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Haplotype analysis is essential to studies of the genetic factors underlying human disease, but requires a large sample size
of phase-known data. Recently, directly haplotyping individuals was suggested as a means of maximizing the phase-known
data from a sample. Haplotyping, however, is much more labor-intensive than indirectly inferring haplotypes from
genotypes (genotyping). This study uses simulations to compare the power of each methodology to detect associations
between a haplotype and a trait or disease locus under conditions of varying linkage disequilibrium. The relative power of
haplotyping over genotyping in association studies increases with decreasing sample size, decreasing linkage
disequilibrium, decreasing numbers of marker loci, and decreasing numbers of different haplotypes. In addition, the
frequency of the haplotype of interest and the magnitude of its association with the disease affect the power. From a cost-
benefit standpoint, genotyping would be favored with large multiplicative risks (relative risk of haplotype 42.5). If case
numbers are limiting rather than cost, haplotyping would maximize the information obtained. At small haplotype
frequencies (e.g., o0.05), haplotyping is relatively more efficient, but there is little absolute power to detect associations
under either methodology. Given the much larger laboratory resources required for direct haplotyping, genotyping would
probably be favored under most conditions, but this must be balanced against the unit costs associated with recruitment
and phenotyping. In the context of multipurpose, prospective cohort studies (e.g., the UK Biobank study), there may be a
general value in establishing a series of directly haplotyped individuals to serve as controls for a number of alternative
studies. Genet Epidemiol 26:116–124, 2004. & 2004 Wiley-Liss, Inc.
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INTRODUCTION

Genetic association studies of some human dis-
eases indicate that an individual’s susceptibility is
influenced by relatively few genomic regions, or
genes, that confer high individual risk (e.g., APOE
in late-onset Alzheimer’s disease [Corder et al.,
1993; Saunders et al., 1993]. In other diseases,
susceptibility is conjectured to be influenced by a
larger number of regions, each conferring lower
individual risk. New approaches to data acquisi-
tion and handling are required in order to
maximize the efficiency of studies into these
subtler associations.

Haplotype analyses are central to many associa-
tion studies. They facilitate the fine-scale mapping
of susceptibility genes through linkage disequili-
brium analysis of the surrounding markers

[Guo, 1997; Rannala and Slatkin, 1998], and allow
inferences to be made about the associations
between particular haplotypes and the disease.
Central to such studies is the need for phase-
known information. Thus, studies are limited by
the difficulty and cost of obtaining large enough
samples of phase-known data to detect subtle
genetic contributions. Several approaches have
been used to infer phase information: 1) pedigree
analysis; 2) molecular haplotyping, which is
limited to short sequences and uses chromosome
isolation and long-range PCR [Michalatos-Beloin
et al., 1996]; and 3) computer-based algorithms,
e.g., parsimony [Clark, 1990], expectation-max-
imization (EM) [e.g., Excoffier and Slatkin, 1995],
and Bayesian approaches [Stephens et al., 2001].

More recently, Douglas et al. [2001] proposed
the use of conversion techniques [Yan et al., 2000]
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as a means to separate chromosome pairs, allow-
ing haplotypes to be determined directly. An
important question concerning resource allocation
arises when considering the use of conversion or
‘‘direct’’ haplotyping vs. the more indirect meth-
ods outlined above. For the convenience of this
study, the word haplotyping was used to refer to
the direct haplotyping approach, and genotyping
to the indirect estimation of haplotypes from
genotypes using EM. While haplotyping inargu-
ably provides more exact information per indivi-
dual, it is more expensive and labor-intensive,
thereby in practice constraining the sample size.
Douglas et al. [2001] briefly examined the relative
efficiencies of haplotyping over genotyping. They
examined the ratio of expected haplotype fre-
quency variances determined by each method,
under the simplifying, but unrealistic, condition of
linkage equilibrium between markers. They dis-
covered that for larger numbers of markers (when
there are many ambiguous genotype classes),
direct haplotyping is much more efficient. Schaid
[2002] used simulation to extend the analysis of
Douglas et al. [2001] to examine haplotyping vs.
genotyping under conditions of linkage disequili-
brium (LD). He concluded that any advantage of
haplotyping decreases as LD increases, although
in many situations the conclusions of Douglas
et al. [2001] remain valid.

In this study, we use specifically written
simulation software to compare the actual power
of the two methodologies to detect significant
differences between a diseased and a control
population with respect to 1) a particular haplo-

type of interest, and 2) the haplotype frequency
distribution of all haplotypes.

METHODS

SIMULATED DATA SETS

In order to select the most appropriate method
for simulation of haplotype distributions, the
comparative efficiencies of haplotyping vs. geno-
typing were examined using the method of Schaid
[2002]. In this study, the method was extended to
cover more of the parameter space, with all
possible haplotype combinations being generated
systematically (i.e., using all pairwise, tripletwise,
etc., disequilibrium coefficients rather than just
selected pairwise associations). In addition, other
methods of simulation were examined, including
a random approach where haplotype frequencies
were generated from a number of prespecified
(arbitrary) distributions. Finally, published data
from the Chromosome 22 Group at the Sanger
Institute, obtained from the World Wide Web at
http://www.sanger.ac.uk/HGP/Chr22 [Collins
et al., 2003], were used to generate real-data
haplotype distributions. It was found that simu-
lating distributions using a random uniform
distribution obtained relative efficiencies for
haplotyping over genotyping that were represen-
tative of those real-data simulations when haplo-
typing was at its most favored (Fig. 1). The
random uniform distribution was therefore used
in further studies of relative power of haplotyping
over genotyping, since if the relative power is

Fig. 1. Relative efficiency of genotyping compared to direct haplotyping for different haplotype frequencies derived from four marker

loci. Solid line, average efficiency ratio over haplotype frequency distributions simulated using an extended form of method of Schaid

[2002]. Dashed lines, maximum and minimum efficiency values encountered during simulations. Crosses, 100 example points from real

data and random uniform methods for simulating haplotype frequencies.
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found to be low using this distribution, it will also
be low in real-data situations, allowing conclu-
sions to be generalized.

A random uniform distribution was used to
generate nh haplotype frequencies, termed hi for
i¼1 to nh, where

Pnh
i¼1 hi ¼ 1. The frequency of a

disease-associated haplotype (d, with frequency
hd, where d was assigned as 1) was specified in
advance, allowing maximum control of the fre-
quency of a haplotype of interest. The remaining
nh�1 haplotype frequencies were generated di-
rectly by drawing values from a Uniform(0,1)
distribution and scaling them to sum to 1�hd.

Individual genotypes were generated by
drawing two independent haplotypes from the
simulated haplotype frequency distribution. In-
dividuals had a certain baseline risk for a disease,
and the presence of d conferred an additive
increase, R, to that baseline risk (one copy of
d increased risk by R, two copies by 2R). For the
purposes of this study, risk is defined as the
additive increase in the probability of an indivi-
dual having the disease conferred by the presence
of d. Based on the simulated disease state, the
sample could be split into a ‘‘case’’ set containing
diseased individuals and a ‘‘control’’ set.

HAPLOTYPE FREQUENCY ESTIMATION

Under direct haplotyping, phase is known
exactly, and haplotype frequencies are simply
governed by a multinomial distribution [e.g., Hill,
1974]. The likelihood of the observed haplotype
data was calculated as

Lhap ¼ ð2nÞ!
Ynh

i¼1

hhap;i
� �pi

pi!

[e.g., Hill, 1974] where pi is the observed number
of haplotypes of type i, and hhap signifies a
haplotype frequency estimate made using direct
haplotyping. Under genotyping, maximum like-
lihood haplotype frequency estimates (hgen) are
calculated using iterative procedures. In this
study, the expectation-maximization (EM) method
[Hill, 1974; Dempster et al., 1977; Excoffier and
Slatkin, 1995] was used to determine hgen. To
ensure that the global maximum for hgen was
reached, the EM algorithm specifications deter-
mined by Fallin and Schork [2000] were adopted.
Their results showed that restarting the EM
algorithm 15 times with different initial values
for hgen, running each for 150 iterative steps and
with convergence criteria set to 10�5, sufficed for
all simulations. Assuming a random association of

haplotypes, the likelihood of the observed geno-
type data follows a multinomial distribution and
is calculated as:

Lgen ¼ sg!
Yng

j

p
gj
j

gj!

where gj is the observed number of type j
genotypes; pj is the expected frequency of the jth
genotype calculated from hgen (the frequency of
ambiguous genotypes being calculated as the sum
of the expected frequency of each of its alternative
haplotype combinations); ng is the number of
different genotypes in the sample; and sg is the
total number of genotyped individuals.

Examination was also made of the situation
where one part of the sample was genotyped and
the other part haplotyped. This required a trivial
addition to the EM algorithm, allowing the
estimation of haplotype frequencies in the joint
sample. This addition involves adding the haplo-
type counts determined through haplotyping to
the maximization step [equation 8, Excoffier and
Slatkin, 1995], before dividing by twice the number
of individuals in the population [i.e., move the
division by n from equation 7 to equation 8 in
Excoffier and Slatkin, 1995].

POWER STUDIES

Two situations were considered. The first situa-
tion was where there is some prior information
about d (e.g., from a different study population),
thus allowing a ‘‘haplotype-specific’’ score test to
be used [Schaid et al., 2002]. In brief, the score test
uses linear regression to determine the association
between d and the disease of interest, using the
complete (base and disease) sample. Schaid et al.
[2002] determined that for a binary trait the
haplotype-specific score approximately followed
a w2 distribution with 1 degree of freedom. The
second and more realistic ‘‘naı̈ve’’ test was used
when looking for evidence of significantly differ-
ent haplotype frequency distributions between the
two groups, before examining the individual
haplotypes. This test utilized the likelihood ratio
statistic Z¼2ðlnðLCaseÞþlnðLControlÞ�lnðLCaseþControlÞÞ,
where ln(Lx) is the natural log of the likelihood
for group x [for a review of these methods,
see Sham, 1998]. For example, lnðLCaseÞ ¼ lnðLhapÞ
when haplotype frequencies for the diseased
sample are estimated using direct haplotyping.
Under the null hypothesis of equal haplotype
frequencies in the case and control populations,
Z follows an approximate w2 distribution with
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degrees of freedom equal to nh�1, where nh
is the number of haplotypes in the combined
sample.

It is of note that the score tests of Schaid et al.
[2002] may also be used to formulate a naive test,
i.e., a general test for haplotype frequency
differences between cases and controls. However,
this requires that the variance of haplotype scores
be approximated from the inverse of the second
derivative matrix. Variance estimates made in this
manner are inaccurate when there is little haplo-
type information (due to rarity). When larger
numbers of marker loci are simulated (e.g., when
each haplotype is comprised of five or more loci),
the random uniform method for haplotype fre-
quency generation yields large numbers of rare
haplotypes. Under these conditions, the score test
method was not found to work well, and so the
above likelihood ratio test was adopted. The same
problem is encountered to a lesser degree when
using a score test to test a specific rare haplotype.
Other specific tests (e.g., a t-test) to compare hd in
the disease and control groups require similar
variance estimates, and so the problem is un-
avoidable.

Power was determined over a range of hd and
a range of R, with each set of conditions being
replicated 1,000 times. In addition, the case and
control group sizes were varied in size, up to a
maximum of 1,000 individuals in each. Power was
determined in four situations: 1) when both case
and control samples were haplotyped directly
(denoted h|h); 2) when cases were haplotyped
and controls genotyped (denoted h|g); 3) when
cases were genotyped and controls haplotyped
(g|h); and 4) when both were genotyped (g|g).
Power was compared for the different conditions
with respect to m, hd, nh, the relative risk, and the
sample sizes.

For each set of simulation conditions, power
was calculated at a¼0.05. With the naive test, the
differences between all haplotypes in the groups
are examined, and the significance levels repre-
sent differences in the whole set rather than just
between hd. Thus random fluctuations between
case and control frequencies in any of the other
haplotypes will lead to false positives with respect
to detectable differences in hd. In order to
minimize such false positives, the case for a more
stringent significance level could be argued.
However, since this is a comparative study,
examining relative power, the choice of signifi-
cance level is more arbitrary. Lower significance
values might be required in order to detect smaller

effects and associations when sample size is
limited.

RESULTS

The specifications for the EM algorithm deter-
mined by Fallin and Schork [2000] were found to
work well under all the conditions simulated. For
convenience, we will address in turn each aspect
of the study that affects power.

TYPE 1 ERRORS

For comparative purposes, it is useful to know
the expected number of type 1 errors expected
under the null hypothesis, when the increased risk
(R) conferred by the specific haplotype (d) is equal
to zero (i.e., there is no association between
haplotype and disease). When both control and
disease group were large (n¼1,000), type 1 errors
for the specific test lay in the range 0.02 (95%
CI¼0.011–0.029) to 0.09 (95% CI¼0.072–0.108),
regardless of haplotype frequency, marker num-
ber (m), or method used to determine haplotype
frequency (results not shown). The naive test was
more dependent on the number of marker loci and
method of frequency estimation, showing the
largest frequency of type 1 errors (0.13) when
there were six markers and frequencies were
estimated using EM. In other situations, the
frequency of type 1 errors was lower than 0.1.
With lower sample sizes, error rates became more
conservative (o0.05).

HAPLOTYPE-SPECIFIC VS. NAIVE TEST

In general, the power to detect association
between d and associated disease is dependent
on the risk, the frequency of the disease haplo-
type, the number of marker loci, and the sample
size (n) (Figs. 2–5). An exception to this is with
direct haplotype analysis, when an association
between d and the disease is tested (i.e., h|h). In
this case, power is independent of m (see
h|h�hap in Figs. 3, 4) and the simulated
distribution of haplotype frequencies (h|h in
Fig. 2).

In most cases, the power of h|h to detect
associations is greater than g|g, and the power to
detect associations when a particular haplotype is
specified is greater than the naive case. With
higher numbers of marker loci, however, and at
low values for hd (o0.01), the power of testing the
specific case when both samples are genotyped
can fall below the power of the naive test (Figs. 3,
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4). This is due to two fundamental differences in
the tests. Firstly, the specific test is dependent on
the estimated standard error of the haplotype
frequencies, while the naive test is not dependent
on any standard errors. When the frequency of the
haplotype is very low in the population and there
are larger numbers of haplotypes (when m44, for
example), the standard errors become compara-
tively larger compared to hd, thus decreasing the
chance of finding a significant result. Secondly,
the naive test examines the difference in distribu-
tion of the two sets of haplotype estimates, so that
either very large differences in any of the
haplotypes or small differences in a number of
haplotypes can cause a significant result. At lower
simulated values of hd (e.g., o0.01), this results in
a larger number of type 1 errors with respect to
differences in hd (i.e., there may be no significant
difference in hd, but fluctuations in other rare
haplotypes may cause a significant result). At
larger simulated values of hd, there are larger
differences in the frequency of d between
groups, and so the relative number of type 1
errors falls.

NUMBER OF MARKER LOCI

For the two-locus case (Fig. 2), there is little
difference in power to detect an association, with
an approximately 10–20% increase in power when
directly haplotyping for hdo0.1, smaller than
suggested by directly comparing relative efficien-
cies (see above). Clearly, at low haplotype fre-
quency, d is very rare, so information on a
statistical difference between case and control
populations (or even difference from zero) is
lacking. When m44, the relative power to detect
a difference using haplotyping is greatly in-
creased, with relative haplotyping being seen to
be three times as powerful with the specific test,
and twice as powerful for the naive test at some
values of hd less than 0.1 when m¼6 (Fig. 3). At
these larger values for m, however, the absolute
power to detect differences is reduced. In situa-
tions where the associated risk is about 0.075 or
greater, haplotyping and genotyping show similar
power to detect an association for hd40.05
(approximately), and therefore favor the use
of genotyping. These trends continued when

Fig. 2. Power to detect association using direct haplotyping or genotyping when simulated haplotype region consists of two biallelic

marker loci. Different frequencies and different relative risks are shown for haplotype of interest. Solid lines (hap), power to detect
association using a haplotype-specific test. Dashed lines (all), power in naive case. Simulation conditions: number of simulations per

data point, 1,000; case sample size, 1,000; control sample size, 1,000; a¼0.05.
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a smaller number of simulations was run for
larger values for m (e.g., m¼8; results not shown).

SAMPLE SIZE

Sample size influences the ability to detect
associations (Fig. 4). At lower sample sizes (e.g.,
n¼100 for both control and case groups), the
actual power to detect associations is universally
low, unless hd is large (e.g., 410%) or R is larger.
Unsurprisingly, absolute power increases when
either sample size is increased, and particularly so
when the lower of the two sample sizes is
increased. For the naive test, incrementing either
sample size has roughly the same effect on power.
With the specific test, increasing the sample size of
the case group yields a slightly larger increase in
power, especially at lower values of hd.

MIXING HAPLOTYPING AND GENOTYPING

Under either test for association, g|h and h|g
lie between h|h and g|g (Fig. 5). They are roughly
similar in magnitude, since sample size for case
and control groups is identical, but with h|g being
slightly greater overall. This was due to the slight
advantage of accurately determining the fre-

quency of the haplotype of interest in the case
group. In the naive case, h|g and g|h lie closer to
g|g than to h|h. This implies that haplotyping the
case group while genotyping the control group
does not provide a reliable means of increasing
the relative power. If, however, the control group
is much larger than the case group, then the
relative power of h|g increases.

DISCUSSION

We investigated the relative power of direct
haplotyping vs. genotyping to detect associations
between a haplotype and a trait or disease locus
under a range of simulated conditions, when there
is linkage disequilibrium between markers in the
sample. We showed that the relative power of
haplotyping increases with decreasing sample
size, decreasing linkage disequilibrium, and in-
creasing numbers of marker loci. In addition, the
frequency of the haplotype of interest and the
magnitude of its association with the disease
affects the power.

In the simulated studies presented here, direct
haplotyping outperforms genotype analysis with

Fig. 3. Power to detect association using direct haplotyping or genotyping when region of interest contains six biallelic marker loci.

Other simulation conditions as in Figure 2.
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respect to power per individual in the sample.
However, at times when the relative power of
haplotype analysis over genotyping is greatest,
there is little absolute power by either method to
detect subtle associations. Arguably the areas of
most interest to the question of resource allocation
lie in the steepest regions of the curves. These

regions represent situations where the haplotype
methodology outperforms genotyping, while still
providing enough more absolute power to detect
some more subtle associations. Above the steep
regions there is little difference in power, and so
genotyping would be favored. At other times,
when the effect of d is larger (e.g., R40.075),

Fig. 4. Power to detect association using direct haplotyping or genotyping when case and control group sizes are varied. Range of hd
presented is where there is an average of at least two copies of d in both control and case groups. Simulation conditions: number of

simulations per data point, 1,000; number of biallelic markers, 4; risk¼0.05; a¼0.05.

Fig. 5. Power to detect association using a combination of direct haplotyping and/or genotyping. Hap, power to detect when question of

association with specific haplotype is addressed. All, power in naive case. Simulation conditions: number of simulations per panel,
10,000; case sample size, 1,000; control sample size, 1,000; number of biallelic markers, 4; risk¼0.05; a¼0.05.
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genotyping will be almost as powerful as haplo-
typing to detect associations for hd40.05. A
circular problem arises in other situations, since
the exact position of the steep region is unknown
prior to study. Strong assumptions regarding the
distribution of haplotypes, the size of hd, and the
size of R are required to resolve this problem.
Empirical prior distributions for these parameters
could be determined through meta-analysis of
previous studies, provided there is a large selec-
tion of relevant previous studies. Realistically
such an approach might lead to false assumptions,
since there would be an upwards bias in the
magnitude of associated effects detected pre-
viously (since only larger effects are reliably
determined).

An additional problem for simulated studies on
haplotypes is the need for a realistic method to
simulate haplotype frequency. In addition to the
Uniform approach described above, two further
random distributions were investigated: Rectan-
gular and Normal. These different distributions
resulted in different numbers of alternate haplo-
types being generated for each sample. The
Rectangular and Uniform yielded a complete set
of positive nh, but Normal yielded a less than
complete set (i.e., some nh¼0). In general, the
greater the number of haplotypes simulated or the
more regular their spread, the greater the relative
power of haplotyping over genotyping, since
under these conditions the percentage of ambig-
uous genotypes increases. Since the Uniform
distribution always yields a sample containing
at least one representative of each of the possible
haplotypes, it is unlikely to realistically represent
real-life situations. We argue, however, that the
conclusion of low absolute advantage given uni-
form data can be extended to real-data situations.
This is because efficiency values calculated using
the Uniform distribution lay in the same region
where haplotyping in the real-data situations
showed highest relative efficiency. Ideally, prior
information on the probability of observing a
particular set of allele frequencies and their
disequilibrium coefficients is required in order
to weight simulations accordingly. Schork [2002]
presented empirical distributions for disequili-
brium coefficients in the two-locus case. How
these generalize to the multilocus case when there
are higher orders of disequilibrium coefficients is
unknown.

Two obvious questions requiring further re-
search arise. Firstly, what happens when money is
more of a constraint than sample size? Is it then

better to genotype as many individuals as
possible, or haplotype fewer, or do a combination
of both? Given the much larger laboratory
resources required for direct haplotyping, geno-
typing would probably be favored, but this must
be balanced against the substantial unit costs
associated with recruitment and phenotyping.
Moreover, noting the implicit prediction that
paired haplotypes underpin etiology and out-
come, interest in endophenotypes and subclassi-
fication of disease will grow in importance. Under
such circumstances, the number of available cases
would become the chief constraint rather than
cost, and the power gained by conversion could be
critical. Again in the context of multipurpose,
prospective cohort studies, such as the planned
UK Biobank study (www.wellcome.ac.uk/ukbio-
bank), there may be general value and gains from
establishing a core set of haplotyped individuals
to serve as controls for a number of case studies,
or in using different case sets as controls for each
other.

Secondly, what happens under more complex
models of the disease? Different models for the
disease will affect the relative power of the two
tests examined. For example, the association of
more than one haplotype with increased risk of a
disease might improve the ability to detect
associations using the naive test. More impor-
tantly, however, are the effects of the disease
model on the relative efficiency of haplotyping.
For example, the advantages of haplotyping over
genotyping should increase in gene-gene interac-
tion studies, since conversion methodologies
provide a number of cell lines, each containing a
random selection of single and paired human
chromosomes.

The power study presented here is probabilistic
in nature, and ultimately there are no guarantees
that either haplotyping or genotyping will detect
subtle genetic influences, even with large sample
size and large numbers of marker loci. This
caution is especially true in situations where the
number of case individuals is limited simply
because the trait or disease phenotype of interest
is rare.
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