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It is shown that maximum likelihood estimation of
variance components from twin data can be para-

meterized in the framework of linear mixed models.
Standard statistical packages can be used to analyze
univariate or multivariate data for simple models
such as the ACE and CE models. Furthermore, spe-
cialized variance component estimation software
that can handle pedigree data and user-defined
covariance structures can be used to analyze multi-
variate data for simple and complex models,
including those where dominance and/or QTL
effects are fitted. The linear mixed model frame-
work is particularly useful for analyzing multiple
traits in extended (twin) families with a large number
of random effects.

Estimation of variance components in the classical
twin design have been performed using least squares
(Jinks & Fulker, 1970), weighted least squares (e.g.,
Kendler et al., 1994) and maximum likelihood (e.g.,
Martin & Eaves, 1977). Maximum likelihood has
become the method of choice, because of its desirable
asymptotic properties and the availability of versatile
and powerful computer programs such as Fisher
(Hopper, 1988; Lange et al., 1976) and Mx (Neale,
1997; Neale & Maes, 2004). These programs are typ-
ically parameterized as covariance models, so that the
variance–covariance structure of pairs of twins needs
to be specified.

In this note we show that standard linear mixed
models can be used to estimate variance components,
and in particular that pedigree packages that are
designed to estimate variance components in large
general pedigrees can be exploited to efficiently esti-
mate parameters in univariate and multivariate models.

Methods
In a mixed linear model, the latent variables (random
effects) are specified in the model for the means, and
the covariance structure(s) are specified by linking
phenotypes with levels of random effects. Consider
the commonly used ACE model for individual i,

yi = µ + Ai + Ci + Ei [1]

with µ the overall mean and A, C and E random addi-
tive genetic, common environmental and residual
effects, respectively. The phenotypic variance in the
population is partitioned as

var(yi) = var(A) + var(C) + var(E)

and the covariance between individuals i and j, who
belong to the same family, is

cov(yi,yj) = aijvar(A) + δijvar(C)

with aij the coefficient of relationship (1 for monozy-
gotic [MZ] and 1/2 for dizygotic [DZ]) and δij an
indicator variable which is 1 if i and j are twins raised
together and 0 otherwise. The additive genetic value
(A) for an individual can be partitioned into the
effects inherited from the parents and the deviation
(Mi) from the parental average (Apa):

Ai = 1/2Adad + 1/2Amum + Mi = Apa + Mi

(e.g., Falconer & Mackay, 1996). In a noninbred ran-
domly mating population with homogeneous variances
in males and females, the total additive genetic vari-
ance is partitioned as

var(A) = 1/4var(Adad) + 1/4var(Amum) + 1/2var(A)

The term Aap is the average additive genetic value of
the parents, with variance 1/2var(A). Mi is sometimes
called the Mendelian sampling term, and its variance,
sometimes called the segregation variance, is the
within-family additive genetic variance (= 1/2var(A)).
Hence, an equivalent model to [1] is

yi = µ + Apa(i) + Ci + Mi + Ei = µ + Pairi + Mi + Ei [2]

The random effect Pair is common to a pair of twins,
whether MZ or DZ. The random effect M is shared by
a pair of MZ twins but not by a pair of DZ twins.
Hence, the (co)variances of the new random effects are
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var(Pair) = 1/2var(A) + var(C), var(M) = 1/2var(A),
and cov(yi,yj) = mijvar(M) + δijvar(Pair).

The indicator variable mij is 1 for an MZ pair and 0
otherwise. In slightly different notation, with i indi-
cating a pair and j (= 1,2) the individual within a pair

MZ: yij = µ + Pairi + Mi + Eij

DZ: yij = µ + Pairi + Mij + Eij

The parameterization in [2] lends itself to an analysis
with any statistical packages that can fit a mixed
linear model with uncorrelated random effects, for
example, SAS, SPSS, Genstat, Splus and R. It does not
require a statistical package specifically designed for
genetic analysis. An example of the required coding of
the data file is given in Table 1. A mixed linear model
analysis using an appropriate standard statistical
package, specifying M and Pair as random effects,
would produce maximum likelihood estimates of
random effects which are linear functions of the para-
meters of interest. Hence,

σ̂2
a
= 2σ̂2

m
and σ̂2

c
= σ̂2

pair
– σ̂2

m

A disadvantage of this approach is that negative esti-
mates of the common environmental variance can
occur when σ̂2

pair
< σ̂2

m
, unless a constraint can be spec-

ified. This problem is likely to be more severe for
multivariate models. Fitting a CE model in this way is
straightforward, but fitting an AE or ADE model is
not, because there is no linear combination of two
(three) uncorrelated random effects that correspond to
the underlying AE (ADE) effects. To allow for more
complex models and for implicit constraints on the
estimates of the causal variance components, statistical
packages can be used that allow for arbitrary pedigrees
files and/or user-defined covariance structures.

Variance component estimation software that can
handle pedigree data and multiple random effects
with user-defined covariance structures can also be
used for twin analyses, and provides a flexible way to
fit commonly used models (with the usual constraints)
and to fit single or multiple QTL effects. For such
software, for example, ASREML (Gilmour et al.,
1995; Gilmour et al., 2002) and VCE (Neumaier &
Groeneveld, 1998), typically two input files are speci-
fied: a data file containing rows for each individual
with a measured phenotype and codes for fixed
effects, covariates and levels of random effects, and a
pedigree file which specifies the genetic relationship
between individuals with phenotypes. To fit data from
DZ and MZ twins in this framework, the pedigree file
needs to be coded so that DZ are recognized as
‘normal’ full-sibs, by specifying common parents,
whereas MZ individuals appear only once in the pedi-
gree file as a single entity (genotype) with unknown
parents. In the phenotype file each MZ individual has
an entry, with the same code for the random effects as
its co-twin. With this parameterization, the effects A,
C and E are modeled directly. An example of the coding

of a pedigree and data file is given in Tables 1 and 2. In
the model specification for the analysis, the effects of
factors Pair and M are random and the covariance
structure of M is determined by the pedigree file. Note
that although the coding of the Pair and M factors in
the data file is the same for nonpedigree and pedigree
packages, the variance of the effects are different. In the
nonpedigree packages the variance associated with Pair
and M is (1/2var(A) + var(C)) and 1/2var(A), respec-
tively, whereas in the pedigree package the variances are
var(C) and var(A), respectively.

The extension to multivariate analysis is
straightforward. In Appendix A an example of an
ASREML command file for an ACE model with
three traits is given.

If the option of user-defined covariance matrices is
supported, then the mixed linear model approach can
be used for QTL analysis or fitting addition twin
models. In ASREML, for each additional random
effect with an arbitrary covariance structure, an addi-
tional file is supplied that contains the inverse of the
covariance matrix. In Appendix B, how to code a dom-
inance effect (D) when fitting an ADE model is shown.

Maximum likelihood estimation of variance com-
ponents in effect assumes that the fixed effects are
known without error, which leads to biased estimates
of the variance components. In the simplest case of
yi = µ + ei and n observations, the maximum likeli-

Table 1

Example Data Input File for Variance Component Analysis1

Individual Twin pair MZ/DZ (1/2) Level of Pair Level of M Trait

1 1 1 P1 M1 Y1
2 1 1 P1 M1 Y2
3 2 2 P2 M2 Y3
4 2 2 P2 M3 Y4
5 3 2 P3 M4 Y5
6 3 2 P3 M5 Y6
7 4 1 P4 M6 Y7
8 4 1 P4 M6 Y8

Note: 1The first 3 columns are only given for clarification, but are not needed.

Table 2

Example Pedigree File for the Same Individuals as in Table 11

Individual Twin pair MZ/DZ (1/2) ID ID dad ID mum

1 & 2 1 1 ID1 0 0
3 2 2 ID2 DAD2 MUM2
4 2 2 ID3 DAD2 MUM2
5 3 2 ID4 DAD4 MUM4
6 3 2 ID5 DAD4 MUM4
7 & 8 4 1 ID6 0 0

Note: 1The first 3 columns are only given for clarification, but are not needed.
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hood estimate of σe
2 is Σ(y – y–)2/n, which is biased by

a factor of (n – 1)/n. When the number of observa-
tions is large relative to the number of fixed effects or
covariates to be estimated, this bias is small. In resid-
ual (or restricted) maximum likelihood (REML,
Patterson & Thompson, 1971), only the part of the
likelihood which is independent of fixed effects is
maximised, by taking into the account the loss in
degrees of freedom by estimating fixed effects. In bal-
anced designs, REML estimates are identical to
ANOVA estimates of variance components. For the
analysis of samples from human populations, the
number of covariates is usually small relative to the
number of observations, so that the use of either ML
or REML is likely to lead to the same statistical infer-
ence. Pedigree software written for large populations,
such as ASREML (Gilmour et al., 1995) and VCE
(Neumaier & Groeneveld, 1998) are based on resid-
ual maximum likelihood estimation. These programs
were designed for large complex pedigrees, and a
multivariate analysis of, say, tens of thousands of twin
pairs would be feasible and computationally efficient.

Discussion and Conclusions
In this note the equivalence between a twin covari-
ance model and a mixed linear model has been
shown. Standard statistical software can be used for
the simplest of models, for example, for CE and
ACE models.

Guo and Wang (2002) showed how many
complex models used in behavior genetic analysis
could be fitted with mixed or ‘multilevel’ models and
presented SAS codes for maximum likelihood (or
REML) analysis for a number of models. Guo and
Wang (2002) group the type of relationships that are
available in the data into clusters, and perform
between- and within-cluster analysis of variance. For
example, if the data consists of observations on MZ
pairs, DZ pairs and pairs of halfsibs, then three
between- and three within-cluster variances are esti-
mated. Essentially, their proposed method is a
(maximum likelihood) generalization of analysis of
variance, in which the ‘observable’ rather than causal
effects are modeled. However, the proposed method
does not generate maximum likelihood estimates of
causal components (or their ratios) for nonsaturated
models, because the underlying (hypothesized) model
is not fitted directly. For example, in the case of ‘clus-
ters’ of MZ and DZ twin pairs and the ACE model,
the estimate of the heritability from the Guo and
Wang (2002) mixed model is twice the difference in
the ML estimate of the MZ and DZ intraclass corre-
lation coefficient (= between-pair variance/
[between-pair variance + within-pair variance]),
which is the same as the least-squares estimator. The
assumption of the ACE model that the total pheno-
typic variance is the same for MZ and DZ pairs is not
explicitly taken into account because four variance
components are estimated. In contrast, our mixed

model approach to twin data generates maximum
likelihood estimates of the components of the model.
To fit and test parsimonious submodels using the Guo
and Wang (2002) mixed model approach is not
obvious, as acknowledged by the authors.

Pedigree-based variance component estimation soft-
ware can be used to fit more complex models,
including additional random effects such as dominance
and (multiple) QTL and easily allows more complex
pedigree structures such as extended twin families and
arbitrary deep pedigrees (e.g., George et al., 2000).
Thus, the same pedigree-based software can in princi-
ple be used to analyze (multivariate) data from a wide
variety of pedigree structures and complex linear
models, from analysis of the classical twin design to
multivariate QTL mapping in complex pedigrees.
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APPENDIX A
Multivariate ASREML Script for 3-trait ACE Model, Fitting Sex and Age as Covariates

Text following # is for clarification

Trivariate Analysis
factorM !P # Random effect with pedigree file
pair !I # Unstructured random effect
sex 2 # The factor sex has 2 levels
age
y1 # }
y2 # } Three traits
y3 # }

twins.ped # Pedigree file for random effect factorM
twins.dat # Data file
y1 y2 y3 ~ Trait Trait.sex Trait.age !r Trait.pair Trait.factorM
# Model statement. Sex is fitted as a fixed effect and age as a covariate
# for all traits. Pair and factorM are fitted as random effects.
1 2 2 # 1 = no. sites; 2= error dimension; 2 = no. G structures
0 # default {ASREML Syntax}
Trait 0 US !GP # Trait = no. columns (= 2); 0 = default
1 # E 3x3 covariance matrix, starting values
0 1
0 0 1
Trait.pair 2 # 1st G-structure & dimension
Trait 0 US !GP
1 # C 3x3 covariance-matrix, starting values
0 1
0 0 1
pair 0 ID # no structure on pair
Trait.genotype 2 # 2nd G-structure
Trait 0 US !GP
1 # A 3x3 covariance matrix, starting values
0 1
0 0 1
factorM 0 AINV # FactorM follows standard relationship rules

Example first few lines of twins.dat:
M1 P1 male 39.0 1.0 0.9 0.5
M1 P1 male 39.0 1.1 0.8 0.6
M2 P2 female 35.0 1.8 0.4 1.3
M3 P2 male 35.0 1.2 0.7 2.5

Example first few lines of twins.ped:
M1 0 0
M2 dad23 mum23
M3 dad23 mum23

For more details on ASREML, see http://www.vsn-intl.com/ASReml/index.htm
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APPENDIX B

Performing an ADE Analysis in a Mixed Linear Model

We first demonstrate how to fit an ADE model with user-defined covariance structures, without the use of a
pedigree file. A random factor ID is created which is the same as the pair identifier for MZ twins but takes a dif-
ferent value for DZ twins. For example, if pairs 1 and 2 are MZ and pairs 3 and 4 are DZ, we have,
PAIR TWIN ID
1 1 1
1 2 1
2 1 2
2 2 2
3 1 3
3 2 4
4 1 5
4 2 6

In the model specification, ID is fitted as a random effect and fitted twice, with two user-defined covariance
structure, one pertaining to additive genetic (A) effects, and the other one to dominance (D) effects. In ASREML
the model statement is
Y ~ mu !r giv(ID,1) giv(ID,2)

In programs such as ASREML, the inverse of the covariance structures of all levels of ID need to be specified in
separate files. The first random effects corresponds to additive genetic effects. The covariance structure of DZ
twins for A is

[1 1/2]1/2 1
with inverse

[4/3–2/3]–2/34/3
MZ twins are specified as only one level of the factor ID with variance (and inverse) of 1. The second random
term corresponds to the dominance effects. For the dominance effect, the covariance structure of DZ twins is

[1 1/4]1/4 1
with inverse

[16/15–4/15 ]–4/15 16/15

Again, for MZ the same rules apply as for the additive effects. Hence, for the above example, the nonzero
entries for the first random term (A) in the model statement are:
1 1 1
2 2 1
3 3 1.3333
4 3 –0.6667
4 4 1.3333
5 5 1.3333
6 5 –0.6667
6 6 1.3333

and the file associated with the second term (D) is similar but with 1.3333 (4/3) replaced by 1.0667 (16/15) and
–0.6667 (–2/3) replaced by –0.2666 (–4/15).

This parameterization requires the creation of user-defined covariance matrices but the script files remain
simple. The same model could also be fitted using a standard pedigree file and a single user-defined covariance
structure corresponding to dominance effects.


