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Two approaches for mapping quantitative trait loci (QTL) using linkage disequilibrium at
the population level were investigated. In the trait-based (TB) approach, the frequencies of

marker alleles (or genotypes) are compared in individuals selected from the two tails of the
trait distribution. The TB approach uses phenotypic information only in the selection step.
In the marker-based (MB) approach, the quantitative trait values for the marker genotypes
in the selected individuals are compared. The MB approach uses both the difference in mar-

ker allele (or genotype) frequencies and the phenotypic values of each marker genotype in
the selected samples. We quantify the power of each approach and show that the power of
the MB approach is greater than or equal to that of the TB approach. The advantage of

the former is expected to increase with increasing number of traits phenotyped. Our accu-
rate predictions obviate the need for elaborate simulation studies.
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INTRODUCTION

In recent years, human geneticists have advocated
the use of linkage disequilibrium (LD) at the pop-
ulation level to fine-map genes associated with
complex diseases. The reasons are that traditional
linkage methods offer poor resolution of the trait
locus position (due to the small number of recom-
bination events available in most human pedi-
grees), that they have low power to detect
associations between genes of small effect and
complex traits, and that technological advances,
such as high-throughput genotyping methods, are
now available for typing large numbers of genetic
markers (e.g. SNPs) in large numbers of individu-
als, making it feasible to use population-wide LD

for mapping. At the same time there has been an
increased interest in quantitative traits that are
genetically correlated with disease status, because
they are generally more easily and objectively mea-
sured than are binary traits (such as disease sta-
tus). However, geneticists sometimes dichotomize
continuous traits in an attempt to classify individu-
als as affected or unaffected. Osteoporosis is a
good example of this (Langdahl et al., 2003).
According to World Health Organization criteria,
a person has osteoporosis if they have a bone min-
eral density of less than two and a half standard
deviations below the young population mean. In
this case, people in the lower tail of the trait distri-
bution would be treated as cases and the rest of
the population as controls. This dichotomizing
effect is sometimes taken to the extent that only
individuals with very extreme phenotypes are used
(Angius et al., 2002; Little et al., 2002). These are
then treated as disease phenotypes, and the data
analyzed using the appropriate linkage approach.
This ‘‘dichotomizing’’ approach may be favoured
because it mimics traditional disease mapping
methods, allowing similar interpretation of results
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and the use of readily-available software. However,
the price paid (as shown below), in terms of loss
of statistical power, might in some cases, be too
high. Although the ‘‘dichotomizing’’ approach
might be justified from a practitioner’s point of
view, allowing a decision to be made on whether a
patient needs treatment, it is not always justified
when trying to map the relevant trait loci.

Following Lebowitz et al., (1987), we will
refer to the ‘‘dichotomizing’’ approach for map-
ping quantitative trait loci (QTL) using LD at the
population level as the trait-based (TB) approach,
and to the ‘‘non-dichotomizing’’ approach as the
marker-based (MB) approach. TB methods dichot-
omize individuals into two classes and, therefore,
information contained within each class is lost. In
this study, we quantify this loss in terms of statis-
tical power and show that MB methods either
outperform or, at worst, are equivalent to TB
methods.

METHODS

The TB approach compares allele (or genotype)
frequencies in individuals selected from the two
extremes of the trait distribution, whereas the MB
approach compares the mean phenotypic value for
each marker allele (or genotype) in the same indi-
viduals. For each of the TB and MB approaches,
we performed two tests, based on an additive and a
dominant model of analysis, respectively.

For the additive model of analysis, the TB and
MB tests were respectively a v2 test, and an F-test
from the regression of phenotype on the numbers of
a given marker allele present (0, 1 or 2). The v2 test
(based on a 2 � 2 contingency table; 2 marker
alleles and 2 tails) compared the allele counts in
individuals selected from the two tails of the trait
distribution. If the distribution of allele frequencies
differed significantly in the two tails, then this sug-
gested that the marker was in LD with the locus
affecting the trait. In the regression analysis, the
presence of a QTL in LD with the marker locus
would lead to a non-zero slope of the regression
line.

For the dominant model of analysis, the TB
and MB tests were respectively a v2 test (based on a
3 � 2 contingency table; 3 possible marker geno-
types and 2 tails) and an F-test from an ANOVA,
respectively. The v2 test was based on the compari-
son of genotype counts in individuals selected from

the two tails of the trait distribution. A significant
difference in the frequency distribution of the mar-
ker genotypes between the upper and lower tails
suggested the presence of a QTL influencing the
trait in LD with the marker locus. The ANOVA
tested whether the quantitative trait values for the
marker genotypes of the selected individuals were
different. Under the null hypothesis of no QTL in
LD with the marker locus, the phenotypic values
for the different marker genotypes would not differ
significantly. In order to make a fair comparison of
the two approaches (MB vs. TB), comparisons
should be made only for tests with the same degrees
of freedom. Comparisons were made between tests
with two degrees of freedom (the ANOVA F-test
and the v2 test based on genotype counts) and
between tests with one degree of freedom (the
regression F-test and the v2 test based on allele
counts).

Model and Derivations

We suppose that the trait is influenced by a bi-
allelic QTL with alleles Q1 and Q2, having frequen-
cies q1 and q2 (¼ 1� q1), respectively. We assume
Hardy–Weinberg equilibrium and that phenotypic
values for the three genotypes Q1Q1, Q1Q2 and
Q2Q2 are normally distributed about mean values of
l11ð¼ �aÞ, l12ð¼ adÞ and l22ð¼ aÞ, respectively,
and with equal variances (taken to be 1). The QTL
genotype Q1Q2 is considered to be phenotypically
identical to Q2Q1 (l12 ¼ l21). However, we distin-
guish them to clarify the mathematical expressions
below. The QTL narrow sense heritability is defined
as h2

QTL ¼ VA=ðVA þ VD þ 1Þ where VAð¼ 2q1q2a2½1þ
fq1 � q2gd�2Þ and VDð¼ ½2q1q2da�2Þ are respectively
the additive and dominant variances for the QTL.
If x denotes the phenotypic value of an individual,
then the probability density function of x is

qðxÞ ¼
X2

i¼1

X2

j¼1
qiqjuðlij; r

2
ijÞ;

where uðl; r2Þ denotes the Gaussian distribution
with mean l and variance r2 (assumed, without loss
of generality, to be 1).

The upper and lower tails of the distribution
are defined, respectively, as the proportions aU and
aL of the individuals phenotyped that are to be
genotyped. We determined the upper and lower cut-
offs sU and sL by solving:
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aU ¼
Z 1

sU

qðxÞdx; aL ¼
Z sL

�1
qðxÞdx

If U s� lij

� �
¼ Uij ¼

R s
�1 u xjlð ¼ lij; r

2 ¼ 1Þdx,
then the probability that an individual selected from
one of the tails of the trait distribution has a given
QTL genotype is:

P ðQiQjjx > sU Þ ¼
qiqj 1� U sU � lij

� �� �

aU
;

P ðQiQjjx<sLÞ ¼
qiqjU sL � lij

� �

aL
; i; j 2 1; 2½ �

and the frequency of the QTL alleles in the two tails
of the trait distribution is:

PðQijx > sU Þ ¼
qi
P2

j¼1
qj 1� U sU � lij

� �� �

aU
;

PðQijx<sLÞ ¼
qi
P2

j¼1
qj U sL � lij

� �� �

aL
; i 2 1; 2½ �

where i, j denote the possible QTL alleles.
The expected values for QTL genotype QiQj, in

the upper and lower tails are gU
ij and gL

ij, respec-
tively, where

gU
ij ¼

1

1� U sU � lij

� �� �
Z 1

sU

xffiffiffiffiffiffi
2p
p e

�ðx�lijÞ2

2 dx

¼
zU

ij

1� U sU � lij

� �� �þ lij ¼ iUij þ lij;

gL
ij ¼

1

U sL � lij

� �
Z sL

�1

xffiffiffiffiffiffi
2p
p e�

ðx�lijÞ2

2 dx

¼
�zL

ij

U sL � lij

� �þ lij ¼ iL
ij þ lij;

where zU
ij and zL

ij are the ordinates of the appropri-
ate Gaussian distribution [/ðlij, 1)] at the cut-offs
sU and sL, respectively.

Since we do not usually genotype the QTL
itself, we assume that there is a linked bi-allelic mar-
ker locus in LD with the trait locus, and that the
marker locus does not have an independent effect on
the trait. The marker locus has alleles M1 and M2

with frequencies m1 and m2ð¼ 1� m1Þ, respectively.

The disequilibrium parameter (D) between mar-
ker allele M2 and QTL allele Q2 is defined as
D ¼ fQ2M2

� q2m2, where fQ2M2
is the population fre-

quency of the haplotype Q2M2. We expressed our
results as a function of Lewontin’s normalized mea-
sure of disequilibrium D0 (Lewontin, 1964). D0 is the
value of D expressed as a fraction of its maximum
possible value, that is, D0ð¼ D=DmaxÞ, where Dmax is
the minimum value of q2m1 or q1m2 (as D is
assumed, without loss of generality, to be positive
between alleles M2 and Q2).

The four possible QTL-marker haplotype fre-
quencies are P ðQ1M1Þ ¼ q1m1 þ D0 � Dmax, P ðQ1M2Þ
¼ q1m2 � D0 � Dmax, P ðQ2M1Þ ¼ q2m1 � D0 � Dmax

and PðQ2M2Þ ¼ q2m2 þ D0 � Dmax. Assuming random
mating, the probability of each of the possible
QTL-marker diplotypes is equal to the product of
their component haplotypes (e.g., P ðQiMl;QjMnÞ
¼ P ðQiMlÞ � P ðQjMnÞ). The probabilities of occur-
rence of each marker genotype in the upper and
lower tails are obtained using Bayes’ theorem. After
some algebra:

P ðMlMnjx > sU Þ ¼
X2

i¼1

X2

j¼1
P ðQiMl;QjMnÞ

1� UðsU � lijÞ
� �

=aU ; l; n 2 1; 2½ �;
ð1Þ

P ðMlMnjx<sLÞ¼
X2

i¼1

X2

j¼1
P ðQiMl;QjMnÞUðsL�lijÞ=aL;

l;n2 1;2½ �; ð2Þ

where l, n denote the possible marker alleles.
From equations (1) and (2) we obtain the probabili-
ties of occurrence of the kth marker allele in the
two tails.

P ðMkjx > sU Þ ¼
X2

l¼1

X2

n¼1
P ðMkjMlMnÞP ðMlMnjx > sU Þ;

P ðMkjx<sLÞ ¼
X2

l¼1

X2

n¼1
P ðMkjMlMnÞP ðMlMnjx<sLÞ;

where P ðMkjMlMnÞ is 1,1/2 and 0 for k ¼ l ¼ n,
k ¼ l 6¼ n or k ¼ n 6¼ l and k 6¼ l ¼ n, respectively.

The expected quantitative trait value for
marker genotype MlMn in the selected sample is
equal to:
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where EðxjMlMnÞU and EðxjMlMnÞL are the expected
quantitative trait values for marker genotype MlMn

in the upper and lower tails (see Appendix).
Derivations of the non-centrality parameters

for the four tests studied are shown in the Appen-
dix. The MB tests were based on an Fn1;n2 distribu-
tion (note that n1 and n2 are just general labels and
do not mean anything in the context of the model).
However, when the denominator degrees of freedom
are large (n2 !1) this distribution can be approxi-
mated to n�11 times a chi-squared distribution with
n1 degrees of freedom. The sample sizes required to
detect a QTL with small effect (as considered here)
are large, and we therefore considered the approxi-
mation to be valid, and referred all the results to a
chi-squared distribution. This makes the compari-
son of the two approaches easier. Simulations were
carried out to check that the approximations,
shown in the Appendix, were very close (results not
shown).

RESULTS

All the results shown assumed that selection
was symmetric, so that 2aU ¼ 2aL ¼ P . Figure 1
shows that with equal degrees of freedom MB
methods always performed better than TB methods.
This was so regardless of the genetic model consid-
ered for the generation of the data. Power was prac-

tically the same for both approaches when selection
was sufficiently intense. However, differences in
power were important when the whole population
was genotyped as shown in Table I.

Figure 2 shows the effect of the amount of LD
on power for three different intensities of selection.
For extreme selection the power curves for the MB
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Fig. 1. Comparison of the power obtained when using the TB and MB approach for different proportions selected (P). The marker is

assumed to be the QTL (D0 ¼ 1) with allele frequency 0.3, h2QTL ¼ 0:05 and d = 1, 0, �1 respectively for the dominant, additive and reces-

sive models. The significance level was 10�8, the total number of individuals genotyped was fixed to 200 and number phenotyped was

200/P.

EðxjMlMnÞ ¼
aU � P ðMlMnjx > sU Þ � EðxjMlMnÞU þ aL � P ðMlMnjx<sLÞ � EðxjMlMnÞL

aU � P ðMlMnjx > sU Þ þ aL � P ðMlMnjx<sLÞ
; l; n 2 1; 2½ �

Table I. Comparison of the power obtained with the TB or MB

approach for different levels of disequilibrium when the whole

population is genotyped (P = 1)

Marker-based Trait-based

Model D0
Anova

(2df)

Regression

(1 df)

v2

Genotype

(2 df)

v2

Alleles

(1 df)

Dominant (d = 1) 1.00 0.98 0.93 0.64 0.51

0.75 0.37 0.35 0.08 0.08

0.50 0.01 0.01 0:01 0:01

Additive (d = 0) 1.00 0.88 0.93 0.38 0.48

0.75 0.26 0.35 0.04 0.07

0.50 0.01 0.01 <0.01 0:01

Recessive (d = �1) 1.00 >0.99 0.96 0.91 0.23

0.75 0.82 0.37 0.12 0.02

0.50 0.03 0:01 0:01 0:01

The marker and QTL were assumed to be in varying levels of dis-

equilibrium (D0), m2 = q2 = 0.3 and h2QTL = 0.05. The signifi-

cance level was 10�8 and the total number of individuals genotyped

was 1000.
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and TB approach almost overlapped regardless of
the amount of LD. The difference between the two
approaches was largest when no selection was
applied.

Figure 3 shows the power obtained for the MB
and TB approach with 1 df when we fixed the num-
ber of individuals phenotyped. The TB approach

provides maximum power when about 27.5% of
individuals are genotyped in each tail, and is less
powerful than the MB approach. This level of selec-
tion (p ¼ 55%) provides the maximum power for
the TB approach (in accordance with Lebowitz
et al., (1987) and Bader et al., (2001)) but not for
the MB approach, for which power increases mono-
tonically with the number of individuals genotyped
and included in the analysis.

Figure 4 shows the effect of a discrepancy
between marker and QTL allele frequency has on
power. When the discrepancy between QTL and
marker allele frequency increases power is smaller,
this is so regardless of the level of disequilibrium
(D0 ¼ 1 and D0 ¼ 0:7 in figure 4). The discrepancy
between marker and trait allele frequency has simi-
lar effect for the TB and MB approach and the MB
is always more powerful.

DISCUSSION

Quantitative traits are of interest for human
genetics because they are often correlated with dis-
ease traits. Schork et al., (2000) proposed the use of
threshold-defined case/controls (that is, the TB
approach with 1 df ) for mapping loci influencing
quantitative traits using LD at the population level.
The objective of the present study was to assess
how much information is lost when analyzing a
quantitative trait as a threshold-defined binary trait
as opposed to analyzing it using all the information
available. The information lost in the former case is
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Fig. 2. Effect of the amount of LD on power of the MB and TB approach. The marker and the QTL both have allele frequency equal to

0.3, h2QTL ¼ 0:05 and the model is additive. The significance level was 10�8 and the total number of individuals genotyped was 1000. The

proportion selected (P) is shown in the Figure.
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Fig. 3. Comparison of the power obtained when using the TB

and MB approach with 1 df for different proportions selected (P)

when the total number of phenotyped individuals is fixed. The

total number of phenotypes is 4500 and the total number of

genotypes is 4500�P. The marker is assumed to be the QTL

(D0 ¼ 1) with allele frequency 0.3, h2QTL ¼ 0:01 and the model is

additive. The significance level was 10�5.
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clearly reflected in a loss of statistical power to
detect an association between marker genotype and
phenotype. Our proposed method of analysis was
more powerful, except under very extreme selection,
when both methods performed similarly. Our
method can be implemented with standard statisti-
cal packages or spreadsheets.

Sirota et al., (1999) studied the power of selec-
tive genotyping for a TB method (i.e. they compared
the genotypic frequencies in the upper and lower
groups). They typed the 5-HTTLPR polymorphism
in the promoter of the serotonin transporter gene in
a sample of 902 individuals and obtained the
expected power that one would obtain at different
selection intensities given the difference in allele fre-
quencies between tails they observed in their sample
(the empirical power). In addition, they simulated a
large dataset based on the parameters they empiri-
cally observed (i.e., the observed genotype frequen-
cies and effect size in the 902 individuals) and
obtained the power (the theoretical power). They
found that empirical differences in allele frequencies
between the two selected groups decreased as selec-
tion increased and that empirical power decreased
with increasing selection intensity. In contrast, the
theoretical power increased with increasing selection
intensity. Sirota et al., (1999) concluded that using
extreme samples does not give increased power, at
least not for their trait and polymorphism, and

suggested that the reduction in power is caused by
their observed non-linear increase in allele frequency
difference in the tails with increasing selection inten-
sity. From the results presented here with a fixed
number of individuals phenotyped, greatest power
would be obtained by genotyping as many individu-
als as possible (as long as the appropriate test was
used) (See Figure 3). If a TB method is used for a
fixed number of phenotypes, in agreement with the
observations of Sirota et al., (1999), the optimum
will be intermediate because of the trade-off between
increased allele frequency difference and decrease in
the accuracy of the allele frequency estimate due to
small sample sizes. The apparent discrepancy
between the empirical and theoretical results shown
by Sirota et al. (1999) is because they used a fixed
number of individuals genotyped in their theoretical
approach and a fixed number of individuals pheno-
typed in their empirical results. In addition their
observed non-linear change in HTTLPR allele fre-
quency with increasing selection intensity, may not
be inconsistent with a linear relationship between
genotype and phenotype as they suggest, but could
purely be due to sampling. For example, if one were
to phenotype 902 people and select for genotyping
those above a deviate of ±1.75 (Z >¼ 1:75 or
Z < 1:75) one would genotype about 36 people (N )
from each tail. If the allele frequencies (f ) were 0.5
and 0.82 in the lower and upper tail respectively,
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Fig. 4. Effect of the discrepancy between marker and QTL allele frequency. A total number of 10000 individuals’ phenotypes are assumed

to be measured and a proportion (P) of them to be genotyped for analysis. Two different marker allele frequencies are considered

(m2 ¼ 0:4 or 0.6) to detect a QTL allele frequency (q2) of 0.2. Two different levels of disequilibrium are shown (D0 ¼ 1 or 0.7). The genetic

model is additive and h2QTL ¼ 0:02. The significance level was 10�5.
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then the sampling variance ½f � ð1� f Þ=N � for f
would be 0.007 and 0.004 in the lower and upper
tail, respectively. Hence, any sample of size 36 with
allele frequency between 0.33–0.66 and 0.69–0.94
would be consistent with the allele frequencies being
0.5 and 0.82.

The results obtained from the TB approach are
valid only under asymptotic assumptions, that is,
for large sample sizes. Small sample sizes and low
frequency alleles might lead to sparse contingency
tables and hence spurious results. On the other
hand, the MB approach does not assume large sam-
ples and is quite robust to departures of normality
(simulation results not shown).

In the present study, we have assumed that the
three genotypic values have equal variances and are
normally distributed. As discussed by Schork et al.,
(2000), these assumptions might not be completely
realistic. Usually, the larger the mean the larger the
variance around this mean. In addition, complex
multi-locus effects might lead to departures from
normality (Allison et al., 1998) especially if the loci
effects are big. We do not, however, expect these
two factors to be of huge importance for the QTL
of small effect shown above.

Currently, large numbers of SNPs are available,
and researchers are interested in exploiting them by
using multi-locus haplotypes instead of single marker
alleles. Using multi-locus haplotypes might have
higher power than using single marker alleles for
detecting an association. However, the relative effi-
ciency of the MB and TB approach would be the
same, regardless. On the other hand, in the final
stage of a study (i.e., after the haplotype analysis)
researchers would like to know which unidentified
variant or variants are causing the phenotypic differ-
ences, and this would involve testing each variant
independently (as assumed in our study).

Finally, our results demonstrate the advantage
of the MB over the TB approach. Although both
approaches would be similarly efficient when just
one trait was phenotyped and high selection per-
formed for just this trait, this would not be so
when the selection intensity was low. The most
realistic scenario would be one in which a number
of individuals had been phenotyped for a number
of traits. If selection had to be applied for a large
number of traits, then all or almost all of the indi-
viduals phenotyped would eventually be genotyped.
The MB approach would then clearly be the most
powerful.

APPENDIX

The expected values for marker genotype MlMn

in the upper tail and lower tails are EðxjMlMnÞU
and EðxjMlMnÞL, respectively.

EðxjMlMnÞU ¼
X2

i¼1

X2

j¼1
gU

ij

� P ðx > sU jQiQjÞ � P ðQiMl;QjMnÞ
P ðMlMnjx > sU Þ � aU

; l; n 2 1; 2½ �

EðxjMlMnÞL ¼
X2

i¼1

X2

j¼1
gL

ij

� P ðx<sLjQiQjÞ � PðQiMl;QjMnÞ
P ðMlMnjx<sLÞ � aL

; l; n 2 1; 2½ �

The within-genotype variance for the marker
genotypes in both tails combined is:

The X 2 statistics, obtained from contingency
tables of 3 �2 and 2 �2 for the counts of genotypes
and alleles, respectively, are distributed under the

varðxjMlMnÞ ¼ Eðx2jMlMnÞ � EðxjMlMnÞ2

¼

P2

i¼1

P2

j¼1
P QiMl;QjMn
� �

� ð1þ l2
ijÞ Uij
� �

þ zU
ij ðsU þ lijÞ � zL

ijðsL þ lijÞ
� �h i

P2

i¼1

P2

j¼1
P QiMl;QjMn
� �

� Uij
� �� �

�

P2

i¼1

P2

j¼1
P QiMl;QjMn
� �

� zU
ij � zL

ij þ lij � Uij

� �h i

P2

i¼1

P2

j¼1
P QiMl;QjMn
� �

� Uij
� �

8
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>>>:

9
>>>=
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null hypothesis (H0) of no association as chi-
squared with 2 and 1 degrees of freedom, respec-
tively. Under the alternative hypothesis (H1), X 2 is
asymptotically distributed as non-central chi-
squared with respectively 2 and 1 degrees of free-
dom and non-centrality parameter kGenotypes and
kAlleles given by

which after some algebra reduces to

which after some algebra reduces to

where NT denotes the number of individuals geno-
typed (Kendall and Stuart, 1961). Power is then
defined as the probability that a non-central v2 with
respectively 2 and 1 degrees of freedom and non-
centrality parameters kGenotypes and kAlleles is greater
than the critical value defined by a central v2 with 2
and 1 degrees of freedom and significance level a.

Testing for association between marker geno-
type and phenotype using ANOVA requires specify-
ing the model. Our model is ygz ¼ lþ sg þ egz

where ygz is the phenotype for individual z with
marker genotype g (=1 if M1M1 =2 if M1M2 or
M2M1, =3 if M2M2Þ; l is the mean of the selected
individuals from both tails; sg is the gth marker
genotype effect taken to be fixed (its effect is con-

strained so that
P3

g¼1
ngsg ¼ 0); and egz is the residual

effect for individual z with genotype g. The total

number of individuals sampled is NT ¼
P3

g¼1
ng where

n1; n2; n3 are respectively the numbers with geno-

types M1M1; M1M2; or M2M1 and M2M2 (strictly

speaking, ng are random variables but here we treat

them as fixed and equal to their expected values).

The between marker genotype sum of squares is

SSB ¼
P3

g¼1
ng � �yg� � �y��

� �2
and the within marker

genotype sum of squares is SSW ¼
P3

g¼1

Png

z¼1
ygz�
�

�yg�Þ2

where �yg� and �y�� are the mean phenotypic values
for the g marker genotype of the selected individuals
and for the selected individuals, respectively. When
selection is applied, the within genotypic variance
ðr2

W ) is not equal for all genotypes. Therefore, we
use the weighted average (the weights being ng).

Under H0, the statistic F ¼ MSB
MSW 2;NT�3

� v2
2

2 for
large NT .

Under H1; EðSSB=r2
W Þ ¼ 2þ kANOVA ¼ 2þP3

x¼1
nxs2x

r2
W

, where kANOVA is the non-centrality parameter

kGenotypes ¼ NT �
X2

l¼1

X2

n¼1

P ðMlMn; x<sLjH1Þ � P ðMlMn; x<sLjH0Þð Þ2

P ðMlMn; x<sLjH0Þ

" #

þ NT �
X2

l¼1

X2

n¼1

P ðMlMn; x > sU jH1Þ � P ðMlMn; x > sU jH0Þð Þ2

P ðMlMn; x > sU jH0Þ

" #

¼ aUaLNT

aU þ aLð Þ2
�
X2

l¼1

X2

n¼1

P2

i¼1

P2

j¼1
P QiMl;QjMn
� �

� 1� UðsU � lijÞ
� �

=aU � UðsL � lijÞ=aL
� �

 !2

P ðMlMnÞ

kAlleles¼2NT �
X2

l¼1

P ðMl;x<sLjH1Þ�P ðMl;x<sLjH0Þð Þ2

P ðMl;x<sLjH0Þ

" #
þ2NT �

X2

l¼1

P ðMl;x> sU jH1Þ�PðMl;x> sU jH0Þð Þ2

P ðMl;x> sU jH0Þ

" #

¼ 2aUaLNT

aU þ aLð Þ2
�
X2

k¼1

P2

l¼1

P2

n¼1

P2

i¼1

P2

j¼1
P ðQiMl;QjMnÞ� ð1�UðsU �lijÞÞ=aU �UðsL�lijÞ=aL
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and F � F2;NT�3;kANOVA
(Kendall and Stuart, 1961). We

express the non-centrality parameter as:

kANOVA ¼
X2

l¼1

X2

n¼1

NT � P ðMlMnÞ � EðxjMlMnÞ � lð Þ2

r2
W

;

where

l ¼
X2

i¼1

X2

j¼1
EðxjQiQj; x > sU or x<sLÞ

� P ðQiQj; x > sU or x<sLÞ

¼
X2

l¼1

X2

n¼1

qiqj � zU
ij � zL

ij þ lijUij

� �

aU þ aL

Power is then defined as the probability that a
non-central F2;NT�3;kANOVA

with 2 and NT � 3 degrees
of freedom and non-centrality parameter kANOVA is
greater than the critical value defined by an F2;NT�3
with 2 and NT � 3 degrees of freedom and signifi-
cance level a.

Regression of phenotype on marker genotype
is the last type of analysis considered here. The
model is yz ¼ aþ bxz þ ez where yz is the phenotype
for individual z, a is the intercept, b is the slope, xz

is a dummy variable for individual z (taking values
�1, 0 or 1 depending on whether the individual’s
genotype is M1M1; M1M2 (¼ M2M1 or M2M2, respec-
tively) and ez is the residual for individual z.
Regression tests for marker–trait association with
one degree of freedom (i.e., ignores non-additivity),
while the ANOVA based test has 2 degrees of free-
dom. The expected value for the estimate of b
equals:

Eðb̂Þ ¼ E
SSxy

SSxx

� 	

¼

P2

l¼1

P2

n¼1
P ðMlMnÞ � xln � xð Þ � EðxjMlMnÞ � lð Þ

P2

l¼1

P2

n¼1
PðMlMnÞ � xln � xð Þ2

;

where SSxx, SSxy are respectively the sum of squares
and the sum of products, x11 ¼ �1, x12 ¼ x21 ¼ 0;
x22 ¼ 1 and

x ¼ P ðM2M2jx > sU Þ þ P ðM2M2jx<sLÞð Þ
� P ðM1M1jx > sU Þ þ P ðM1M1jx<sLÞð Þ

¼ 1

aU þ aL

X2

i¼1

X2

j¼1
P QiM2;QjM2

� �
� P QiM1;QjM1

� �
 �

� Uij
� �

:

Under H0 the expected value of b̂, b, is zero and
the statistic T = b̂2= var

_ ðb̂Þ is F1;NT�2 � v21 (for large
NT ) distributed. Under H1 the statistic T is non-cen-
tral F distributed (F1;NT�2;kRegression

), where kRegression ¼
SSxx � b2=r2

W (Lynch and Walsh, 1998).
Power is then defined as the probability that a

non-central F1;NT�2;kRegression
with 1 and NT � 2 degrees

of freedom and non-centrality parameter kRegression

is greater than the critical value defined by an
F1;NT�2 with 1 and NT � 2 degrees of freedom and
significance level a.
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