
Abstract Many studies of quantitative and disease

traits in human genetics rely upon self-reported

measures. Such measures are based on questionnaires

or interviews and are often cheaper and more readily

available than alternatives. However, the precision

and potential bias cannot usually be assessed. Here

we report a detailed quantitative genetic analysis of

stature. We characterise the degree of measurement

error by utilising a large sample of Australian twin

pairs (857 MZ, 815 DZ) with both clinical and self-

reported measures of height. Self-report height mea-

surements are shown to be more variable than clinical

measures. This has led to lowered estimates of heri-

tability in many previous studies of stature. In our

twin sample the heritability estimate for clinical

height exceeded 90%. Repeated measures analysis

shows that 2–3 times as many self-report measures

are required to recover heritability estimates similar

to those obtained from clinical measures. Bivariate

genetic repeated measures analysis of self-report and

clinical height measures showed an additive genetic

correlation >0.98. We show that the accuracy of self-

report height is upwardly biased in older individuals

and in individuals of short stature. By comparing

clinical and self-report measures we also showed that

there was a genetic component to females systemat-

ically reporting their height incorrectly; this phe-

nomenon appeared to not be present in males. The

results from the measurement error analysis were

subsequently used to assess the effects of error on the

power to detect linkage in a genome scan. Moderate

reduction in error (through the use of accurate clin-

ical or multiple self-report measures) increased the

effective sample size by 22%; elimination of mea-

surement error led to increases in effective sample

size of 41%.

Introduction

Quantitative genetic analysis partitions variation into

genetic and environmental components. When the trait

in question is measured poorly, the variance due to

environment increases, leading to deflated estimates of

the heritability. Studies based on self-reported trait

measures are common despite the possibility of bias

and increase in measurement error. When accurate

(clinical) measurements are available, the effect of

poor measurement can be calibrated by comparing

self-report and clinical measurements. Here we address

the issue of measurement error and bias by examining

a large stature data set.

Stature has been long the subject of quantitative

genetic analysis, beginning with Galton in the 19th

century (Galton 1886). In recent years the role of short

stature as a risk factor for cardiovascular disease has

been hotly debated (Hebert et al. 1993; Kannam et al.

1994; Langenberg et al. 2005; Silventoinen et al. 2006).

Height is well known to be highly heritable with

increases in mean height in the second half of the

20th century attributable to improved environmental
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conditions (Vogel and Motulsky 1997; Fredriks et al.

2000; Padez 2003). Despite increases in mean height

throughout the 20th century, the mean difference be-

tween European countries has remained stable and

trait variance and heritability esimates are broadly

similar across countries (Silventoinen et al. 2003b). In

modern western societies around 20% of variation in

height is attributable to environmental factors (Sil-

ventoinen 2003a, b). Estimates of heritability vary

according to a number of factors. Estimates derived

from twin samples are generally higher than those

obtained from general family samples (e.g. parent-

offspring, extended families); reasons for this include

perfect age matching in twins, greater similarity in

environment and differences in the methodologies

applied. Furthermore, estimates vary depending upon

the degree of measurement error. Characterisation of

the measurement error requires multiple measures

and/or measurements from both the individual (self-

report) and from an independent source (e.g. clinical

measures).

Previous studies of human height have addressed

bias when individuals report their own height (Himes

and Faricy 2001; Rowland 1990). Rowland (1990)

describes a bias in self-reported height after age 45

in a United States (US) sample (older individuals

overestimate their height) whilst Himes and Faricy

(2001) report higher levels of missing data in shorter

US adolescents. We were particularly interested in

the relative contribution of genes and environment to

variation in self-report and clinical height. The study

by Eaves et al. (1999) considered self-report height

in a large twin family sample from Virginia in the

US whilst Silventoinen et al. (2003b) considered

(primarily) self-report height measures across eight

countries. Height measures have been widely used in

genome scans searching for quantitative trait loci

underlying the variation in human height. Some

genome scans have utilised self-report height mea-

sures (Perola et al. 2001) whilst others have had

access to clinical measures (Mukhopadhyay et al.

2003).

In this study we characterise the degree of mea-

surement error by utilising a large sample of twins with

both clinical and self-reported measures of height. We

present an initial analysis which considers mean chan-

ges in height, before addressing the sources of vari-

ability in the different height measures. A statistical

model which partitions the variation into genetic and

environment components for a bivariate repeated

measures model is described.

Methods

Phenotypic data

The data used in this paper were derived from several

studies of adult twins recruited from the Australian

Twin Registry. Since the sample was from a population

register there is no over-representation of individuals

affected by a particular disease or phenotype. Twins

were selected to ensure each had a least one measure

for both clinical and self-reported height. Self-report

measures were taken from questionnaires mailed to

twins between 1979 and 2004 whilst clinical measures

were taken as part of studies conducted between 1992

and 1996.

The zygosity of twin pairs was initially determined

by twins’ responses to standard items about physical

similarity and the degree to which others confused

them with one another. Many of the twins were sub-

sequently included in studies in which they were typed

for large numbers of genetic markers. As a result we

expect misclassifications to be very rare in this sample

(Cornes et al. 2005).

The data consisted of 1,673 twin pairs (618 MZ fe-

males, 239 MZ males, 338 DZ females, 143 DZ males,

334 DZ opposite sex). All individuals had data on at

least one clinical and self-report height measure with

the average number of measures being 1.2 (range 1–3,

standard deviation 0.5) and 2.5 (range 1–6, standard

deviation 0.9) for clinical and self-report measures,

respectively. It was usual for twins to be measured on

the same day. Approximately 10% of the individuals

had just 1 self-report measure whilst ~84% of individ-

uals had just 1 clinical measure. Since the self-report

measures were collected over a 20 year period the age

at which the self-report measures were taken varied;

the mean age at first self-report measure was 32 (SD

12) and the mean age at last self-report measure was 44

(SD 13). The clinical height measures were collected

over a shorter period; mean age was 44 (SD 12). Prior

to analysis individuals were screened to remove out-

liers; outliers were defined as individuals with self-re-

port mean height differing from clinical mean height by

more than 12 cm.

The data were analysed in two stages. First, the data

were examined using regressions to examine bias and

using twin correlations to evaluate evidence for fa-

miliality. Second, the data were analysed in a variance

components framework; this allowed characterisation

of the measurement error whilst taking into account

fixed effects such as age.
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Exploratory analysis

Regression analysis

The effect of age on height was considered by regress-

ing height on age, with covariates for sex and year of

collection (fitted as a factor for cohort). For regression

analysis repeated measures were dealt with by averag-

ing the available data points per individual. The dif-

ference between the mean self-report and mean clinical

height was then computed. This difference was then

regressed on age and on clinical height. Regressions

were done using R (R Development Core Team 2004).

Basic genetic analysis

An initial analysis to evaluate evidence for familiality

was conducted by computing twin pair correlations on

the MZ and DZ groups. For this univariate analysis the

height measures were based on the first available height

after correction for fixed effects. Since we are inter-

ested in partitioning the variation in the traits we use a

single measure; although the mean (across available

measures on an individual) could have been used, it is

more satisfactory to deal with the repeated measures

using a repeated measures model (see below). Correc-

tion for covariates was performed by using the residuals

from a linear model with terms for year of collection

(cohort), age, age2, sex and an age by sex interaction.

Variance components

Univariate genetic analysis

A more comprehensive univariate genetic analysis was

conducted by estimating variance components for the

additive genetic (A), common environmental (C),

dominance genetic (D) and unique environmental (E)

effects. Since all of these components cannot be jointly

estimated from the available twin data we fitted ACE,

ADE, AE, CE and E models.

The main interest was in modelling the variation in

height around the mean level. Henceforth we model the

mean level in the population by fitting fixed effects in

the model for year of collection (i.e. a factor for cohort),

age, age2, sex and an age by sex interaction. For brevity

in the linear models below all fixed effects are denoted

by l. The basic linear model for an AE model is

yi¼lþaiþei

where l represents the fixed effects, yi is measure on

individual i (i = 1,...,n), ai is the additive genetic effect

and ei the random environmental effect. The covari-

ance structure in the AE case is

X ¼ Ar2
a þ Inr

2
e ð1Þ

where ra
2 and re

2 denote the additive genetic and ran-

dom environmental variances, respectively and A de-

notes a matrix which codes the additive genetic

coefficients [=2 · coefficient of co-ancestry (Lynch and

Walsh 1998)] between individuals. For example, the

off-diagonal entries of A are 0.5 for DZ pairs, 1 for MZ

pairs and 0 for unrelated individuals. Models for the

other cases (CE, etc.) are similar. Estimation for this

mixed model is performed by assuming normality of

the height measure and utilising restricted maximum

likelihood (REML). REML estimation was performed

using ASReml (Gilmour et al. 2002). The necessary

coding of the data for twin analysis in ASReml is de-

scribed in the ASReml manual (Gilmour et al. 2002)

and by Visscher et al. (2004).

Repeated measures models

Simple measurement error model. Height is modelled

as

yij ¼ lþ pi þ eij ð2Þ

where l represents the fixed effects, yij is measure j

(j = 1,...,w) on individual i (i = 1,...,n), pi the perma-

nent effect (i.e. effects present for all height measures

on an individual) and eij the random environmental

effect (i.e. those specific to each measure on an indi-

vidual). The terms pi and eij are random effects. Mea-

sures are nested within individuals with N = nw (or

with missing data, N = nSwi). The overall variance

covariance matrix, W, is hence

X ¼ In � ð1w1T
wr2

pÞ þ Ir2
N ð3Þ

where rp
2 and re

2 denote the permanent and random

environmental variances, respectively. In denotes the n

by n identity matrix and 1w is a 1 by w vector of 1’s. �
denotes the direct product of two matrices. Estimation

was done by REML, using a linear mixed model for-

mulation as implemented in ASReml. Using REML,

instead of say, least squares, estimation ensures missing

data are efficiently handled (Lynch and Walsh 1998).

The ratio of between individual (or permanent)

variance (rp
2) to the total variance (rp

2 + re
2) is termed

the repeatability (Falconer and Mackay 1996). Since

the repeatability cannot be smaller than the heritabil-

ity, h2, the repeatability is an upper bound for h2.
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Evaluation of this simple model for the self-report and

clinical height measures yields an initial estimate of the

relative sources of error due to measurement.

Repeated measures bivariate genetic model. The

above repeated measures model considered each trait

separately. To model the clinical and self-report

heights jointly we fitted a bivariate model to the twin

data. We also incorporate the A/C/D/E components to

allow further partition of the variation. The main

change compared with the univariate genetic model is

a change in the covariance matrix to incorporate the

covariance between traits. This model combines ele-

ments of the genetic model with the repeated measures

model outlined above. The covariance matrices are

changed to reflect the structure of the observations.

The overall variance covariance matrix, W, for an AE

model is

X ¼ LA � ðA� ð1w1T
wÞÞ þ Lp � ðIn � ð1w1T

wÞÞ þ Ir2
e

ð4Þ

where LA and LP denote 2 · 2 matrices of variances

and covariances for the two effects (additive genetic

and permanent environmental, respectively) for the

two traits. Since LA and LE each contain three distinct

elements and there is a single unique environmental

error variance, this AE bivariate repeated measures

model has seven (co)variance parameters. Models for

the other cases (CE, etc.) are similar. Estimation was

done using REML.

Difference measures

In addition to the analysis of clinical and self-report

height, analyses were performed for the difference

between self-report height and clinical height and the

absolute value of the clinical/self-report difference. To

allow the use of all of the data the mean self-report and

clinical heights were used. In the case of the absolute

value, the variate was log transformed to remove the

left skew in the absolute value measure. The data were

analysed by computing twin pair correlations on the

MZ and DZ groups.

Results

Exploratory analysis

Regression analysis

In males the means (SD) were 176.7 cm (6.5 cm) and

177.2 cm (6.4 cm) for clinical and self-report height,

respectively. In females the means (SD) were 162.1 cm

(6.6 cm) and 162.5 cm (6.6 cm) for clinical and self-

report height, respectively.

The regression of mean height on mean age (with

the effects of sex and cohort removed as they were

included as covariates in the model) revealed that

whilst both clinical and self-reported height decreased

significantly with age (P < 10–9 in both cases), the de-

cline was more marked for clinical height. The decline

in clinical height was 0.112 cm/year. This corresponds

to a decline in height of 4.5 cm over a 40 year period.

The decline in self-report height was 0.065 cm/year.

This corresponds to a decline in height of 2.6 cm over a

40-year period. There was no evidence for an interac-

tion between age and sex for either clinical or self-

report height. Assuming that the clinical measures

show no systematic bias, older individuals tend to (self)

report inflated values for their true height; instead

many individuals report the height they were in their

youth. There was evidence (P < 10–4) for a small co-

hort effect in the self-report sample; the mean height

increased 1.06 cm between the period 1979–1984 and

the period 1985–1994. The clinical data was not col-

lected over a wide enough range of ages (range was

1993–1996) to reliably detect a cohort effect.

The regression of difference (between self-report

and clinical height) on age revealed a similar picture

to the result from the height/age regression above.

Figures 1 and 2 show difference plotted against age for

males and females separately. The regression was sig-

nificantly different in males and females (P < 10–4 for

significance of interaction). The female regression line

was

difference ¼ �0:991þ 0:054ðage� 20Þ

The male regression line was

difference ¼ �0:141þ 0:026ðage� 20Þ

These results indicate that the clinical and self-

report height measures have similar means early in life

but the self-report height measures tend to overesti-

mate ‘‘true’’ height (assuming clinical height is correct)

later in life. For example, the average female self-re-

ports her height to be similar to her clinical height at

38 years of age. By 68 years of age, the average female

self-reports her height to be 1.7 cm greater than her

clinical height.

The effect of height upon the difference between

self-report and clinical height was examined. Differ-

ence versus clinical height is shown in Fig. 3. The linear

regression line has equation

Hum Genet

123



difference ¼ 5:687þ 0:032� clinical height

The regression line drops below zero on the y axis

at 178 cm. This indicates that, in general, smaller

individuals tend to overestimate their height whilst

taller individuals tend to underestimate their height.

The degree of bias is relatively modest, with the bias

difference between individuals of 150 cm and 180 cm

being 30 · 0.032 = 1.0 cm. The results with correction

for age, sex and cohort were similar (data not

shown).

Basic genetic analysis

The twin correlations for age and sex corrected height

(self-report, clinical) are given in Table 1 The clinical

height measures show higher MZ correlations than the

self-report measures, consistent with there being

smaller measurement error in the clinical sample. In

both cases the correlations in males and females are

very similar and we hence analyse males and females

together in the subsequent analysis.

Variance components

Univariate genetic analysis

The results from the variance components analysis for

the two traits are given in Table 2 Variance compo-

nents, log-likelihoods and Akaike’s Information

Criteria (AIC) are given in each table; in each case the

best model by AIC is given in bold. For both height

measures the best fitting model is an AE model. The

heritability given this model is higher for the clinical

height measures than for self-report height. The values

given in Table 2 are scaled to sum to 1 but the raw

components for the AE model are rA
2 = 37.0, rE

2 = 3.6

and rA
2 = 36.1, rE

2 = 5.6, for the clinical and self-report

measures, respectively. Total variance in each case is

40.6 and 41.7.

Simple measurement error model. The repeated

measure analysis revealed that the variation attribut-

able to effects that remained the same across repeated

height measures (i.e. the permanent effects) was simi-

lar in both clinical (rp
2 = 39.1) and self-report measures

Fig. 1 Self-report minus clinical height versus age: males

Fig. 2 Self-report minus clinical height versus age: females

Fig. 3 Self-report minus clinical height versus clinical height
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(rp
2 = 39.2). In contrast, the temporary environment

variance (i.e. the measurement error variance)

differed, with the clinical variance (re
2 = 1.8) sub-

stantially less than the self-report variance (re
2 = 4.1).

Since the temporary environmental variance is

4.1/1.8 = 2.3 times larger for the self-report measure

than the clinical measure, increasing the number of

self-report measures (per individual) more than two-

fold would be required to account for the increased

variability in the self-report measures. That is, with 2–3

times as many self-report measures per individual, the

heritability of the self-report measures should be sim-

ilar to that of the clinical measures.

Total variance in the two cases was 40.9 and 43.3

(see Fig. 4 for summary). The total variance for the

whole sample of self-report height (rt
2 = 43.3) was

slightly higher than the total variance of the first self-

report height (rt
2 = 41.7); there were 2.5 times as many

data points in the whole sample analysis. The repea-

tabilities [i.e. (rp
2/(rp

2 + re
2)] for clinical and self-

reported height are 0.96 and 0.90, respectively; these

figures demonstrate that a substantial portion of the

environmental variance in self-reported measures is

attributable solely to measurement error.

Repeated measures bivariate analysis. First of all, a

non-genetic repeated measures analysis was applied to

the self-report and clinical height measures jointly [i.e.

Eq. 4 without the LA� (A�(1w1w
T)) term]. The per-

manent environmental variances for clinical height and

self-report height were 37.4 and 39.7, respectively; their

covariance was 38.2. The residual error was 3.9. Total

variance in the two cases was 41.3 and 43.6.

The bivariate repeated measures analysis was then

extended to incorporate genetic effects. As expected

given the univariate results, none of the alternative

models (ADE, ACE, CE, E) gave a better fit to the

data than the AE model shown here (data not shown).

The additive genetic variance component estimates

(i.e. the diagonal elements of the matrix LA) for the

AE model were 37.2 and 36.8 for the clinical and self-

report height, respectively. The additive genetic

covariance between the clinical and self-report mea-

sures was 36.1 (additive genetic correlation = 0.98).

With the AE model the permanent environmental

variances (i.e. the diagonal elements of the matrix LP)

were estimated to be 0.0 and 2.7 for clinical and self-

report height, respectively. This analysis shows that the

genetic variances of clinical and self-report height are

Table 1 Height twin correlations

Clinical Self-report

N Correlation (95% CI) N Correlation (95% CI)

Female MZ pairs 618 0.92 (0.90,0.93) 618 0.87 (0.85,0.88)
Male MZ pairs 239 0.92 (0.90,0.94) 239 0.87 (0.84,0.90)
Female DZ pairs 338 0.44 (0.35,0.52) 338 0.38 (0.29,0.47)
Male DZ pairs 143 0.39 (0.24,0.52) 143 0.38 (0.23,0.51)
Opposite sex DZ pairs 334 0.42 (0.33,0.51) 334 0.41 (0.32,0.59)

Correlations are based on the first available clinical and self-report height measure. Heights are corrected for year of collection
(cohort), age, age2, sex and an age by sex interaction

CI confidence interval

Table 2 Height variance component estimates

Model rA
2 /rT

2 rC
2 /rT

2 rD
2 /rT

2 rE
2 /rT

2 ln L Parameters AIC

Clinical
ACE 0.911 0 0.089 –7036.20 3 14078.40
ADE 0.851 0.060 0.089 –7036.06 3 14078.12
AE 0.911 0.089 –7036.20 2 14076.40
CE 0.690 0.310 –7360.47 2 14120.70
E 1 –7899.81 1 15801.62

Self-report
ACE 0.866 0 0.134 –7263.01 3 14532.02
ADE 0.768 0.098 0.134 –7262.63 3 14531.26
AE 0.866 0.134 –7263.01 2 14530.02
CE 0.648 0.352 –7483.85 2 14971.70
E 1 –7937.37 1 15876.74

rT
2 = rA

2 + rC
2 + rD

2 + rE
2 . The best model by AIC is in bold
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approximately equal. The increased total variance of

the self-report measures is primarily attributable to

increased measurement error.

Difference measures

Results for the difference measures are given in

Table 3. The results in males/opposite sex pairs are

difficult to interpret, particularly since the sample size

in males is rather smaller than in females. In females, it

is striking that the MZ correlation is significantly

higher than the DZ correlation for the difference be-

tween the clinical and self-report measures. In contrast,

when the absolute value of the difference is taken (log

transformed to remove skewness) the female MZ

correlation equals the DZ correlation. Computation of

2 · MZ correlation – 2 · DZ correlation yields heri-

tability estimates of 0.36 and 0.00 for the difference and

absolute difference, respectively. The absolute value of

the difference is a measure of the error that individuals

make in guessing their height whilst the raw difference

score measures both the guessing error and a system-

atic bias. This systematic bias would occur when indi-

viduals consistently over (or under) estimate their

height. The female only results indicate that whilst

‘‘guessing’’ error is predominantly environmental in

origin, systematic error is likely to be influenced by

genetic factors.

Discussion

We have shown here that height is extremely highly

heritable, with these twin sample based estimates

(h2 ~ 85% exceeding those generally reported from

studies on general (non-twin) family data (Mukho-

padhyay et al. 2003; Perola et al. 2001). The herita-

bility of clinical height was shown to be higher than

that of self-report height. This discrepancy was largely

due to increased measurement error in the self-

reported case.

Compared with the clinical measures, the self-

reported height measures had a number of failings.

Firstly, the clinical measures indicated that the average

individual lost 4–5 cm in height over their adult life

(possible reasons for this are discussed in Galloway

et al. 1990). Although the self-reported measures

showed a trend in this direction, the decline was

somewhat smaller, with some older individuals

appearing to simply (self) report the height they were

when they were younger. The self-report measures also

appeared to be biased by the height of the respondent.

Small individuals tended to overestimate their height,

whilst taller individuals were inclined to underestimate

their height. Although age has a modest effect on

height, for the variance components analysis conducted

here we fit covariates for both age and other fixed ef-

fects such as cohort; this means that the effects of age

and other covariates are removed before we partition

the variance into the components of interest.

Fig. 4 Variance components from basic repeated measures
model

Table 3 Twin correlations for differences

Diff log 10 |diff|

N Correlation (95% CI) N Correlation (95% CI)

Female MZ pairs 618 0.36 (0.29,0.43) 618 0.09 (0.02,0.17)
Male MZ pairs 239 0.19 (0.06,0.30) 239 0.03 (–0.10,0.16)
Female DZ pairs 338 0.18 (0.07,0.28) 338 0.10 (0.00,0.21)
Male DZ pairs 143 0.26 (0.10,0.40) 143 0.11 (–0.06,0.27)
Opposite sex DZ pairs 334 0.08 (–0.03,0.18) 334 0.05 (–0.06,0.15)

Correlations are based on the difference (diff) between mean clinical height and mean self-report. Heights are corrected for year of
collection (cohort), age, age2, sex and an age by sex interaction

CI confidence interval
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The results from the repeated measures analysis

indicated that with 2–3 times as many self-report

measures, the heritability of the self-report measures

should be similar to that of the clinical measures. In the

sample of self-report data here there were an average

of 2.5 self-report measures per individual. We hence

calculated the heritability of the mean self-report

measure. The value obtained, 0.89, approached the

value obtained from the clinical height measured on

just one individual (0.91 using just the first available

clinical measure, Table 2). It should be pointed out

that the value of 2.5 for the average number of self-

report measures slightly overestimates the information

available because there was considerable variation in

the number of measures available. In some cases there

were up to six self-report measures per individual; re-

peated measurements beyond the first three would

only marginally decrease the error due to measure-

ment. With smaller variability in the number of mea-

sures, a larger estimate of heritability from the mean

self-report height would have been obtained.

The two measures of height were used to analyse the

discrepancy between self-report and clinical height

measures. By assuming that the clinical measures were

unbiased and subject to minimal error we were able to

show that, in females at least, the difference between

the measures and the absolute value of this difference

had rather different compositions in terms of their

components of variance. Whilst the females ability to

guess their own height was largely determined by

environmental factors, the differing MZ and DZ cor-

relations suggest a genetic component to females sys-

tematically reporting their height incorrectly. This

phenomenon was not seen for males although the male

sample sizes were substantially smaller. This apparent

genetic component could result if female MZ twins

conferred when giving their self-reported height mea-

sures (or conferring more often than females DZ

twins). Resolving this issue for certain would involve

utilising an adoption based twin design or a sibling

effects model (Eaves 1976; Carey 1986).

To allow ready comparison between non-nested

models (e.g. the ACE and ADE models) we used

Akaike’s AIC. The AIC was designed for the (typical)

case where the parameters were not on the edge of the

parameter space under the null hypothesis. With test-

ing variance components however, the null is usually

that each parameter is zero and negative values are

impossible. This means that likelihood ratio tests of the

components usually take the form of mixtures (e.g.

1/2(v1
2):1/2(0) for the test of an ADE model versus an

AE model, Self and Liang 1987). As a result, the usual

AIC is conservative (models with more parameters are

over penalised). An alternative AIC based on say

–2 · log likelihood + 1 · degrees of freedom (instead

of the usual 2 · degrees of freedom) may well be

appropriate here but requires further study.

Silventoinen et al. (2003b) describe a comparison of

height heritability estimates across eight countries,

based mainly on self-reported height. The heritabilities

reported are similar to those found here for self-re-

ported height. The estimates of the unique environ-

mental variance are similar across countries in

Silventoinen et al. (2003b) and it seems likely that in

these other countries, in line with the results shown

here, approximately half the unique environmental

variance was directly attributable to measurement

error.

The results presented here can be used to assess the

effects of measurement error upon a linkage (quanti-

tative trait locus or QTL) analysis searching for genes

underlying the trait of interest. If measurement error

can be reduced this will decrease the residual variance,

increasing the power to detect linkage in a genome

scan. Take for example the scenario where the variance

components underlying a trait are as follows: QTL

variance 20, polygenic residual variance (genetic vari-

ance for all genomic regions unlinked to the QTL) 60

and error variance 20. This may be a reasonable sce-

nario for a relatively large QTL underlying a trait such

as height. Assume for now the trait is derived from a

single self report measure. In this scenario the non

centrality parameter (NCP, in this context a measure

of how much information there is for linkage) with a

marker completely linked to the QTL is NCP = 0.0083

per sib pair (Genetic Power Calculator: Purcell et al.

2003). As an example of how this translates into power,

with 2,000 sib pairs the power to detect the QTL at the

0.0001 level (i.e. approximately LOD = 3) is 0.64.

Suppose we could reduce the error attributable to

inaccurate measurement from the error variance. The

results above suggest that approximately half of the

error variance is attributable to measurement error. If

this can be reduced ~2.5-fold (by either using clinical

measures or multiple self-report measures, as discussed

previously) so that instead of the residual error vari-

ance comprising 10 units measurement error and 10

units environmental effect error we have 4 units mea-

surement error and 10 units environmental effect error.

The variance components would hence become QTL

variance 20, polygenic variance 60 and error variance

14. With this scenario (i.e. QTL explains 21.3% of

variance with this reduction in error variance) the NCP

per sib pair is 0.0101. This means that by reducing the

error in measurement, the effective sample size for

the QTL analysis has effectively increased by 22%
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(0.0101/0.0083 = 1.22). If there were more measure-

ments such that the measurement error was further

reduced to effectively 0 (with 10 units environmental

error remaining) and the computations re-calculated,

the NCP increases to 0.00117. This represents an in-

crease in sample size of 41% compared with the ori-

ginal case (0.0117/0.0083 = 1.41). With 2,000 sib pairs,

the partially and fully reduced measurement error

scenarios correspond to power to detect the QTL at

the 0.0001 level of 0.78 and 0.86, respectively.

Repeating the above power calculations for a wide

range of QTL effect sizes (1–30% of the variance)

yields very similar results to those shown above for a

QTL explaining 20% of the variance. The above cal-

culations were done using parameters that were real-

istic for a height QTL analysis but similar results would

be obtained for a large number of other traits currently

being scanned for QTL. Following a successful linkage

analysis, a common next step is association analysis.

Decreased measurement error is likely to increase the

power of any association analysis to detect QTL al-

though the effective increase in sample size is likely to

be less marked than is the case for linkage analysis.

This is because in linkage analysis the QTL and shared

environmental and/or polygenic factors are explicitly

modelled, typically leaving a relatively small residual

error variance. This means that decreases in measure-

ment error variance (which form a proportion of the

residual error variance) have a relatively large impact

on power. In contrast, for association analysis, shared

environmental and/or polygenic factors are not mod-

elled; this means a reduction in measurement error will

have a smaller effect on power.

When faced with possibly inaccurate and biased

variables, researchers should take steps to identify the

extent of the problem. If there are multiple self-report

and clinical measures, even if only in a subset of the

available data, then repeated measure analysis (as

outlined in the methods section) will allow the relative

magnitudes of the measurement error to be assessed.

Failing that, a pilot study may be performed to allow

quantification of the measurement error. Since mod-

erate reduction in measurement error will lead to

reasonably large increases in effective sample size for

linkage analysis (as shown above), investment in a pilot

study to help inform phenotype choice may be cost

effective in cases where linkage analyses are planned.

A suitable pilot study may also be invaluable in

assessing any systematic bias in the variables studied;

such bias will often take the form of the age-related

bias in height we describe here. In the case of height a

simple regression based correction for age can be used

to remove the effects of age (e.g. we report here that

females overestimate their true height by 1.7 cm by the

age of 68). Similarly, other traits can be corrected by

considering possible sources of bias in the pilot sample.

It is worthwhile stressing, however, that the effects of

measured covariates (such as age) can be accounted for

in any genetic analysis (e.g. heritability calculation or

linkage analysis) by fitting covariates in the analysis.

There may be circumstances in which there is clinical

data available for some subjects and self-report for

others. This situation can be dealt with by fitting an

appropriate quantitative genetic model. For example,

for a heritability calculation the analysis can be done

using a heterogeneous variances model that explicitly

takes into account that some measures have more

variance than others (for details of the implementation

of this see the ASReml manual, Gilmour et al. 2002).

This is analogous to fitting an appropriate model that

takes into account that observations on males and fe-

males differ for traits where this is the case (Neale and

Cardon 1992). For linkage analysis, the presence of

both clinical and self-report measures presents no

analytical problems. However, the contribution of the

more accurately measured individuals (in terms of say,

NCP per sib pair) will be higher than for the poorly

measured individuals.

The genetic component of height was found to be

largely additive with estimates for the additive genetic

component exceeding 90%. There was some indication

of a dominance component to the variation in height

but this was not significant despite our large sample

size. The large twin sample analysed by Eaves et al.

(1999) report a broadly similar conclusion; in their

study (focusing solely on the self-report measure of

height), the genetic variation was largely additive.

Their extended twin design sample allowed them to

partition the remaining genetic variation into small

components attributable to dominance and to assor-

tative mating. The data here (MZ and DZ twins) only

allows estimation of ADE/ACE models and there is no

scope for estimation of further components of vari-

ance. In particular, there is no scope for the present

data set to test for variance associated with assortative

mating or epistatic variance components; these com-

ponents are completely confounded (Eaves et al.

1999). Consistent with the results shown here, the

‘‘total genetic’’ component reported by Eaves et al.

(1999) explained ~85% of the variance (based on self-

reported height); we predict that this figure would have

increased to >90% if clinical measures of height were

used.
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