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Summary

We considered a strategy to map quantitative trait loci (QTLs) using linkage disequilibrium (LD) when the QTL
and marker locus were multiallelic. The strategy involved phenotyping a large number of unrelated individuals
and genotyping only selected individuals from the two tails of the trait distribution. Power to detect trait-marker
association was assessed as a function of the number of QTL and marker alleles. Two patterns of LD were used
to study their influence on power. When the frequency of the QTL allele with the largest effect and that of the
marker allele linked in coupling were equal, power was maximum. In this case, increasing the number of QTL
alleles reduced the power. The maximum difference in power between the two LD patterns studied was ∼30%. For
low QTL heritabilities (h2

QTL < 0.1) and single trait studies we recommend selecting around 5% of the upper and
lower tails of the trait distribution.

Introduction

Quantitative traits are those measured on a continuous
scale. They are complex because there is not a simple
relationship between genotype and phenotype, and may
be of interest to human geneticists because they may be
easier to collect than binary disease traits and are corre-
lated with disease status. For example, a patient with is-
chaemic heart disease is generally treated and controlled
by his/her blood pressure or cholesterol level, but rarely
directly for the heart condition.

Linkage disequilibrium (LD) is defined as the non-
random association of population allele frequencies at
two or more loci (Ayres & Balding, 2001), and is used
at the population level to map trait loci. If a marker and
trait locus are in LD, then the marker locus will be asso-
ciated with the phenotype controlled by the trait locus.
However, the ability to detect an association between a
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given allele at a marker locus and a trait depends on the
amount of LD between the two loci. Although theo-
retically one could predict the amount of LD between
two loci as a simple function of the physical distance
between them (Hartl & Clark, 1997), empirical studies
show that this relationship is not simple (Daly et al. 2001;
Jeffreys et al. 2001). This suggests that the distribution
of LD in the region of interest must be carefully studied
before a statistically significant or non-significant asso-
ciation is reported, because the former does not always
imply close linkage (e.g. significant LD can arise be-
tween non-syntenic loci) and the latter does not always
imply a lack of it. Population stratification can generate
significant LD between non-syntenic loci and, hence,
false positives. Using family data, rather than unrelated
cases and controls, overcomes the problem of popula-
tion stratification because case and control samples are
obtained from the same genetic background and con-
trasts are done within families and not across families.
However, family-based designs are not always possible,
especially for late onset traits in which parental data are
often unavailable.

C© University College London 2003 Annals of Human Genetics (2003) 67,557–566 557



A. Tenesa et al.

In the absence of parental data, the use of unrelated
cases and controls is an appealing alternative, provided
that the possibility of population stratification can be
ruled out or the effects of population structure can be
eliminated. Pritchard et al. (2000a,b) showed that pop-
ulation structure can be inferred using a set of unlinked
markers and individuals assigned to different subpop-
ulations. Testing within subpopulations or taking into
account the average level of association observed
throughout the genome, e.g. by using a genomic con-
trol (Devlin & Roeder, 1999), would make it pos-
sible to allow for false positives due to population
stratification.

Selective genotyping is the term used when indi-
viduals only from the upper and lower tail of the
trait phenotypic distribution are genotyped (Lander &
Botstein, 1989; Darvasi & Soller, 1992). This strat-
egy is efficient and powerful under some circumstances
(Allison et al. 1998) because most of the information
resides in individuals with extreme phenotypes (Carey
& Williamson, 1991). It is especially useful when the
cost of genotyping is much greater than the cost of
collecting phenotypes, and when a single phenotype is
studied.

Schork et al. (2000) studied the power to detect
a trait-marker association using individuals sampled
from the upper and lower tails of the quantitative trait
phenotypic distribution. Both marker and QTL were
assumed to be biallelic. The aim of the present study
is to investigate and predict the power of LD mapping
when the QTL and marker loci are multiallelic. In par-
ticular, we studied:

1. The effect on power when the QTL is assumed to
be multiallelic as opposed to biallelic.

2. Two different and simple patterns of LD, to investi-
gate their influence on power.

3. The economically optimal proportion of the quan-
titative trait (QT) distribution selected for a given
power, depending on the relative cost of genotyping
and phenotyping.

Methods

Individuals sampled from the tails of the trait distribu-
tion are classified as upper or lower tail depending on

whether their trait value is respectively greater or less
than a given threshold. The study design for a practical
case would be: (1) to phenotype a number of individuals
for a quantitative trait; (2) to select individuals with ex-
treme phenotypes (e.g. the 10% upper and lower values
for the quantitative trait) to be genotyped; (3) to com-
pare the counts of the different alleles at a locus in the
upper and lower tails.

Genetic Model

Consider a locus with an arbitrary number of alleles that
contributes to the genetic component of a quantitative
trait. Alleles at the locus are labelled as Qi. With n al-
leles at a locus there are n(n + 1)/2 possible genotypes
and the same number of genotypic values. The popu-
lation frequency of allele Qi is labelled q i. The geno-
typic value (Gij) for genotype QiQj is parameterised
as:

Gij = Gji = Gii + kij × (Gjj − Gii ); i < j ;

i ε[1, n − 1]; j ε[2, n]; kijε[0, 1] (1)

where kij provides a measure of dominance between
alleles Qj and Qi. If kij = 0, Qi is dominant to Qj; if
kij = 0.5, Qi and Qj act additively; and if kij = 1, Qi is
recessive to Qj. The difference between the genotypic
value of the QjQj and Q1Q1 genotypes is represented as
2a j (where G11 = 0 = 2a 1; j ε[2, n]) and is expressed
in residual standard deviations.

Mixture Model

Assuming there are n(n + 1)/2 genotypes with normally
distributed phenotypes, the observed joint phenotypic
distribution is a weighted average of the underlying nor-
mal distributions. The probability density function for
a mixture of normals is:

ρ(x) =
n∑

i=1

n∑
j=1; j≥ i

f ijϕ
(
x | µij, σ

2
ij

)
(2)

where f ij is the frequency of genotype QiQj, µij is the
mean value for genotype QiQj, σ 2

i j is the variance in trait
values for individuals with genotype QiQj (within geno-
type variance) and ϕ(x | µ, σ 2) is the normal probability
density function with mean µ and variance σ 2. The lo-
cus is assumed to be in Hardy-Weinberg equilibrium

558 Annals of Human Genetics (2003) 67,557–566 C© University College London 2003



QTL LD Mapping Using Selected Samples

with frequencies q2
i for homozygous QiQi genotypes

and 2qiqj for heterozygous QiQj genotypes. Without
loss of generality, the within-genotype variance (σ 2

E ) is
assumed to be 1.

When the QTL effect is small, then the observed
joint distribution can be approximated by a single
normal distribution with mean and variance equal
to:

µPop =
n∑

i=1

n∑
j=1; j≥ i

µij f ij; σ 2
Pop = σ 2

G + σ 2
E

where σ 2
G is the genetic variance due to the QTL

and σ 2
E = 1 as above. Although all results shown in

this work were performed assuming a mixture distri-
bution, the approximation to a normal gave practi-
cally the same results for the range of QTL effects
considered.

Selecting Individuals from the Upper
and Lower Tails

It is assumed that we are interested in the QTL al-
lele that is associated with the highest genotypic value
and that 2a 1 < 2a 2 < 2a 3 < · · · < 2a n . This seems
reasonable when carrying out selective genotyping, be-
cause selection of individuals in opposite tails will pro-
duce an enrichment of the QTL allele frequencies that
cause lower or higher trait values relative to a random
sample of individuals. The selected fractions in the up-
per and lower tails are αU and αL respectively, with
corresponding truncation points τU and τ L. The latter
were obtained by solving the following non-linear equa-
tions using Newton’s method as described in Ducrocq
& Quaas (1988):

αU =
n∑

i=1

n∑
j=1; j≥ i

f ij[1 − 
{(τU − µij)/σij}] (3)

αL =
n∑

i=1

n∑
j=1; j≥ i

f ij[
{(τL − µij)/σij}] (4)

where φ(τ ) is the cumulative standard normal distribu-
tion.

Using Bayes’ theorem, the conditional probability of
sampling a Qi allele given that individuals have been
sampled from the upper αU percentile of the trait dis-

tribution can be written as:

P (Qi | x > τU ) =
P (x > τU | Qi )P (Qi )

P (x > τU )

=

n∑
j=1

P (x > τU | Qi Qj )P (Qi Qj | Qi )P (Qi )

P (x > τU )

=

qi

n∑
j=1

q j

(
1 − 


(
τU − µij

σij

))

αU (5)

Equivalent probabilities can be computed for samples
from the lower tail. Note that in equations (5) and (6)
we are no longer assuming that i ≤ j, as in equation (2).

P (Qi | x ≤ τL) =

qi

n∑
j=1

q j

(



(
τL − µij

σij

))

αL
(6)

LD Between Trait and Marker Loci

In most cases genotypic information is obtained on
marker loci rather than on the trait locus itself. For
instance, one could genotype individuals for a num-
ber of marker loci scattered across the whole genome
and test for an association between marker status at
each locus and phenotype. A statistically significant as-
sociation between marker status and phenotype would
suggest that there is statistically significant LD between
marker and trait loci at the population level. This does
not always imply linkage between the loci (e.g. sig-
nificant LD can be found between non-syntenic loci
due to stratification, drift, etc.), but it will be as-
sumed in what follows that close linkage is the cause of
the LD.

Consider a marker locus with an arbitrary number of
alleles, linked to the trait locus and in LD with it. We
assume that under the null hypothesis the marker lo-
cus is in Hardy-Weinberg equilibrium. We require this
because we are assuming that each of the two marker
alleles that constitute the genotype is sampled inde-
pendently. Under this design, one would sample alle-
les in pairs, i.e. the pair of alleles that form a geno-
type. Hence, the sampling of the two alleles could only
be considered independent if the assortment of alleles
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at the marker locus was random, i.e. the marker locus
was in Hardy-Weinberg equilibrium. The marker alle-
les are represented as Mh, with population frequency
mh. The disequilibrium parameter (δhi) between marker
allele h and QTL allele i is defined as δhi = f hi − mhqi,
where f hi is the population frequency of the haplotype
MhQi. Note also that the following conditions must be
fulfilled:

m∑
h=1

mh = 1 (7)

n∑
i=1

qi = 1 (8)

m∑
h=1

δh1 =
m∑

h=1

δh2 =
m∑

h=1

δh3 = · · · =
m∑

h=1

δhn = 0 (9)

n∑
i=1

δ1i =
n∑

i=1

δ2i =
n∑

i=1

δ3i = · · · =
n∑

i=1

δmi = 0 (10)

The probability that a haplotype from an individual
sampled from the upper tail (αU ) has an allele Mh is
given by:

P (Mh | x > τU ) =
n∑

i=1

P (Mh | Qi )P (Qi | x > τU )

=
n∑

i=1

(mh + δhi /qi )P (Qi | x > τU )

since

P (Mh | Qi ) = P (Mh Qi )/P (Qi )

= (mhqi + δhi )/qi = mh + δhi /qi

using P (Qi | x > τU ) from (5). This reduces to:

P (Mh | x > τU ) = mh +
n∑

i=1

(δhi /qi )P (Qi | x > τU )

(11)

and similarly

P (Mh | x ≤ τL) = mh +
n∑

i=1

(δhi /qi )P (Qi | x < τL)

(12)

Linkage Disequilibrium Distribution Patterns

Disequilibrium between the QTL allele with the great-
est effect (Qn) and the marker allele (Mm) is assumed to

be positive (δmn > 0). For convenience, we assume that
this marker is the one with the highest suffix (value of m).
The disequilibrium parameter is expressed as a fraction
of the maximum disequilibrium possible between the
two alleles (D ′

mn = δmn/δ
max
mn ) (Lewontin, 1964) where

δmax
mn is:

δmax
mn =[

min{mmqn, (1 − mm )(1 − qn )}; δmn < 0

min{mm (1 − qn ), (1 − mm )qn}; δmn > 0

]

(13)

In order to explore how the LD distribution affects
the power to detect an association between a marker al-
lele and trait status, two different ways of fulfilling con-
ditions (9) and (10) were studied as examples. The dis-
equilibrium parameter was first computed as described
above for element (m, n) and represented as δmn. For
the first pattern studied, elements in column n were set
equal to −δmn/(m− 1) and elements in row m were all
set equal to −δmn/ (n− 1). All other elements were set
equal to δmn/(m − 1)(n − 1). This is the model assumed
unless otherwise stated. For the second LD pattern, the
first element δmn was computed as above and an element
δhi was selected to be equal to δmn. Then all elements
except δmi and δhn were assumed in equilibrium (i.e.
δhi = −δmi = −δhn = δmn).

Calculation of Power

Under the null hypothesis (H0) of no association be-
tween a marker locus and a trait, the distributions of the
marker alleles in the upper and lower tails are identi-
cal. We test this using a contingency table with m rows
and 2 columns, where the entries in the hth row corre-
spond to the number of Mh alleles (h = 1, . . . , m), and
those in the 1st and 2nd columns correspond to the num-
bers of alleles in the lower and upper tails respectively.
The conventional statistic X2, based on this table, is
asymptotically distributed under H0 as chi-squared with
m − 1 degrees of freedom. Under the gen-
eral alternative hypothesis (H1), X2 is asymptotically
distributed as non-central chi-squared with m − 1 de-
grees of freedom and non-centrality parameter, λ, given
by
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λ= NL

m∑
h=1

(pLh1 − pLh0)
2

pLh0
+ NU

m∑
h=1

(pUh1 − pUh0)
2

pUh0

(14)

where NL, NU denote the numbers of alleles sampled
from the lower and upper tails respectively,

pLh0 = Pr (Mh | x ≤ τL, H0) (15a)

pUh0 = Pr (Mh | x > τU , H0) (15b)

pLh1 = Pr (Mh | x ≤ τL, H1) (15c)

pUh1 = Pr (Mh | x > τU , H1) (15d)

and the expressions on the right of equations (15a-d)
are obtained by substituting appropriate values of δhi in
equations (11) and (12) (Kendall & Stuart, 1961). Power
is then defined as the probability that a non-central χ 2

with m − 1 degrees of freedom and non-centrality
parameter λ is greater than the critical value defined
by a central χ 2 with m − 1 degrees of freedom and
significance level α.

Optimal Proportion Genotyped

The total cost depends on the numbers of individuals
phenotyped (Sf ) and genotyped (Sg = (NU + NL)/2),
as well as the costs of phenotyping (Kf ) and genotyping
(Kg) per individual (Darvasi & Soller, 1992). Therefore,
for a given power, the ratio Sg/Sf (=p , say) that min-
imises the cost can be determined. The total proportion
selected to genotype (p) is equal to αU + αL. We assume
in what follows that αU = αL (i.e. that p = 2αU =
2αL). Although it may not always be optimal to set
αU = αL, it is justified by the absence of prior knowl-
edge concerning the model parameters. If F(p) denotes
the total cost, then

F (p ) = Kg Sg + K f S f = K f Sg

(
K +

1
p

)
(16)

where

K =
Kg

K f
(17)

Note that in (16) Sg is also a function of p. The value
of p that minimizes the cost function for a wide range

of values of K was obtained numerically for values of p
between 0.0001 and 1.

Results

Effect of the Number of Individuals
Genotyped when the Number of Individuals
Phenotyped is Fixed

Figure 1 shows how power increases as a larger pro-
portion of the 2000 individuals phenotyped is geno-
typed until a maximum is reached (vertical dashed line in
Figure 1) at 55% for markers with m = 2, 4, 6 and 10
alleles. The frequency of the mth allele at the marker was
kept constant in all situations considered; all other alle-
les were at equal frequencies, mh = (1 − mm)/(m − 1).
This assumption leads to the same amount of disequi-
librium between Mm and Q2, regardless of the number
of marker alleles (Terwilliger, 1995).

Genotyping more than 55% of the individuals phe-
notyped leads to a decrease in power when using this
type of test and we therefore restrict our investigations
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Figure 1 Effect of the proportion of
individuals genotyped when the number of
individuals phenotyped is fixed to 2000.
Assumptions: additive model (k12 = 0.5),
biallelic QTL, equal proportions of individuals
selected for genotyping from the upper and
lower tail, significance level (α) 0.05,
q2 = mm = 0.1 and mh = (1 − mm)/(m − 1),
where m is the number of marker alleles and h
ε[1, m − 1], a2 = 0.5, h2

QTL = 0.043. The
vertical dashed line represents the proportion
selected that gives the highest power.
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to moderate to high intensities of selection. This reduc-
tion in power is due to the increased amount of noise
added by individuals in the middle of the quantitative
trait distribution.

Effect of the Number of Marker Alleles and
Proportion Selected on Power when the
Number of Individuals Genotyped is Fixed

Figure 2 shows, for a biallelic QTL, how the number of
marker alleles influenced power as a function of the pro-
portion of individuals selected to be genotyped and the
amount of disequilibrium. Note that in this case (unlike
the previous section) the total number of phenotypes
measured increases as the proportion of the QT distri-
bution decreases. With the total number of individuals
genotyped fixed at Sg = 500, power decreased with in-
creasing number of alleles at the marker locus, as a result
of the increase in the number of degrees of freedom for
the X2 test (d.f. = m − 1). Power also decreased as
the proportion of the QT distribution genotyped in-
creased. Power was similar (close to 100%) in all cases
when the proportion selected was low and the amount
of disequilibrium was high.
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Figure 2 Effect of the proportion of individuals selected,
amount of disequilibrium (D ′ ) and the number of marker alleles
(m) on power. Assumptions: additive model (k12 = 0.5), biallelic
QTL, equal proportions of individuals selected for genotyping
from the upper and lower tail, total sample size Sg = 500
individuals, significance level (α) 0.05, q2 = mm = 0.1 and
mh = (1 − mm)/(m − 1), where m is the number of marker
alleles and h ε[1, m − 1], a 2 = 0.5, h2

QTL = 0.043.
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Figure 3 Effect of the number of QTL alleles on
power. ai is defined as (i − 1)an/(n − 1), q i is defined as
(1 − qn)/(n − 1) where n is the number of QTL alleles,
i ε[1,n − 1], an = 0.5 and q n = 0.2. Marker allele
frequencies were set to mm = 0.2 and
mh = (1 − mm)/(m − 1) where m (=2, 10 or 20) is the
number of marker alleles and h ε[1, m − 1]. A total of
500 individuals (Sg) were selected for genotyping from
the upper and lower 10% QT distribution (NU = NL).
The genetic model was assumed additive (kij = 0.5),
D ′

mn = 0.5, with the significance level (α) = 0.05.

Effect of the Number of QTL Alleles
on Power

Figure 3 shows how the number of QTL alleles influ-
enced power for a fixed number of individuals geno-
typed. The number of QTL alleles assumed varied from
2 to 10, and the difference in genotypic values between
the two extreme homozygotes (that is, between Q1 Q1

and QnQn) remained constant. For the other alleles,
the increase in genotypic value of QiQi with respect
to Qi−1 Qi−1 was equal to 2∗an/(n − 1) for i ε[2, n].
Note that there are infinite combinations of genotypic
values that would lead to the same QTL heritability
for fixed allele frequencies when the QTL is multial-
lelic. Results expressed in this way (as the difference be-
tween the two more extreme homozygous genotypes)
have greater generality than a sample of all the possi-
ble genotypic combinations with the same QTL her-
itability. The marker locus was assumed to have 2, 10
or 20 alleles. In all cases considered, when the number
of alleles at the QTL increased the power decreased.
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This reduction in power was larger with a higher
number of marker alleles. Note that for the 20-allele
marker, almost half of the reduction in power oc-
curred when the number of QTL alleles increased from
2 to 3.

The QTL heritability under the conditions assumed
in Figure 3 varied with the number of alleles at the QTL.
It showed a slight decrease with the increase in the num-
ber of alleles (h2 = 0.074 for a biallelic QTL and h2 =
0.054 for a 10-allele QTL). In order to check whether
the difference in power was due to the increasing num-
ber of alleles or to the reduction in the locus heritability,
the case of a QTL locus with two versus 3-10 alleles
(keeping the same heritability as for the biallelic locus)
was studied. Figure 4 shows how power varied with her-
itability. The continuous line shows how power varied
with heritability when the QTL was assumed biallelic.
For a given heritability, the individual dots represent the
power obtained for a QTL with different number of al-
leles. In all cases the marker was assumed biallelic, with
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Figure 4 Effect of the number of QTL alleles on
power. Comparison between a QTL with 2 alleles and
a QTL with n alleles when the locus has the same
heritability. ai is defined as (i − 1)an/(n − 1), q i is
defined as (1 − qn)/(n − 1) where n is the number of
alleles of the QTL, i ε[1, n − 1], a n = 0.5 and q n =
0.2. Marker was assumed biallelic and allele frequency
was set to m2 = 0.2. A total of 500 individuals (Sg) was
selected for genotyping from the upper and lower 10%
QT distribution (NU = NL). The genetic model was
assumed additive (kij = 0.5), D ′

2n = 0.5, with the
significance level (α) = 0.05.
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Figure 5 Difference in power between patterns of LD
1 and 2 as a function of the amount of LD. The
difference in power is expressed as a proportion of the
power obtained for pattern 2 (δ11 = −δ41 = −δ12 =
δ42).). A total of 2000 individuals were selected for
genotyping (Sg) from the upper and lower 10% QT
distribution (NU = NL). A biallelic QTL was assumed
with locus h2

QTL = 0.02. The genetic model was
additive (k12 = 0.5), significance level (α) = 0.05.
Marker locus assumed to have four equally frequent
alleles.

m 2 = q n = 0.2. The reduction in power with heritabil-
ity was much larger when accompanied by an increase
in the number of alleles at the QTL, showing that it was
mainly due to the increase in the number of QTL alleles
rather than to the reduction in heritability.

Difference in Power Between Patterns of LD

Figure 5 shows the difference in power between LD
patterns 1 and 2 for a biallelic QTL and a marker with
4 alleles, as a proportion of the power obtained with
pattern 2 (the more powerful of the two). In this case
both LD patterns had an equal total amount of disequi-
librium as measured by Hedrick’s D ′ (Hedrick, 1987).
The maximum difference between patterns was about
30%, regardless of the QTL frequency. Differences in
power increased with D ′

42 if q2 was high or low, but
if q2 was intermediate differences in power were max-
imum when D ′

42 had values that were intermediate for
the range of possible values given the allele frequencies
(q2 and m4).
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Figure 6 Optimum selection proportion for a power of
80% as a function of the relative costs of genotyping and
phenotyping. Different genetic models [recessive (k12 =
0), additive (k12 = 0.5) and dominant (k12 = 1)] and
amount of disequilibrium (D ′

22) were assumed. The same
proportions and the same number of individuals were
selected for genotyping from the upper and lower tails
(p/2 = αL = αU ). The QTL and the marker were
assumed biallelic (q 2 = m 2 = 0.2), locus h2

QTL = 0.02,
significance level (α) = 0.05. The horizontal axis is on the
logarithmic scale.

Optimum Selected Proportion

Figure 6 shows how the relative cost of genotyping
and phenotyping influenced the proportion of individ-
uals selected to be genotyped in order to achieve cost-
effectiveness. Two levels of LD and three genetic models
were studied for a biallelic QTL and a biallelic marker.
The power was fixed at 80% and the QTL heritability
was kept constant for all the models. Figure 6 illustrates,
how for the cases studied, it would not be worthwhile to
genotype more than the upper and lower 27.5% of the
individuals phenotyped if the genetic model were ad-
ditive or dominant, and 12.5% of the individuals when
the genetic model were recessive, even when the cost of
genotyping these individuals was 100-100000 times less
than that of phenotyping (K < 0.01). This is because
most of the information comes from individuals with
extreme phenotypes, so that genotyping less informative
individuals produces no increase in power. For example,
80% power for the parameters shown in Figure 6 and
D ′

22 equal to 0.75 could be obtained by genotyping and
phenotyping 1100 individuals (p = 1) or phenotyping

872 individuals and genotyping the upper and lower 218
individuals (p = 0.5).

The optimal proportion selected was always largest
for the dominant model and smallest for the recessive
model when the favourable allele (Q2) was the less fre-
quent one. This suggests that, for the recessive model
and when the frequency of the Q2 allele is small, the
most extreme individuals of the trait distribution must
be genotyped in order to increase the frequency of Q2

alleles in the upper tail. By doing so, the relative frequen-
cies of the individuals Q1Q1 and Q1Q2 with a positive
deviation from their genotypic mean are reduced and
the relative frequency of Q2Q2 with positive deviations
are increased in the upper tail. The level of LD affects
the optimal proportion selected. Increasing amounts of
LD produced an increase in the optimal proportion se-
lected for all the models of inheritance, and this increase
was much more apparent in the recessive model than in
the others.

When the less frequent allele was dominant or ad-
ditive then the optimal proportions selected were rel-
atively insensitive to variations in heritability. For ex-
ample, for an additive model and D ′

22 = 0.5 with h2
QTL

values ranging from 0.01 to 0.1, the optimal proportion
of individuals to be genotyped varied from p = 0.538 to
p = 0.566 for K < 0.01 (results not shown). When the
less frequent allele was recessive, then the optimal pro-
portion selected decreased with increasing heritability
(results not shown).

Discussion

Quantitative genetics theory is commonly applied under
the simplified assumption that loci are biallelic. In this
study, power to detect an association between a marker
and a trait has been explored and quantified for mul-
tiallelic QTL and markers. Although others have pre-
viously noted that there may be loss of insight when
the assumption that loci are biallelic is made (Nielsen &
Weir, 1999), to our knowledge this has not been quan-
tified. We restrict our conclusions to moderate-high in-
tensities of selection because, when selecting individuals
from the upper and lower tail of the trait distribution, we
are effectively dichotomizing the quantitative trait and
therefore ignoring the information within each tail. This
loss of information decreases as the selection intensity
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increases. We have quantified the loss of information in
a separate study.

Results shown here are based on the assumption that
asymptotic conditions hold, i.e. that sample sizes are
sufficiently large. Spurious results can arise if the sam-
ple size and/or some of the marker allele frequencies
are small. However, we have found that relatively large
sample sizes are necessary to obtain reasonable power,
and these are expected to be large enough for asymp-
totic assumptions to hold. Significance thresholds used
in this study are insufficient for a whole genome scan,
which would require greater stringency. However, this is
merely a scaling factor that does not change our general
conclusions.

We have shown that, for a given QTL heritability,
there is a large difference in power depending on the
number of QTL alleles, with the power decreasing with
increasing numbers of alleles. This is important because
it is usually assumed that the QTL is biallelic, whereas
a number of empirical studies have shown that dis-
ease loci may have multiple alleles (Hugot et al. 2001;
Ogura et al. 2001; Wright & Hastie, 2001). Therefore,
calculations performed assuming a biallelic QTL can se-
riously overestimate the power.

Two patterns of LD were investigated. Although these
were just examples and did not correspond to any partic-
ular population genetics model, they illustrate the differ-
ences in power that can be seen as a result of the pattern
of LD rather than of the amount of disequilibrium as
measured by D ′ (which was identical for the two pat-
terns studied in Figure 5). LD patterns would probably
differ from one population to another (and from one
pair of markers to another) and depend on the popula-
tion history. The present approach would not be more
or less general than one assuming a given population
genetics model.

Bader et al. (2001) obtained the optimal proportions
selected for DNA pooling when the objective was to
minimise the number of individuals to be phenotyped.
Their results were similar to ours for the lowest cost
ratios (cost genotyping/cost phenotyping). If the cost
ratio approximates zero, then what is basically minimised
is the amount of phenotyping required.

We have shown that the optimal proportion of in-
dividuals selected to be genotyped decreases to very
small values under some circumstances. This is more

striking for the most realistic relative costs of genotyp-
ing and phenotyping (that is, K > 1). As discussed by
Lander & Botstein (1989) it is probably unwise to select
less than the 5% tails of the trait distribution, because
very extreme phenotypes can be the result of inaccurate
observation (outliers). For the recessive model, the opti-
mum proportion to select (p) was always lower than this
suggested threshold (i.e. p = 0.1 in Figure 6) for a locus
with h2

QTL = 0.02 when genotyping was 10 times more
expensive than phenotyping. For the additive and dom-
inant models the genotyping costs could be up to 10 to
50 times greater than the phenotyping costs for the opti-
mum proportion to be greater than the suggested thresh-
old (p = 0.1). Therefore the most cost-effective propor-
tion of individuals genotyped and phenotyped obtained
from our study for small QTL heritabilities and realistic
cost ratios should be used with caution if the amount of
phenotyping carried out is not large. For practical pur-
poses, we recommend selecting about the 5% of both
tails of the quantitative trait distribution, which corre-
spond to reasonable genotyping/phenotyping cost ratios
for most quantitative traits.
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