Equations (2) and (3) and Section 2.1). In each case, the NSC

classifier was used since this allowed a clear comparison with the results

of two previous studies of interest. The NSC is implemented in a well-

known R package (PAMR) which offers only 1-external cv. We wrote

R code to wrap another level of cross-validation around it to allow the

use of 2-external cv. We used balanced cross-validation throughout

our experiments via our own code and through the routines in PAMR

(http://www-stat.stanford.edu/\%7Etibs/PAM/). PAMR controls vari-

able selection by automatically trying 30 threshold values in a linear

series, with a value of 0 corresponding to no genes selected.

The 1-external and 2-external cv versions of the NSC classifier were

applied to a simulated non-informative dataset and the Khan (Khan

et al., 2001) and Sharma (Sharma et al., 2005) datasets. For each

dataset, we estimated the simple, average and class-conditional error

rates for the NSC classifier using 1-external and 2-external cv. We also

recorded the number of genes selected using the optimal threshold value

under 1-external cv and the average number of genes selected across the

K folds under 2-external cv. Balanced cross-validation randomly

allocates data values to folds, so we repeated each procedure 1000

times to reduce variability and estimated the mean and standard

deviation of each of the above estimates across these repetitions.

Standard errors were calculated across folds, then averaged over the

repetitions.

We also carried out a series of permutation tests for each dataset.

We permuted the data labels (responses) 1000 times and refit the NSC

classifier under 1-external and 2-external cv. Each time we recorded the

simple, average and class error rates and the number of genes selected.

We also calculated the mean of each estimate over the permutations.

For the non-informative dataset, permutation would be expected to

make little difference to any of the estimates.

Since the true distribution is available here, we were also able to

estimate the optimization bias with the NSC on sample sizes of 100 by

simulating 1000 additional samples of this size and performing 1- and

2-external cv on each.

3.1 Simulated data

The non-informative simulated dataset comprised 100 data points

fxi ¼ ðti, yiÞ, i ¼ 1, . . . , 100g, each intended to represent an individual

drawn from a population of interest. Each individual was given 2000

real-valued predictor measurements ti ¼ ftij, j ¼ 1, . . . , 2000g, with each

Tij � Nð0, 1Þ and a binary response yi with Yi � Binð1, 0:5Þ, i.e.

�1 ¼ �2 ¼ 0:5. Hence each predictor and response value is drawn

independently of all others and any relationships between predictors

and response are purely due to chance. The dataset was

generated randomly once and then used throughout the experiments.

The number of observations in classes 1 and 2 were 53 and 47,

respectively.

3.2 Khan data

Khan et al. (2001) described a gene expression dataset of 83

observations, each from a child who was determined by clinicians to

have a type of small round blue cell tumour (SRBCT). These included

the following four classes: neuroblastoma (N), rhabdomyosarcoma (R),

Burkitt lymphoma (B; a subset of the non-Hodgkin lymphomas) and

the Ewing’s sarcoma family of tumours (E). The numbers in each class

are: 18 N, 25 R, 11 B, 29 E.

For each tissue sample the levels of gene expression were estimated

using a cDNA microarray. A total of 2308 genes and ESTs passed

the intensity requirements imposed and the values were normalized

(Khan et al., 2001) The full dataset is publicly available at http://

home.ccr.cancer.gov/oncology/oncogenomics/. We ignored five addi-

tional observations which were not determined to be SBRCTs.

3.3 Sharma data

Sharma et al. (2005) described and made public a dataset containing the

expression levels (mRNA) of 1368 genes from 60 blood samples taken

from 56 women. Some of the blood samples were analyzed more than

once in separate batches giving a total of 102 labelled blood samples.

Each blood sample was labelled by clinicians, with 24 labelled as having

breast cancer (BC) and 36 labelled as not having it (NC).

The supplementary section of Sharma et al. (2005) supplies both the

raw data from macroarray measurements and batch-adjusted data,

obtained using ANOVA. The authors found a clear batch effect and

removed it for their analysis, so we also used only the batch-adjusted

data. To avoid consideration of the method of aggregation, we chose to

use just one measurement per blood sample and ignore the others.

Hence the Sharma data set used here is a randomly selected subset of

60 observations, rather than the whole 102. The subset used here

is publicly available on the website.

Table 1 lists our calculations of the estimated no-information error

rates �̂, and the true error rates Err for the three types of trivial

classifiers described in Section 2.5 on the three datasets. The missing

Table 1. Calculated estimated no-information error rate �̂ and true

error rate Err for three types of trivial classifiers on the three datasets

studied here

Dataset �̂TC1 ErrTC1 �̂TC2 ErrTC2 �̂TC3 ErrTC3

Simulated 0.47 0.5 0.498 0.5 0.5 0.5

Khan 0.651 – 0.723 – 0.75 0.75

Sharma 0.4 – 0.48 – 0.5 0.5
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entries for true error rates could be filled in if one knew the prior

probabilities of class membership �g for the populations sampled by

Khan et al. (2001) and Sharma et al. (2005). These may be available, but

are beyond the scope of this article.

4 RESULTS AND DISCUSSION

4.1 Results on simulated data

The results on the simulated dataset are detailed in Table 2.

They show that 1-external cv yielded mean (standard

error) estimates of Êrr and Êa of 0.435 (0.0229) and 0.461

(0.0215), respectively. Given the non-informative model

which generated this dataset, we can be confident that the

true Err and Ea and their class-conditional counterparts

would all be 0.5. Using 2-external cv, the mean (standard

error) estimates of Êrr and Êa were 0.472 (0.0278) and

0.498 (0.0223), respectively. The difference between the

1-external and 2-external cv estimates can be largely attributed

to optimization bias.
As discussed in Section 2.5, the estimate Êrr is also influenced

by differences between the sample and true class proportions.

Although the true proportions for the two classes were equal,

the sample proportions were 0.53 and 0.47. Since class 1 has the

larger sample proportion, the baseline no-information error

rate �̂TC1 ¼ 0:47, which is similar to the Êrr estimate found

using 2-external cv. On the basis of these results, the

optimization bias seems to have reduced both Êrr and Êa by

around 0.04 on this dataset.
This example also illustrates the value of estimating Êa in

addition to Êrr. Êa was unaffected by the difference between

the sampling and true proportions and so offers a valuable

diagnostic tool for determining whether or not a given method

of estimating error is biased when the true proportions are

unknown.

The NSC returned large p-values in the range 0.34–0.66 for

Êrr and Êa with both 1-external and 2-external cv under the

permutation test on this dataset. This was expected since the

given labelling was assigned randomly and uninformatively.

The average values of Êrr and Êa with the given labelling were

slightly different to the permutation mean values, but fell well

inside a standard deviation.

Under 2-external cv, the mean estimate of Êrr with permuted

labels was 0.487, which is slightly above the 0.47 �̂ TC1 baseline.

The mean estimate of Êrr using 1-external cv under permuted

labellings was 0.420. The 2-external cv estimate Êa was 0.503,

which is close to the expected 0.5, while 1-external cv produced

an Êa of 0.435. Hence the use of 1-external cv, seems to incur

an optimization bias of around �0.07 in both Êrr and Êa.
Based on the 1000 additional datasets of size 100, the mean

(standard error over the 1000) results for Êrr were 0.410

(0.0014) and 0.476 (0.0018) for 1- and 2-external cv, respec-

tively. For Êa, the respective values were 0.439 (0.0016) and

0.503 (0.0017). Hence, for this true distribution and sample

sizes of 100, we estimate the optimization bias in Êrr and Êa

under 1-external cv to be �0.06.

4.2 Results on Khan and Sharma data

The results on the Khan and Sharma datasets are detailed in

Table 3 and 4. On the Khan dataset, 1-external cv produced

mean (standard error) results of 0.00026 (0.00027) for Êrr and

0.00023 (0.00023) for Êa. The mean (standard error) estimates

for Êrr and Êa from 2-external cv were 0.00717 (0.0069) and

0.00563 (0.0052), respectively. Tibshirani et al. (2002) reported

an estimated error rate of zero for the NSC using a separate test

set, but the 2-external cv estimate given here is expected to be

more accurate. On this dataset, optimization bias reduced both

Êrr and Êa by an order of magnitude under 1-external cv.
On the Sharma dataset the mean (standard error) estimates

of Êrr and Êa using 1-external cv, were 0.186 (0.0494) and 0.201

(0.0537), respectively. Using 2-external cv the estimates for Êrr

and Êa were 0.212 (0.0524) and 0.232 (0.0576), respectively.

These differences of around 3% can be attributed to optimiza-

tion bias. Due to differences with the original dataset, the

results here cannot be directly compared with those of Sharma

et al. (2005), but their reported error rates based on 1-external

cv are likely to include a similar level of bias.
For both the Khan and Sharma datasets, the permutation

tests rejected the null hypothesis with p-values <0:001 for Êrr

and Êa estimated using 1-external and 2-external cv. This is

unsurprising, and supports an association between the pre-

dictors and the given labels.
As with the simulated data set, it is more interesting to

consider the permutation mean of Êrr and Êa. The effects of

optimization bias are illustrated for the Sharma dataset in

Figure 1 through the different distributions of Êrr and Êa as

estimated by 1-external and 2-external cv under 1000 permuta-

tions of the labels. The baseline error rates �̂ TC1 for trivial

classifier 1 are 0.651 and 0.4 for the Khan and Sharma datasets,

respectively. These values are approximately midway between

the permutation means of Êrr using 1-external and 2-external

cv on these datasets.

Table 2. Error rates of the NSC classifier on the simulated non-

informative (2 class) dataset, as estimated using 1-external and

2-external 10-fold cross-validation

Test Êrr Êa Êrr1 Êrr2 Number

of genes

1-external cv 0.435 0.461 0.023 0.899 9.55

1-external cv sd 0.0176 0.0192 0.0308 0.056 6.05

1-external cv se folds 0.0229 0.0215 0.0149 0.040 0.70

1-ext cv perm mean 0.420 0.435 0.180 0.689 409

1-ext cv perm mean sd 0.0441 0.051 0.129 0.201 608

2-external cv 0.472 0.498 0.0548 0.942 33.9

2-external cv sd 0.024 0.023 0.0449 0.0328 59.1

2-external cv se folds 0.0278 0.0223 0.0384 0.0349 27.8

2-ext cv perm mean 0.487 0.503 0.229 0.778 376

2-ext cv perm mean sd 0.0491 0.0516 0.0974 0.139 343

The non-permutation results give the means, standard deviations (sd) and

fold-based standard errors (se) from 1000 repetitions of balanced cross-

validation. The permutation (perm) results are based on a single instance of

cross-validation for each of 1000 permutations of the labels. The numbers of

selected genes are based on the 10 outer cross-validation folds.

I.A.Wood et al.

1368



The permutation means of Êa are far more clearly in favour

of 2-external cv. Under label permutations, the average error

rates Ea should be centred around 0.5 on the Sharma dataset

and 0.75 on the Khan dataset. The estimates Êa derived from

2-external cv were centered in this way, but those from

1-external cv were noticeably lower. 1-external cv gave mean

results of 0.717 and 0.465 on the Khan and Sharma datasets,

respectively, while 2-external cv gave results of 0.751 and 0.503,

respectively. The 2-external cv estimates are highly accurate and

the 1-external cv estimates are noticeably biased downward,

giving an assessment of classifier accuracy which is too

optimistic by around 3%.

Mean class error rates under permutation were very high for

the smaller observed classes (B, N and R on the Khan dataset

and BC on the Sharma dataset), which indicates that the NSC

may have frequently become trivial classifier 1. By checking the

raw results, we found that under 1-external cv the NSC became

in effect TC1 in 38% of cases on the Khan dataset and in 60%

of cases on the Sharma dataset. Under 2-external cv there is

another layer of diversity, but class error rates matching TC1

were seen in 16% of cases on the Khan dataset and in 27% of

cases on the Sharma dataset. This shows that trivial classifiers

are relevant in deriving a baseline error rate.

5 CONCLUSIONS

We have quantified the bias and precision of error rates in

classification based upon gene expression data from simula-

tions and using real datasets, and have shown how common

methods of estimation can lead to bias. We have proposed

Table 3. Error rate results for the given labels and 1000 permutations using the NSC classifier on the Khan (4 class) dataset, estimated using

1-external and 2-external 10-fold cross-validation

Test Êrr Êa ÊrrB ÊrrE ÊrrN ÊrrR Number of genes

Reported 0 0 0 0 0 0 43

1-external cv 0.00026 0.00023 0.00027 0.00066 0 0 242.7

1-external cv sd 0.00177 0.00017 0.00497 0.00471 0 0 192.5

1-external cv se folds 0.00027 0.00023 0.0003 0.00063 0 0 2.8

1-ext cv perm mean 0.631 0.717 0.951 0.144 0.933 0.838 108.1

1-ext cv perm mean sd 0.0294 0.0461 0.124 0.192 0.138 0.201 369.5

2-external cv 0.00717 0.00563 0.0030 0.0189 0.00017 0.00048 198

2-external cv sd 0.00728 0.00667 0.0172 0.0194 0.00304 0.00436 49.5

2-external cv se folds 0.0069 0.0052 0.0025 0.0184 0.0002 0.00043 56.0

2-ext cv perm mean 0.667 0.751 0.976 0.163 0.965 0.900 98.6

2-ext cv perm mean sd 0.031 0.030 0.072 0.141 0.079 0.130 195

The reported values are from Tibshirani et al. (2002). The class-specific error rates are abbreviated by subscripts as follows: Burkitt lymphoma (B), Ewing’s sarcoma (E),

neuroblastoma (N), rhabdomyosarcoma (R).

Table 4. Error rate results for the given labels and 1000 permutations using the NSC classifier on the Sharma (2 class) dataset, estimated using

1-external and 2-external 10-fold cross-validation

Test Êrr Êa ÊrrBC ÊrrNC Number of genes

Reported A 0.217 0.230 0.292 0.167 37

Reported B 0.167 0.188 0.292 0.0833 25

1-external cv 0.186 0.201 0.277 0.125 53.4

1-external cv sd 0.0156 0.0174 0.0354 0.0208 44.6

1-external cv se folds 0.0494 0.0537 0.092 0.057 2.03

1-ext cv perm mean 0.384 0.465 0.866 0.063 72.3

1-ext cv perm mean sd 0.0278 0.0558 0.212 0.108 215

2-external cv 0.212 0.232 0.329 0.135 56.1

2-external cv sd 0.0259 0.0288 0.051 0.0258 19.5

2-external cv se folds 0.0524 0.0576 0.0999 0.0574 13.4

2-ext cv perm mean 0.421 0.503 0.912 0.0937 65.2

2-ext cv perm mean sd 0.0368 0.0415 0.129 0.0926 105

The reported values are from Sharma et al. (2005) and are based on the full 102 observations. Their first analysis (A) contained three non-decisions, which were treated as

errors. Their second analysis (B) made a decision (classification) for every observation. The class-specific error rates are abbreviated by subscripts as follows: breast cancer

(BC), no breast cancer (NC).
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a novel permutation approach to detect bias and shown
the effectiveness of two-level external cross-validation in
reducing it.
We urge all investigators performing classification

tasks to calculate and examine the permutation mean
of the average of the estimated class error rates Êa.
If this is noticeably below the expected ðG� 1Þ=G, the

procedure may be incurring selection or optimization
bias. These can be avoided by using two-level external
cross-validation.
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Fig. 1. Histogram of error rates estimated using 1- and 2-external cv

under 1000 permutations of the labels on the Sharma dataset.

Superimposed are the estimated error rates using the original labels.

1-external cv was used to estimate the error rate in (a) and the average

error rate in (b). 2-external cv was used to estimate the error rate in

(c) and the average error rate in (d).
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