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ABSTRACT

An understanding of the determinants of trait variation and the selective forces acting on it in natural
populations would give insights into the process of evolution. The combination of long-term studies of
individuals living in the wild and better genomic resources for nonmodel organisms makes achieving this
goal feasible. This article reports the development of a complete linkage map in a pedigree of free-living
Soay sheep on St. Kilda and its application to mapping the loci responsible for three morphological
polymorphisms for which the maintenance of variation demands explanation. The map was derived from
251 microsatellite and four allozyme markers and covers 3350 cM (~90% of the sheep genome) at
~15-cM intervals. Marker order was consistent with the published sheep map with the exception of one
region on chromosome 1 and one on chromosome 12. Coat color maps to chromosome 2 where a strong
candidate gene, tyrosinase-related protein 1 (TYRP1), has also been mapped. Coal patiern maps to chro-
mosome 13, close to the candidate locus Agouti. Horn type maps to chromosome 10, a location similar to
that previously identified in domestic sheep. These findings represent an advance in the dissection of the

genetic diversity in the wild and provide the foundation for QTL analyses in the study population.

N area of fundamental research in evolutionary
genetics concerns the closely related issues of
understanding the determinants of trait variation in
natural populations and understanding how genetic
variation for traits is maintained in the face of natural
selection. The first of these problems is often summa-
rized as the “genetic architecture” question: in general
we would like to know whether genes of large effect
commonly segregate in natural populations or whether
the infinitesimal model, i.e., that most traits are con-
trolled by many genes of small effect, is appropriate—or,
perhaps more likely, some configuration in between
(BaArTON and KeiGHTLEY 2002; BREM and KRUGLYAK
2005). Similarly, we would like to know to what extent
genetic interactions such as dominance, pleiotropy,
and epistasis contribute to the evolutionary dynamics
of a population. The second problem was long ago
identified by FisHer (1958): How is it that genetic
variation for traits persists when selection is so often
directional? The answer to this question must lie not
only in the genetic architecture question, but also in
the modes of selection and their temporal and spatial
stability.
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In principle, the arrival of abundant molecular mark-
ers, genetic maps, and whole-genome sequences allows
us to address both genetic architecture and selection in
much greater depth than ever before, since the role of
variation at individual loci can be assessed. Mapping
trait loci is a starting point for providing information on
the genetic architecture of a traitin terms of the number
of genes involved, relative effect, and mode of expres-
sion (EricksoN et al. 2004; StaTe 2005). In turn, this
allows study of the relationship between phenotype and
genotype and inference of the selective forces acting on
the critical locus. Furthermore, by mapping genes, it is
possible to test for the presence of gene-by-gene (epistatic)
and gene-by-environment interactions, which are thought
to contribute to phenotypic variation in natural and con-
trolled settings (CARLBORG and HaLEY 2004; ERICKSON
2005). In addition, the discovery of the map location of
genes that influence phenotypic variation means that
patterns of linkage disequilibrium (LD) and haplotype
structure can be examined, which may provide insights
about population history and selection. Unfortunately,
some of the characteristics that make experimental
populations so practical for linkage mapping also re-
strict the degree to which findings can be extrapolated
to natural populations. Usually, geneticists generate
segregating populations derived from one or a few pair
of parents, which are often inbred and selected for the
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extreme phenotypes. In addition, the population is
raised in a uniform and controlled environment (e.g., a
greenhouse) where nongenetic sources of phenotypic
variation are minimized. On the one hand, this strategy
maximizes the power of analysis; i.e., it increases the
probability of finding a statistical association between
marker genotype and phenotypic trait, but on the other
hand, as the aim of genetic research becomes the un-
derstanding of how selection shapes genomes, the
findings in experimental crosses are of limited applica-
bility (Rorr and Smmons 1997; CoNNER 2002). In the
wild, individuals are exposed to environmental and
genetic forces (e.g., genotype-by-environment interac-
tion, pleiotropy, epistasis, maternal effects), some of
which are unwittingly or deliberately diminished in ex-
perimental settings and may conceal important effects
in the wild (KrRoyMANN and MiTCHELL-OLDs 2005;
WiLsoN et al. 2005a,b). Although these forces are
particularly difficult to detect in the wild, their possible
absence from an experimental design may lead to
biased conclusions.

A refined understanding of the process of evolution
can be expected if the precise loci underlying trait
variation can be identified and their behavior studied in
free-living populations. Hence, a recent development is
the application of genomic analyses to studies of free-
living populations. Techniques for generating large
numbers of genetic markers (e.g., AFLPs and micro-
satellites) and the availability of markers from related
model species means that genetic maps and quantitative
trait locus (QTL) searches in organisms originally stud-
ied in the wild are becoming more common (ERICKSON
et al. 2004; SLATE 2005). To date, most of these studies
have involved wild plants or animals brought into and
bred in the laboratory. Although in some cases the
experimental design makes use of pedigrees generated
from several lines (ZHANG et al. 2005) and investigates
fitness-related traits (LAURIE et al. 2004 ), such studies do
notdirectly address the action of natural selection as the
study organisms are the product of breeding programs.
Other projects have been designed to answer specific
ecological or evolutionary questions and to this end
have employed individuals drawn from the wild and
crossed under controlled conditions (HAWTHORNE and
Via 2001; LEXER et al. 2003). The artificial development
of the mapping populations, however, may generate
genetic variation that may not occur in the wild
(Er1CKSON et al. 2004; SLATE 2005). Given the existence
of several studies of individually monitored, pedigreed
individuals living in the wild, an obvious extension of
these studies is to generate genetic maps and attempt to
map genes underlying trait variation in nature. To date,
however, we know of only two such studies pursuing this
line (excluding studies of humans, where cultural fac-
tors make extension of findings to animal populations
difficult). In red deer (Cervus elaphus) living on the
island of Rum, SLATE et al. (2002) obtained a partial map

(~62% genome coverage) using microsatellite marker
genotypes and then searched for QTL for a phenotypic
trait, birth weight, finding three candidate regions for
further investigation. Second, HaNssoN et al. (2005)
have recently generated a preliminary genetic map
(~25% genome coverage) for the great reed warbler
(Acrocephalus arundinaceus) population at Lake Kvismaren,
Sweden, again using microsatellites.

In this article, we describe the construction of a re-
latively much more complete genetic map for a free-
living population, the Soay sheep (Ovis aries) living on
St. Kilda, taking advantage of existing genomic resources
available for domestic sheep. This population is the
subject of a long-term, individual-based multidisciplinary
study, which includes the collection of extensive phe-
notypic, ecological, and genetic information (CLUTTON-
Brock and PEMBERTON 2004). Soay sheep are highly
variable in appearance, with two independent poly-
morphisms of coat pigmentation (coat color and coat
pattern) and polymorphic horns [normal, deformed
(“scurred”), or polled horns]. Selection acting on two
of these polymorphisms, coat color and horn type, has
been previously documented (MILNER et al. 2004). We
demonstrate the utility of the genetic map by mapping
the genes underlying these three polymorphic traits,
setting the scene for better understanding of selection
on these traits and for future QTL searches in the study
population.

MATERIALS AND METHODS

Mapping population: The Soay sheep on the islands of Soay
and Hirta (St. Kilda archipelago, northwestern Scotland, UK,
57°49" N, 08°34’ W) are feral populations of a breed regarded
as the most primitive in Europe (CAMPBELL 1974; DONEY et al.
1974); today, the sheep population of Hirta varies between 600
and 2000 individuals. Since 1985 regular expeditions have
been sent to St. Kilda to monitor the population dynamics and
to record the entire history of individuals living in Village Bay,
Hirta (CLUTTON-BROCK et al. 2004a). No predators are present
on St. Kilda.

The mapping population analyzed in this study was selected
from a larger Soay sheep data set comprising >3300 individ-
uals with phenotypic records. In this population, maternity is
determined by observation, and paternity is inferred through
molecular analysis (OVERALL et al. 2005). The mating system is
polygynous and promiscuous, such that very few full-sibs occur
in the population. To trade off between power of linkage
mapping and amount of genotyping work, we selected and
genotyped half-sibships with 12 or more well-phenotyped
individuals and their common parent, plus half-sibships with
at least 10 animals that were related to previously selected
animals. In addition, we included in the mapping pedigree
file, but did not genotype, the noncommon parents and the
ancestors of the half-sib families. Although not genotyped and
in some cases phenotypically less well characterized, these
additional individuals link different sibships, which otherwise
would appear as unrelated. This strategy increases the number
of informative meioses as missing genotypes and marker
phases, in some cases, can be inferred from the knowledge
that different individuals share the same ancestors. In total,
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F1cuRre 1.—Soay sheep showing the three traits subjected to
linkage mapping. (A) Coat color polymorphism: dark (left)
and light (right) lambs. (B) Coat pattern polymorphism: self
(left) and wild-type (right) lambs; note lack of contrast in
color between belly and rest of the body and the intensified
coat color in the self individual. (C) Horn-type morphs in
adult males: normal (left) and extreme scurred (right).

the mapping pedigree numbers 882 animals with 571 paternal
links and 663 maternal links, of which 588 animals were ge-
notyped (supplemental Figure S1 at http:/www.genetics.org/
supplemental/).

Polymorphic traits: In Soay sheep the color of the pelage
is determined by two independently segregating polymor-
phisms, one affecting the color of the coat (hereafter referred
to as coat color, locus Coat color; Figure 1A), and the other
determining the contrast in color between belly and coat
(hereafter referred to as coat pattern, locus Coat pattern, Figure
1B). Coat color can be classified into two distinct phenotypes,
dark and light, which occur in a ratio of ~3:1. Segregation
analyses in mainland Soays (DONEY et al. 1974) and in resolved
pedigrees on St. Kilda (CorLTtMAN and PEMBERTON 2004)
suggest that a single biallelic locus, in which dark is completely
dominant to light, determines the two classes (see Table 1).
With respect to coat pattern, Soay sheep with the “wild-type”
morph have a paler belly and rump than the rest of the coat
while the “self” morph is characterized by a uniform and more
intense coat color. The wild and self morphs occur in a ratio of
~20:1. This variation is also determined by a single biallelic

TABLE 1

Phenotypic distributions and underlying genotypes of the
study traits in the genotyped members of the Soay
mapping pedigree (maximum n = 588)

Trait (n) Phenotype Genotype Frequency
Coat color (560) Dark Dark/— 0.74
Light Light/Light ~ 0.26
Coat pattern (560) Wild Wild/ — 0.94
Self Self/Self 0.06
Horn type—females (286) Normal Ho*/Ho" 0.38
Ho* /Ho"
Scurred  Ho"/Ho" 0.24
Ho*/Ho"
Polled  Ho"/Ho" 0.38
Ho"/Ho"
Horn type—males (270) Normal Ho'/— 0.90
Ho"/—
Scurred Ho"/Ho" 0.10

locus with wild type completely dominant to self (CoLTMAN
and PEMBERTON 2004). Wild-type sheep have hairs in which
the dark color is alternated by pale bands, a pattern commonly
found in wild mammals and usually due to the Agouti locus
(BENNETT and LAMOREUX 2003). Conversely, in self sheep the
hairs have no banding pattern (CLUTTON-BROCK et al. 2004b).

With respect to horn type (locus Horn type), Soay sheep are
polymorphic for horns in both sexes. Females are classified
into three horn types: normal (33%), scurred (vestigial and
deformed, 28%), and polled (hornless, 39%), whereas in
males only the normal (87%) and scurred (13%) phenotypes
occur (Figure 1C, Table 1). Although the inheritance of the
horn phenotype is not completely understood, pedigree data
on St. Kilda are consistent with a single locus with three alleles
(normal horned, sex-limited horned, and polled) showing sex-
specific expression and dominance (COLTMAN and PEMBERTON
2004), a model originally proposed for Merino sheep (DOLLING
1961).

DNA extraction and microsatellite genotyping: Commer-
cial kits were used to isolate DNA from blood samples (GFX
genomic blood purification kit, Amersham Biosciences) or ear
punches (GenomicPrep cells and tissue DNA isolation Kit,
Amersham Biosciences) following the manufacturer’s instruc-
tions. When the amount of starting material was too small or
degraded to allow the use of these methods, the DNA was
extracted using Chelex resin beads (Chelex 100 Resin, Bio-
Rad Laboratories, Hercules, CA). About 1-5 mg of blood or
tissue was incubated at 56° overnight in 300 wl of a 5% Chelex
and 0.1 pg/pl proteinase K solution followed by 5 min at 95°.
Before PCR amplification, the DNA solution extracted with
either method was diluted 1:4 with ddH9O and 2 pl was air
dried in 96-well PCR plates.

To construct a map with markers evenly distributed through-
out the genome, the Australian Sheep Gene Mapping website
(http:/rubens.its.unimelb.edu.au/~jillm/jill.htm) was taken
as a reference to select microsatellite markers on the basis of
their location and information content. PCR amplifications
were performed in 5 pl volume, and MgCl, concentration was
adjusted between 1.5 and 4.0 mM to achieve optimal quality of
the reaction. Two touchdown PCR programs were initially
tested for each marker on a panel of eight sheep: one in which
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the annealing temperature was progressively decreased during
the first 10 of 29 cycles from 60° to 50°, and the other in which
the decrease was from 65° to 55°. Fluorescent primers (6FAM,
VIC, PET, or NED fluorescence) were synthesized by Applied
Biosystems (Foster City, CA). Fragment lengths were analyzed
on an ABI3730 DNA Analyzer and genotypes were determined
using GeneMapper v3.0 (Applied Biosystems).

To estimate the genotyping error rate, 84-258 randomly
chosen individuals were regenotyped at 10 loci with average
polymorphism. Genotyping error rate was also assessed on the
basis of mother—offspring mismatches using CERVUS 2.0
(MARSHALL et al. 1998).

Linkage map and genome scan: Parent—offspring genotype
inconsistencies arising from incorrect paternity assignment
(32 incorrect links found) or typing errors were detected
through the program PedCheck (O’CONNELL and WEEKS
1998) and either resolved by rechecking the parentage records
and genotypes or scored as untyped. Some cases of paternity
mis-assignment were expected since in the original data set
paternity was assigned with only 80% confidence (OVERALL
et al. 2005).

Linkage mapping was performed using CRI-MAP v2.4
(GREEN et al. 1990) to determine the marker order, intermarker
intervals, two-point LOD scores, and number of informative
meioses. The complexity of the pedigree and the number of
markers employed made a systematic testing of all the possible
map combinations impractical. In most cases, the size of the
pedigree did not allow the analysis of more than seven or eight
markers at a time; therefore, sets of overlapping markers were
tested sequentially until a whole chromosome was mapped.
Markers expected to belong to the same chromosome were
first input into CRI-MAP following the order reported in
domestic sheep (Australian Sheep Gene Mapping website at
http:/rubens.its.unimelb.edu.au/~jillm/jilL.htm). The log
10 likelihood of the initial marker order was then compared
with that of alternative orders (flips2 or flips3 function) to
detect more likely combinations (i.e., higher log 10 likeli-
hood). An increase in log 10 likelihood of three or more was
considered evidence of a significantly more probable map
(MorTON 1955). In cases of inconsistency between Soay and
domestic sheep, the most probable Soay order was retained
after having ruled out possible human or technical mistakes.
Markers mapping to unexpected locations or supported by a
weak LOD score (<1.8) were also tested for linkage (two-point
function) against all the other markers in the database to de-
tect whether better positions could be found.

Coat colorand Coat pattern loci were mapped using CRI-MAP
assuming each trait was encoded by a single locus with two
alleles showing complete dominance: the Dark allele domi-
nant over Lightand the Wild dominant over Self (CoLTMAN and
PEMBERTON 2004; Table 1). A test for linkage between the
target locus and any of the mapped markers was performed by
means of the two-point function of CRI-MAP. The best position
of a candidate locus was searched for by means of the flips and
fixed functions of CRI-MAP to test alternative map positions.
Consistent with the criteria used in the map construction, an
increase in the log 10 likelihood of the map of three or more
was taken as evidence of a significantly more likely position.
In the case of Coat pattern, the low frequency of Self morphs
resulted in a low number of informative meioses. To confirm
or reject a suggestive linkage, more sheep in families segre-
gating for Coal pattern were genotyped at markers in the
relevant region (see RESULTS).

The Horn type locus was first investigated using CRI-MAP
under a simplified model to scan the whole genome, and then
the LINKAGE package (TERWILLIGER and OTT 1994) was
employed to perform parametric multipoint analysis in target
region (s) identified by the preliminary scan. In CRI-MAP, Horn

typewas coded as a single biallelic locus where the Normal (Ho")
allele was dominant and the Polled (Ho") allele was recessive in
males (Ho" allele conferring normal horns when heterozygote
or homozygote and Ho" allele resulting in scurred horns when
homozygote), whereas in females Ho™ and Ho" alleles were ex-
pressed codominantly (normal, scurred, or polled horns given
by Ho*/Ho*, Ho" /Ho", and Ho"/Ho", respectively). This model
was simplified in that the presumptive Sex-limited allele (Ho")
was not explicitly considered (see Table 1); modeling three
alleles in CRI-MAP would have resulted in too many missing
genotypes since this program does not allow a trait (or a marker)
phenotype to be coded by more than one genotype. Although
this simplification reduces the power of analysis, it does not
bias the results.

Computational constraints due to the size of the pedigree
and the number of inbreeding loops prevented the processing
of the entire pedigree by parametric multipoint linkage
analysis. To circumvent this problem, the mapping panel was
split into 39 unlinked families. For the parametric multipoint
analysis in LINKAGE (TerwILLIGER and OTT 1994), each sheep
was assigned to one of five liability classes on the basis of their
horn phenotype and sex: three classes for females (normal
if Ho*/Ho* or Ho'/Ho", scurred if Ho"/Ho" or Ho*/Ho", and
polled if Ho"/Ho" or Ho"/Ho"; Table 1) and two classes for males
(scurred horns if Ho”/Ho', normal horns otherwise; males do
not express the polled condition; Table 1). Finally, a sixth
(fictitious) class was assigned to animals without phenotypic
information; the underlying genotypes were assumed to have
complete penetrance.

Horn allele frequencies were taken from COLTMAN AND
PEMBERTON (2004) as 0.441, 0.170, and 0.389 for Ho", Ho", and
Ho', respectively. Marker allele frequencies were estimated from
the whole pedigree by 100,000 Markov chain Monte Carlo
iterations implemented in Loki (HEATH 1997); this procedure
is based on a stochastic process and as such does not provide
an exact result, but allows the handling of very large and com-
plex pedigrees.

The LOD threshold of 3.3 to declare evidence of linkage
corresponds to the value usually applied to human pedigrees
(LanDER and KrRUGLYAK 1995). This decision was taken on the
basis that the sizes of the sheep and human linkage maps are
comparable.

RESULTS

Soay sheep linkage map: The Soay sheep linkage map
was developed with 247 microsatellite and four allozyme
markers, giving a total of ~124,000 genotypes, which
generated a map with ~15-cM intermarker spacing
across 3350 cM, equivalent to ~3080 cM on the Inter-
national Mapping Flock (IMF) map and corresponding
to ~90% of the sheep genome. Figure 2 compares the
Soay sheep linkage map with the domestic sheep map
(MADpDOX et al. 2001); the APPENDIX lists the mapped
markers and their characteristics. The mean number of
alleles per locus was 4.6 with a mean polymorphism
information content (PIC) of 0.52, which are lower values
than those recorded on the Australian Sheep Gene
Mapping website (http://rubens.its.unimelb.edu.au/
~jillm/jillLhtm) for the same markers typed in the
IMF (10 alleles and PIC = 0.75); this is perhaps not
surprising since the latter figures are for a pedigree
derived from several sheep breeds. On average, each
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FIGURE 2.—Soay sheep map compared with the domestic (IMF) sheep map v4.3 (Australian Sheep Gene Mapping at http:/
rubens.its.unimelb.edu.au/~jillm/jill.htm). In each pair, the Soay chromosome is on the left side; dotted lines connect markers
shared by both maps. The ruler at the top left corner represents a centimorgan scale.

marker was typed in 510 sheep (86% of the 588 sheep
selected for genotyping) and generated 310 informative
meioses. Genomewide, the mean LOD score for linkage
between two adjacent markers was 14.6. Twenty-two
marker intervals were linked with a LOD score of <2,
but their marker positions were retained since they were
in agreement with the domestic sheep map (MADDOX
et al. 2001). Marker order was checked by means of the
flips function of CRI-MAP and was consistent between
the Soay and domestic sheep map in all but two cases:

one on chromosome 1, where there is evidence for
varying gene order in different sheep breeds (McCRAE
and BeraLDI 2006), and the other on chromosome
12, which we have not investigated further. Of the 1290
duplicated genotypes, 2.4% showed inconsistency with
the first screening. The error rate based on mother—
offspring mismatching was 1.49% as estimated by
CERVUS (MARSHALL et al. 1998).

Linkage mapping of Coat color, Coat pattern, and Horn
type loci: The phenotypic distributions of Coat color, Coat
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pattern, and Horn typein the mapping panel are reported
in Table 1; these proportions do not differ significantly
from the entire Soay sheep data set (x* test P> 0.1).

Coat color: The highest LOD score for linkage was
found with BMS678 (two-point LOD = 29.5 at 0 cM), a
microsatellite located on chromosome 2 (Figure 3).
Other markers on chromosome 2 were significantly
linked to the target locus, namely FCB128 (LOD =
10.4), CSAP16E (LOD = 5.1), and CSSM37 (LOD =
4.4), whereas none of the other markers in the Soay
sheep map produced a significant result for linkage
(LOD <2). Figure 4A shows in detail the best position
for the Coat colorlocus in the map of chromosome 2; any
other map order results in a significant decrease (>3) in
the log 10 likelihood of the map.

Coat pattern: The highest linkage score (LOD = 2.1)
was detected on chromosome 13 (Figure 3). This LOD
score fell short of genomewide significance, but this is
likely to be a consequence of the low frequency of the
self morph (6%), which meant that the Coal patternlocus
was segregating in only a few families and there were few
informative meioses for mapping (N = 32). To confirm
or reject this suggestive linkage, another 78 animals
composing 15 families segregating for coat pattern were
genotyped for the two microsatellite markers encom-
passing the LOD score peak (CTSBJ12 and MMP9), and
the association between marker CTSBJ12 and the Coat
pattern locus rose to LOD = 3.9 with no recombinants
between these loci (Figures 3 and 4B).

Horn type: Consistent with MONTGOMERY el al. (1996),
CRI-MAP detected linkage between Horn type and
AGLA226 on chromosome 10 (LOD = 6.1, Figure 3),
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but no other marker on chromosome 10 or elsewhere in
the genome showed any significant linkage. Once the
best location for Horn type was established on the chro-
mosome 10 map (by use of the fixed function), CRI-MAP
positioned Horn type distal to SRCRS25, the most telo-
meric marker on chromosome 10 (21.1 cM away from
AGILA226). However, the likelihood of Horn type at this
position was not significantly greater than in the interval
between AGLA226 and SRCRS25 (log 10 likelihood:
—150.16 vs. —151.44), although significantly better than
in the interval AGLA226-HH41 (log 10 likelihood:
—153.17). Therefore, at this stage we concluded that
Horn typeis located on chromosome 10 distal to orin the
vicinity of AGLA226 (Figure 4C), but an accurate map
position could not be assigned.

As described in MATERIALS AND METHODS, the CRI-
MAP model of Horn type is simplified and does not
account for the Horn typeand marker allele frequencies.
Therefore, the analysis was improved by performing
multipoint parametric mapping to derive a more accu-
rate estimate of the Horn type locus position. The Horn
typelocus was tested for linkage against AGLA226 and its
two flanking markers. The LOD profile found by the
multipoint analysis (Figure 5) suggests that the 1-LOD
support interval for the presence of the target locus
spans ~16 cM.

DISCUSSION

As a step toward the comprehension of the genetic
dynamics of wild populations, this article reports the de-
velopment of a genetic map in a free-living population,
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the Soay sheep on St. Kilda, and its use in a genome scan
to map the loci responsible for three morphological
traits. To the best of our knowledge, this is one of the
first accomplishments of gene mapping in a free-living
population. The Soay sheep on St. Kilda present inter-
esting features from an evolutionary and genetic point
of view: their number is naturally regulated by a combi-
nation of food availability, parasite burden, and winter
weather (CouLsoN et al. 2001; CLUTTON-BROCK et al.
2004a; WILSON et al. 2004), factors that, together, cause
substantial fluctuations in population size (COULSON
et al. 2001; CLUTTON-BROCK ¢t al. 2004a).
Development of the Soay sheep linkage map: The
map presented here has been developed with the pri-
mary purpose of localizing genes of evolutionary in-
terest. The map position of a locus can integrate extant

AGLA226 HH41

5.6 10.37

cp79 9.6 5.1

C Chr10 - Horn type
0.0 cM srers25 —|

Two-point LOD
with Coat colour

Ficure 4.—Target re-
gions identified by the ge-
nome scan for the three
study traits. (A) Chromo-
some 2 full map and de-
tailed map of the region
carrying the Coat colorlocus.
(B) Suggestive region for
the Coat pattern locus on
chromosome 13. (C) The
Horn type location detected
on chromosome 10 in the
vicinity of AGLA226.

agla226 - Horn type

hh41
csrd87 : LOD4gia206=61

ilsts56 —
vh117 —
inra5
bms1316
inra209 —

models to describe the population dynamics of Soay
sheep. Especially when the phenotype conveys little
information about the underlying genotype, as is the
case for many quantitative characters, the monitoring of
the target trait is improved and complemented by the
genotype inferred through linked markers.

Patterns of allelic association in terms of linkage dis-
equilibrium and population structure provide insights
into history and selection of a population (ABECASIS
et al. 2005). To this end, a linkage map is a starting point
to enrich regions of interest with markers to assess the
extension of the association and to compare the latter
with theoretical expectations (MCRAE et al. 2005). Geno-
mic tools such as comparative mapping will facilitate the
discovery of additional markers and candidate genes in
target regions.

SRCRS25
00

5.00 <

FIGURE 5.—Parametric four-point mapping of

4.00
3.00
2.00

the Horn type locus. AGLA226 on chromosome
10, the marker showing the strongest two-point
linkage in CRI-MAP, and two adjacent markers

1.00

(SRCRS25 and HH41) were simultaneously

0.00

tested against Horn type. The location of the three

LOD score

-1.00
-2.00
-3.00
-4.00

markers is shown at the top. The Horn type posi-
tion was tested every 5 cM (data point). The
dashed line denotes the theoretical genomewide
significance threshold (LOD = 3.3).

Chromosome 10 position [cM]
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Mapping of Coat color, Coat pattern, and Horn type:
The attempt to map the locus responsible for coat color
variation successfully yielded a region on chromosome 2
(Figure 3) defined by a window of ~15 ¢cM (Figure 4A)
in which the Coat colorlocus cosegregates with BMS678.
Independently, J. GRATTEN, D. BERALDI, B. LOWDER,
A. McRAE, P. VISSCHER, |. PEMBERTON and J. SLATE (un-
published results), following a candidate gene method,
have tested for association with different genes known
to affect coat color in mammals and have identified the
responsible gene (TYRP1) and its causal mutation.

The interest in coat color in Soay sheep stems from the
differential survival between dark and light animals
although no predators are present on St. Kilda and no
obvious environmental conditions should favor one color
over the other. It has previously been found that dark
coats are positively selected during some high-mortality
winters, but this is inconsistent and in other winters
selection favors light-colored sheep or neither morph
(MOORCROFT ¢t al. 1996; MILNER ¢t al. 2004). Dark animals
are significantly heavier than light ones, providing a
possible mechanism for their better survival (CLUTTON-
Brock et al. 1997). There is no difference in female
fecundity between dark and light sheep (CLUTTON-BROCK
et al. 1997). At present, there is no explanation for why the
light-color morph is maintained in the population; clearly,
being able to distinguish the three genotypes may shed
light on this puzzle. Hypotheses and future work to
explain the difference in survival will take advantage of
the map position and molecular characterization of the
Coat colorgene. A comparison between LD in the FCB128-
CSAPIGE interval and background LD in the Soay sheep
genome should also provide information about the origin
and evolutionary consequences of coat color variation.

With respect to Coat pattern, the high frequency of the
wild morph (94% of the sheep scored, Table 1) severely
reduced the number of informative meioses (32) so that
strong linkage to any marker was unlikely to be found.
The power of linkage mapping is proportional to the
fraction of parents heterozygous at both the targetlocus
and the linked markers. This combination generates
the necessary marker-trait association in the progeny
(LyncH and WaLsH 1998). It follows that if the target
locus has a highly skewed allelic distribution, few hetero-
zygous individuals are generated and more meioses
need to be scored (the information content, estimated
as PIC, reaches the highest value when all the alleles
have the same frequency). Accordingly, the highest
LOD score for Coat pattern reached only 2.1 on chro-
mosome 13 (Figure 3) after an initial scan. However, the
extension of the sample size confirmed this suggestive
linkage. Interestingly, chromosome 13 harbors the Agouti
locus, a candidate for Coat pattern (PARSONS et al. 1999).
Agouti encodes for an antagonist of the melanocortin
receptor, causing a switch from eumelanin to pheome-
lanin production in the pigment-producing cells, which
results in the characteristic banding pattern observed in

Soay sheep hairs and other mammals (BENNETT and
Lamoreux 2003). To date, we have not detected selec-
tion acting on the Coat pattern locus.

Multipoint parametric linkage analysis was not per-
formed for Coat color and Coat pattern because, in con-
trast to Horn type, the CRI-MAP model for Coat color and
Coat pattern was already consistent with the most likely
model, so that little or no improvement would have been
gained by multipoint parametric analysis.

The mapping of Horn typereturned a telomeric region
on chromosome 10 previously detected by MONTGOMERY
et al. (1996; Figures 4C and 5). This work opens the way
for multiple strategies to fine map and isolate the Horn
type gene. These include exploitation of bioinformatic
tools to enrich the target region with SNPs and other
microsatellites and identification of positional candi-
dates by comparison with the annotated genome
assemblies of cattle and other species. Like coat color,
horn phenotype is under selection in Soay sheep and
other wild populations. In ruminants, horns are typi-
cally used in intrasexual conflict, particularly among
males where they reach much greater size. Previous
analyses of Soay sheep have suggested that normal-
horned males and scurred females have the highest
annual breeding success (CLUTTON-BROCK et al. 1997;
STEVENSON et al. 2004), but that in winters characterized
by high mortality, the scurred phenotype is generally
favored in both sexes (MOORCROFT et al. 1996). Exactly
how these forces maintain variation in the population
is the subject of current research and would clearly be
helped by being able to distinguish individuals by ge-
notype rather than by phenotype. Therefore, the Horn
lyperegion is an attractive target for molecular evolution
studies.

Future directions: The traits analyzed here are char-
acterized by relatively simple inheritance patterns which,
to some extent, may limit their applicability to the un-
derstanding of the process of evolution. However, this
project opens the way to the more challenging task of
detecting QTL affecting a variety of morphological and
physiological traits. The Soay sheep has been the subject
of a number of studies aimed at estimating quantitative
genetic parameters for traits like birth weight and body
size (COLTMAN et al. 1999; MILNER el al. 2000, 2004).
It has been found that the additive genetic variance of
these traits is low but not null, despite the pressure of
selection acting on them (MILNER e al. 2000). As these
previous studies have been conducted under the in-
finitesimal model framework, the dissection of these
traits through QTL mapping to determine eventual
Mendelian factors would represent a major break-
through toward the comprehension of the evolutionary
processes in the wild.
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