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Linkage disequilibrium (LD) between densely spaced, polymorphic genetic markers in humans and other species
contains information about historical population size. Inferring past population size is of interest both from an
evolutionary perspective (e.g., testing the “out of Africa” hypothesis of human evolution) and to improve
models for mapping of disease and quantitative trait genes. We propose a novel multilocus measure of LD, the
chromosome segment homozygosity (CSH). CSH is defined for a specific chromosome segment, up to the full
length of the chromosome. In computer simulations CSH was generally less variable than the r?> measure of LD,
and variability of CSH decreased as the number of markers in the chromosome segment was increased. The
essence and utility of our novel measure is that CSH over long distances reflects recent effective population size
(N), whereas CSH over small distances reflects the effective size in the more distant past. We illustrate the utility
of CSH by calculating CSH from human and dairy cattle SNP and microsatellite marker data, and predicting N
at various times in the past for each species. Results indicated an exponentially increasing N in humans and a
declining N in dairy cattle. CSH is a valuable statistic for inferring population histories from haplotype data, and

has implications for mapping of disease loci.

The large number of densely spaced, polymorphic genetic
markers generated by modern genomics is a powerful tool for
answering genetic questions. For instance, they are being used
to fine-scale-map trait genes (Pritchard and Przeworski et al.
2001) and to infer the history of the human population
(Reich et al. 2001). Inferring past population size is of interest
both from an evolutionary perspective (e.g., testing the “out
of Africa” hypothesis of human evolution) and to improve
models for the mapping of disease and quantitative trait
genes.

Under a neutral model with constant effective popula-
tion size (N), the homozygosity of a marker, the probability of
sampling two identical alleles from the population, can be
used to estimate N, provided the mutation rate is known (e.g.,
Kuhner et al. 1998; Slatkin and Bertorelle 2001). If N has
changed in the past, the homozygosity will estimate a form of
average N. The higher the mutation rate, the less events from
the distant past remain relevant and thus the average N esti-
mated will reflect N in the more recent past. Similarly, linkage
disequilibrium (LD) can be used to estimate N if the recom-
bination rate is known. As will be shown in this paper, LD
over large recombination distances estimates N in the more
recent past than LD over short recombination distances. Use
of LD rather than individual marker homozygosity has the
advantage that the recombination rate is more controllable
than the mutation rate (by selecting the length of chromo-
some segments), and more recent N can be estimated because
recombination rates can be much higher than mutation rates.
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Therefore, although estimates of average past population size
from n unlinked loci can be more accurate than from n linked
loci (Kuhner et al. 1998), using LD between 7 linked loci can
provide additional information on historical changes in
population size.

Most measures of LD, such as r? and related measures
(Devlin and Risch 1995; Weir 1996), quantity the association
between a pair of loci. Higher-order association coefficients
analogous to 1 can be defined for groups of 3, 4, or more loci,
but they have not been found to be a practical value (Hill
1981). Such higher-order LD measures also ignore the essen-
tially linear nature of chromosomes and of recombination. An
ideal multilocus measure of LD would take account of this
linearity and capture as much as possible of the information
content of the data (no single statistic could contain all the
information). In addition, it would be desirable if the measure
of LD used had a simple expectation, at least under standard
models such as the neutral model.

Definition of Chromosome Segment

Homozygosity (CSH)

We propose a novel multilocus measure of LD, the chromo-
some segment homozygosity (CSH). CSH is the probability
that two chromosome segments of the same size and location
drawn at random from the population are from a common
ancestor, without intervening recombination. CSH is defined
for a specific chromosome segment, up to the full length of
the chromosome. The CSH cannot be directly observed from
marker data but has to be inferred from marker haplotypes for
segments of the chromosome. Consider a segment of chro-
mosome with marker locus A at the left-hand end of the seg-
ment and marker locus B at the other end of the segment. The
alleles at A and B define a haplotype. Two such segments are
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chosen at random from the population. The probability that
the two haplotypes are identical by state (IBS) is the haplotype
homozygosity (HH). The two haplotypes can be IBS in two
ways:

(1) The two segments are descended from a common ances-
tor without intervening recombination, so are identical
by descent (IBD); or

(2) The two haplotypes are identical by state but not IBD.

The probability of (1) is CSH. Now let x = the probability that
A is homozygous when the chromosome segment is not IBD,
and let y = the probability that B is homozygous when the
chromosome segment is not IBD. Assuming the two loci be-
have independently in this case, the probability of (2) is

(1 - CSH)xy
Then the probability of observing homozygosity at A is
Hom, =CSH 1 - CSH)x
Solving for x,
_ Hom, - CSH
1-CSH
And similarly,
Homg — CSH
Y="1-csH

Substituting the last two equations into the first, and sum-
ming over (1) and (2) to get the probability of haplotype ho-
mozygosity, we get

(Hom, — CSH§ Homg — CSH)

HH = CSH + T osH

This equation can be solved for CSH when the haplotype
homozygosities and individual marker homozygosities are
observed from the data. For more than two markers, the pre-
dicted haplotype homozygosity can be calculated in an analo-
gous but more complex manner (see Methods).

In this paper we show that CSH is generally a less variable
statistic than r* when effective population size is constant. We
then derive the expectation of CSH under a neutral model
with changing N. Simulated data are used to validate the ac-
curacy of the expectation. Finally, we use CSH to estimate the
N at various times in the past in a human population (where
we expect N has been increasing) and in a cattle population
(where we expect N has been decreasing).

RESULTS AND DISCUSSION

In a population of constant effective size N, the approximate
expectation of CSH is 1/(4Nc + 1), which is the same as the
approximate expectation for 1%, where c is the length of the
chromosome segment in morgans (Sved 1971). To test the
agreement between expectation and observed results, a chro-
mosome segment of 10 cM containing 11 markers was simu-
lated with a mutation-drift model, with a constant N of 1000.
The average heterozygosity of markers was 0.65, and the num-
ber of alleles segregating was ~5-10 per marker. The simula-
tion gave a total of 55 haplotype configurations: 10 different
haplotype regions of 1 cM with two markers, 9 different hap-
lotype regions of 2 ctM with three markers, and up to a single
haplotype region of length 10 cM with 10 markers. A total of
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200 replicate populations were simulated. The results (Fig. 1)
indicate CSH and r?> have a similar mean, but different
variance. The means of both statistics were close to
1/(4Nc + 1), except for the 1-cM haplotype, in which r* was
less than the expectation. In our simulations, marker allele
frequencies were the result of drift and mutation, and follow
a U-shaped distribution (e.g., Kimura and Crow 1964), often
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Figure 1 (A) CSH and r? from the simulated data set. Results are
averaged over all haplotype regions of a given length, and over 200
replicates. (B) Coefficient of variation of > and CSH over all haplotype
regions of the same length, across 200 replicates. (C) CSH from the
data simulated with either an infinite alleles model or a stepwise mu-
tation model. Results are averaged over all haplotype regions of a
given length, and over 200 replicates.
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<0.05 or >0.95. Hudson (1985) showed in simulations that r*
was lower than expected when allele frequencies were <0.05
or >0.95. This may explain the lower-than-expected r* value
we observed for the 1-cM chromosome segments. The CSH
does not appear to be sensitive to allele frequency.

The CSH had a lower coefficient of variation (CV) than
r?, provided there were more than three markers in the hap-
lotype (Fig. 1B), indicating that it is a less variable statistic to
estimate LD than pairwise measures.

Additional simulation indicated the decreasing variation
of CSH was a result of an increasing number of markers in the
chromosome segment rather than increasing haplotype
length (data not shown). This is a major advantage of using
CSH to measure LD rather than two locus measures such as r*
(for such measures variability of LD for a given chromosome
segment cannot be reduced using additional markers).

With the infinite alleles model, all identical by state al-
leles are also IBD. Although this is not one of our assumptions
in the derivation of CSH, we investigated estimates of CSH
under an alternate mutation model. With microsatellite
markers, multiple mutations can occur in the same marker,
and two or more mutations can recover the initial allelic state.
A stepwise mutation model assumes an equal probability of
increasing the size of the allele by 1 and decreasing the size of
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the allele by 1, and is suitable for modeling microsatellite
markers (e.g., Shriver et al. 1993). We simulated a population
similar to that used to produce the results in Figure 1A, but
with a stepwise mutation model. The estimated CSH from
these data was almost identical to estimates of CSH using data
from the infinite alleles model (Fig. 1C).

In Figure 2 CSH was recorded directly from simulated
data, rather than estimated from marker haplotypes as in Fig-
ure 1. Again, where population size was constant over all gen-
erations (CONS), CSH was very close to the values predicted
by 1/(4Nc + 1).

A second set of data was simulated to illustrate the effect
of past N on CSH at different lengths of chromosome. In these
data, marker alleles were not simulated because the identity of
chromosome segments was tracked directly. We simulated
four populations, a population of constant N (CONST), a
population with linearly increasing N (LINI), a population
with linearly decreasing N (LIND), and a population with ex-
ponentially increasing N (EXPI). When the population size
was either linearly (LINI) or exponentially (EXPI) increasing,
or linearly decreasing (LIND), CSH at small recombination
rates agreed with the expected CSH based on population size
many generations ago, whereas CSH at large recombination
rates agreed with expected CSH based on more recent popu-
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Figure 2 Chromosomal homozygosity for different lengths of chromosome (given the recombination rate) for populations: (A) CONS (constant
population size), (B) LINI (linearly increasing population size), (C) LIND (linearly decreasing population size), and (D) EXPI (exponentially increasing
population size). The expected value of chromosomal homozygosity, 1/(4Nc+ 1), is given on each graph for the maximum and minimum
population sizes of each population. Standard error bars indicate variation among the 50 replicates.
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lation size (Fig. 2). These results concur with those of Hill
(1981), who found that estimates of N from LD for very
tightly linked genes were more dependent on long-term than
on recent population history.

When population size is changing linearly, the expecta-
tion of CSH is ~1/(4Nc + 1), where N, was the population size
1/(2¢) generations ago. Effective population size 1/(2¢) gen-
erations into the past was predicted from CSH (Fig. 3). Our
method for predicting N assumes constant linear population
growth from generation 1. Although this population growth
model does not hold for any of the populations we have simu-
lated, the estimates of N were in approximate agreement with
the actual N for LINI and LIND. For EXPI, the later estimates
of N agree reasonably well with actual N; however, N for 500,
200, and 100 generations ago was somewhat overestimated.
The widths of the 95% confidence intervals, averaged over
time, on the estimates of N for each population were 183, 260,
141, and 219 for CONST, LINI, LIND, and EXPI, respectively.
For example, 20 generations ago the estimate of effective
population size for CONST was 1062, and the 95% confidence
interval was 971-1154. Confidence intervals were generally
smaller with lower population sizes.

CSH was calculated from a human haplotype data set
including 24 SNPs and 2 microsatellites in a 1-cM region
(Moffat et al. 2000). To validate that CSH was accurately es-
timated with the marker densities and heterozygosities in this
data set, we simulated a population of constant N = 5000,
using the mutation-drift model, with similar marker density,
marker heterozygosities, and haplotype lengths to those ob-
served by Moffat et al. (2000) in their data set. The value of
CSH observed from the simulated data sets was similar to the
expectation of CSH with N = 5000, and predictions of N, were
reasonably accurate, although N, was somewhat overesti-

12000

mated in more recent generations (Table 1). The coefficient of
variation for CSH was higher from this simulation compared
with simulations with more heterozygous markers. Initial in-
vestigation showed that the values of CSH from the real data
set were extremely variable for similar lengths of haplotype.
To clarify the extent and variability of CSH, and N, at different
t from CSH, we first averaged CSH values in 0.05-cM bins. The
first bin contained CSH for haplotypes 0-0.05 cM, and so on.
The ¢ value used to calculate t was the midpoint of these bins,
and N, was inferred from the average of CSH within a bin. The
CSHs in the human data set at large lengths of haplotype were
consistent with N = 15,000 (Fig. 4A). At short lengths of hap-
lotype, CSH was closer to that expected when N = 5000. The
N, values indicated exponential growth in the human effec-
tive population size (Fig. 4B). Chromosomal homozygosity at
very closely linked markers is needed to estimate effective
population size many generations into the past. The marker
spacing in our data set allowed us to calculate N, up to 2000
generations into the past, although the next oldest prediction
of N, is many generations later. The situation improves in
more recent history, with less time between predicted values
of N;. An attempt was made to assess the variability in esti-
mates of N, at the different times in the past, by calculating
the 95% confidence of CSH within a bin, and calculating N,
for the upper and lower confidence interval. This 95% confi-
dence interval captures the variation in CSH due to the pro-
cess of gametic sampling of similar lengths of haplotype at
different chromosomal locations. The range of N, values for
times in the recent past was extremely variable, with N, for
times in the distant past less so. For example, at 2000 genera-
tions ago, the lower limit of N, was 3749, and the upper limit
was 8376, whereas for 182 generations ago, the lower limit
was 5146, and the upper limit was 26,932.

We compared the results
from our method for the hu-
man data set, in which N, has
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Figure 3 Simulated and estimated effective population size over time for four populations; (CONST) con-
stant population size from 0 to 6050 generations ago; (LINI) increase in population size in the last 50
generations from 1000 to 5000; (LIND) decrease in population size in the last 50 generations from 1000 to
100; (EXPI) increase in population size in the last 50 generations from 1000 to 11290. SIM and EST identify

the simulated and estimated population sizes for each population.
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cM are for long chromosome
segments with only two
markers, the situation in
which CSH is most variable.
When we calculated N, and ¢
from CSH at ¢ morgans, the
results indicated a recent de-
cline in the effective popula-
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Table 1. Results From Simulation of a 0.5-cM Chromosome Segment Containing 10 Markers, With N = 5000

Length of Markers in Expected Observed Cve t (generations 95% confidence
segment (cM) segment CSH® CSHP (%) ago) N, interval®
0.06 2 0.083 0.090 121 900 4540 3581-6098
0.11 3 0.043 0.046 147 450 4671 3363-7477
0.17 4 0.029 0.024 98 300 6028 4759-8184
0.22 5 0.022 0.023 80 225 4875 3949-6347
0.28 6 0.018 0.013 71 180 6679 5449-8610
0.33 7 0.015 0.011 72 150 6784 5411-9074
0.39 8 0.013 0.008 79 129 8028 6072-11,815
0.44 9 0.011 0.006 68 113 8806 6578-13,283
0.50 10 0.010 0.007 63 100 7377 5110-13,194

Results are from analysis of haplotypes after 30,000 simulated generations of breeding under the mutation drift model. The average hetero-
zygosity of the markers was 0.39. The markers were equally spaced, with 0.06 cM between markers.

?Calculated as 1/(4Nc + 1), where N = 5000 and c is the length of the segment in morgans.

The average results from 10 replicates. In all replicates, the minimum heterozygosity of the markers was 0.05, as this was the minimum

heterozygosity of the markers in the Moffat et al. (2001) data set.

“From pooled results over segments of the same length within a replicate and across replicates.
9To calculate the 95% confidence intervals for N,, a 95% confidence interval for the observed CSH was calculated as average CSH + 2SE. Then
the upper and lower bounds of CSH were used to calculate the upper and lower bounds of the 95% confidence interval for N.,.

tion size of dairy cattle (Fig. 4D). Because of the wide spacing
of markers in our sample, there is little information on effec-
tive population size of dairy cattle more than 100 generations
(~400 yr) in the past. The one data point 167 generations in
the past certainly indicates that the historical effective popu-
lation size was much larger than the present effective popu-
lation size.

The simulation study confirmed that CSH could be used
to predict approximate effective population size at various
times in the past. The estimates of past N were qualitatively
correct although not numerically precise. In theory, more in-
formation could be extracted from the data. For instance, the
frequencies of each haplotype contain information—many
rare haplotypes imply an increasing population size (Slatkin
and Bertorelle 2001). However, in practice there may be no
method that is highly precise because of the need to make
numerous assumptions in any method. A strength of the CSH
is its simplicity. It also makes clear the close analogy between
mutation affecting homozygosity at individual loci and re-
combination affecting LD at multiple loci. LD provides infor-
mation equivalent to that from a mutation rate that can be
controlled (by choosing the length of chromosome segment)
and that can take much higher values than mutation rates at
individual loci.

The variation in LD arises from two sampling processes
(Weir and Hill 1980). The first sampling process reflects the
sampling of gametes to form successive generations, and is
dependent on finite population size. The second sampling
process is the sampling of individuals to be genotyped from
the population, and is dependent on the sample size, n. Un-
less n is sufficiently large, the effect of N,on CSH is likely to be
swamped by sampling effects resulting from choosing only a
fraction of individuals to be genotyped from the population
in the present generation (e.g., Weir and Hill 1980). Hill
(1981) discussed the sample size necessary to obtain precise
estimates of population size (from 7% in his case), and showed
CV(N) is approximately

(1 + 4Nc/n)\/ 2/k,

where n is the number of haplotypes sampled and k is the

number of pairs of loci used in the estimate. Sample size must
therefore be large relative to 4Nc to precisely estimate N. This
conclusion is also likely to be true for estimates of N, from
CSH (even though the variability of CSH is reduced relative to
7* as the number of markers on the chromosome segment
increases). For a given sample size, Hill’s conclusion indicates
that because the variability of the estimate of N, will increase
as the length of the chromosome segment used to estimate
CSH (and then N)) increases, the recent population size will be
estimated less accurately than the population size many gen-
erations in the past. This concurs with our results, in which
the 95% confidence interval of N, in the recent past was much
larger than for N, in the more distant past. For the human
data, the accuracy of estimates of recent population size is
further eroded by the rapidly increasing value of N,. Unreal-
istically large sample sizes would be necessary to obtain accu-
rate estimates of N, in the very recent past.

As all chromosome segments within the genome are sub-
ject to the same N,, the variability of estimates of N, from LD
caused by finite population size (the history of sampling ga-
metes) could be reduced by averaging LD over chromosome
segments of equal recombination length. An ideal data set for
estimating N, from CSH would contain many equally spaced
markers across a number of chromosomes, so results for hap-
lotypes of the same recombination length in different parts of
the genome could be averaged to obtain more accurate esti-
mates of N,. This is analogous to the result from Kuhner et al.
(1998) that a gain in precision is obtained by sampling mul-
tiple unlinked loci.

Our estimates of past N for both cattle and humans
agree with what is historically known about these popula-
tions. Using a dense genome-wide SNP map in humans, Reich
et al. (2001) calculated D’, and then used simulation to infer
what pattern of change in N could give the observed results.
They concluded that the European population passed
through a bottleneck 27,000-53,000 years ago, and proposed
the bottleneck led to an inbreeding coefficient of 0.2. This
level of inbreeding could be caused by a bottleneck of 50
individuals for 20 generations, 1000 individuals for 400 gen-
erations, or any other combination with the same ratio. We
estimated that N for the population ancestral to our sample
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Figure 4 (A) Chromosomal homozygosity for increasing lengths of haplotype from the data of Moffat et al. (2000). The upper (solid) line is the
expected CSH when the effective population size is 5000. The lower (dashed) line is the expected CSH when the effective population size is 15,000.
(B) Effective population size of the human population ancestral to the sample used, up to 2000 generations ago. (C) Chromosomal homozygosity
from the dairy cattle data set. Also plotted are the expected values of CSH when N = 1000 and N = 250. (D) Effective population size of the dairy
cattle population ancestral to the sample used, up to 167 generations ago.

2000 generations ago (~30,000 yr ago) was ~5000 and that
this size lasted for thousands of years.

Shifman and Darvasi (2001) compared the amount of
linkage disequilibrium at various distances in isolated popu-
lations (e.g., Finnish, Ashkenazi, and Sardinian) to that in an
outbred population (CEPH). They found that at short dis-
tances (<200 kb), there was a similar amount of LD in isolated
and outbred populations, whereas at long distances (>200 kb),
there was up to six times more LD in the isolated populations.
They concluded that LD was similar for all populations at
short distances because processes other than recombination,
such as mutation, determined the amount of LD at <200 kb.
At >200 kb, recombination was the main determinant of LD
and so LD differed greatly between the different populations
as a result of their different N. Given our result of t = 1/2¢, LD
at 200 kb would reflect the population size 213 generations or
~5000 yr ago. Hence, another interpretation of Shifman and
Darvasi’s (2001) results is that LD at <200 kb reflects N of the
common ancestral population to both the isolated and out-
bred populations, and is therefore similar regardless of the
present population size.

Sabatti and Risch (2002) recently investigated the rela-
tionship between two-locus haplotype homozygosity and
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linkage disequilibrium, and illustrated how haplotype homo-
zygosity can be used to measure and test for multilocus LD.
Their new measure is based on the population or sample fre-
quencies of haplotypes (like the HH in this study) but, unlike
our definition of CSH, does not take account of the linear
nature of chromosomes and recombination and does not
model homozygosity by descent.

Domestication, breed formation, and artificial breeding
technologies have all served to reduce the effective popula-
tion size of the world dairy cattle population. Because of the
wide spacing of the markers in our data set, we can only infer
population sizes up to 167 generations (~700 yr) ago. This is
prior to the emergence of Holstein-Friesians as a separate
breed, which is estimated to have occurred ~200 yr ago
(Bradley and Cunningham 1998). Our results certainly indi-
cate that the effective population size of the ancestral dairy
population has declined sharply between 200 yr ago and the
present. The data also contain some long (0.25-M) haplo-
types, the LD at which can be used to infer recent effective
population size. Our data indicate the recent effective popu-
lation size (in the last 5-6 generations) to be ~150, although
there is variation around this value. An N of 150 is larger than,
but similar in magnitude to, estimates of ~100 based on the
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Table 2. Simulated Change in N for Populations CONST, LINI, LIND, and EXPI

population were simulated. Using
the observed CSH, the formula

Change in population size

Minimum population

CSH = 1/(4Nc + 1) was solved for N
to estimate N at 500, 200, 100, 50,
20, and S generations into the past

Maximum population

Population after generation 6000 size (generation) size (generation)
CONS N,=N, , 1000 (1-6050) 1000 (1-6050)
LINI N,=N,_; + 80 1000 (1-6000) 5000 (6050)
LIND N,=N,_, — 18 100 (6050) 1000 (1-6000)
EXPI N,=1.025N,_, 1000 (1-6000) 11,290 (6100)

for each population, the times cor-
responding to 1/2¢ for the values of
¢ we have used.

Human Data Set

rate of inbreeding in Holstein populations (Young and
Seykora 1996).

We have shown that our novel multilocus measure of
linkage disequilibrium can be used to estimate past effective
population size. A similar approach can be used for LD map-
ping of genes for complex traits (Meuwissen and Goddard
2001). Chromosome segments that are IBD contain the same
allele, except for mutation, at any gene within the segment.
Therefore, the trait values of people that share IBD chromo-
some segments will be correlated if there is a gene affecting
the trait located within the segment.

METHODS

Simulated Data Sets

Two types of simulated data were used. A diploid population,
of N =1000, was simulated for 6000 generations with either
an infinite alleles or stepwise mutation model. Each indi-
vidual in the population consisted of a pair of chromosomes,
and was either male or female (probability 0.5). Each chro-
mosome was 10 cM long, and had 11 marker loci. To create an
offspring, a pair of parents of different sex was randomly cho-
sen from the population. For each parent in a mating pair, a
gamete was formed from its chromosome pairs by sampling
the number of crossovers for each chromosome pair from a
Poisson distribution, with mean of 0.1. Crossover points were
randomly positioned along chromosome pairs. The haploid
gametes were mutated at a rate of 5 X 10~ * per locus per
gamete per generation. In the infinite alleles model, if a locus
was mutated, a new allele was added. In the stepwise muta-
tion model, the allele was either increased by 1 or decreased
by 1, with probability 0.5 of each occurrence. The results pre-
sented are the average of 200 replicate populations. This simu-
lation model was also used to evaluate CSH with other popu-
lation sizes. The number of generations for which the popu-
lation was simulated was always 6N. The heterozygosity of
markers was decreased in some simulations by decreasing the
mutation rate.

In the second simulated data set, marker alleles were not
used because the identity of chromosome segments was
tracked directly. To demonstrate the effect of past N on CSH,
we simulated four populations, a population of constant N
(CONST), a population with linearly increasing N (LINI), a
population with linearly decreasing N (LIND), and a popula-
tion with exponentially increasing N (EXPI). Each population
consisted of N individuals, such that an individual comprises
a pair of chromosome segments. To form a new individual,
two individual parents were selected at random from the
population. Each of these contributed a chromosome to the
progeny. There was a probability ¢ that the chromosome from
a parent was a recombinant and hence a “new” chromosome
segment. Each population was simulated with seven values of
¢, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, and 0.1. All popu-
lations began with 6000 generations with N = 1000. Then 50
(CONS, LINI, LIND) or 100 generations (EXPI) of breeding
with changing N followed. Table 2 describes the change in N
over generations for each population. Fifty replicates of each

The data set of Moffat et al. (2000)

was retrieved from the Web site
http://www.well.ox.ac.uk/asthma/public/TCR/index.html.
The data consisted of 24 SNPs and 2 microsatellites in an
850-kb section of the TCR locus on Chromosome 14q. To
derive haplotypes, 159 nuclear and extended families were
genotyped, and the LD between markers was investigated in
600 haplotypes from unrelated individuals (the parents). CSH
were summarized into 0.05-cM bins. The first bin contained
CSH for haplotypes 0-0.05 cM, and so on. The c value used to
calculate t was the midpoint of these bins, and N, was inferred
from the average of CSH within a bin. The 95% confidence
interval for estimates within a bin was calculated as the bin
average CSH = 2SE. The data set was too small to reliably
calculate CSH at >0.3 cM, as the value of the CSH estimates
became much smaller than the sampling variance caused by
sampling only 600 chromosomes from the population. There-
fore, we only considered haplotypes less than this length.

Cattle Data Set

The resource population for the dairy cattle data set consisted
of four Holstein-Friesian sire families. Sire A had 22 daughters,
Sire B 38 daughters, Sire C 74 daughters, and Sire D 130
daughters. Each daughter had a unique dam. Daughters were
genotyped for 15 microsatellite markers on Chromosome 20.
The markers were BM1225, RM310, ILSTS068, BMS2361,
AGLA29, BM4107, ILSTS072, BMS703, BM5004, BMS3517,
HEL12, RM106, BMS1282, TGLA304, and BMS1719 (see http://
www.thearkdb.org/browser?species=cow for details). The
markers bracketed a length of 65 cM, with various spacings
between the markers. As the daughters were from four sire
families, the paternal and maternal marker haplotypes could
be determined. We estimated CSH from the maternal haplo-
types only, as CSH from the paternal haplotypes would reflect
CSH in each of the four sires, rather than in the wider popu-
lation. The data set was too small to reliably calculate CSH at
>25 c¢M, as the value of the CSH estimates became much
smaller than the sampling variance caused by sampling only
264 chromosomes from the population. Therefore, we only
considered haplotypes <25 cM.

Calculation of CSH and

We cannot observe CSH directly from the marker haplotypes.
Instead, we estimate CSH from the observed homozygosity of
haplotypes (HH). HH is defined as the probability that two
chromosome segments drawn at random from the population
have identical marker haplotypes. The value of HH in the
population is estimated from the sample as

n
Spi-1m
i=1

HH ==

where there were n haplotypes in the population, and p; was
the frequency of the i-th haplotype. This formula corrects HH
for sampling effects (following Hill 1981).

The algorithm to calculate CSH with multiple markers
proceeds as follows. The number of markers in the chromo-
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some segment is m, and an array, CSH, stores CSH for the
chromosome segment between markers i and j. The algorithm
calculates values of CSH; for all possible combinations of j > i.

Stepl. Fori=1tom — 1,and j=i+ 1 (the case of two adja-
cent markers), calculate CSH;; using the definition given
above.

Step 2. Fori=1tom—2,and j=i+2, k=j — i=2 (three
adjacent markers), generate the 2* ~ ! possible recombination
configurations for the segments between the markers (k is the
number of adjacent markers). Representing 0 as no recombi-
nation, and 1 as a recombination, the four possible recombi-
nation configurations are 00, 10, 01, 11. The recombination
configurations can be quickly found by writing 0 to 2K =1 — 1
as binary numbers. The probability of 00 is CSH;.. To calculate
the probability of the other recombinations (Prob, for I = 1-3),
the rules of Meuwissen and Goddard (2001) are used, except
the values of f{c...) are replaced by the appropriate CSH for
two markers calculated in Step 1. As some Prob, values also
contain CSHy;, a search must be performed for the value of
CSH;; that minimizes

=1
CSH;; + >, Prob,

k=1

HH;;

This value was taken as the value of CSH;;.

Step 3. For increasing k (4, 5, ...), repeat Step 3 until
j—i=m— 1.

The value of r* was calculated as described by Hudson (1985),
with a correction for sampling described by Hill (1981).

Estimation of Past N From CSH

We wish to determine the effective population size, N, t gen-
erations ago from CSH. Let P, be the probability that two
chromosome segments of length ¢ coalesce by generation t. P,
is a cumulative probability, and time is measured from the
present t = O to generation f in the past. Then the probability
that coalescence occurs exactly in generation f is
p:=P, — P, _ . Then, in the standard coalescence model,
p:=@1 — P, _ )/2N,, where (1 — P, _,) is the probability that
coalescence hasn’t already happened and 1/2N, is the prob-
ability that the two random chromosomes have a common
ancestor in the previous generation (Kingman 1982). This can
be expressed in a continuous rather than discrete form as
pe=dPJdt=(1 — P)/(2N)).

The probability that there has been no recombination in
either chromosome over the ¢ generations is (1 — ¢)*, which,
for small ¢, is approximately equal to e(—2ct). Therefore, the
probability that coalescence happens at generation t and
there has been no recombination is

dPt —2ct
E e .

The total probability that coalescence happens before recom-
bination (the CSH) is the sum of this expression over all t
values from O to infinity,

=P t —2ct
CSH = f o Ee dt.

If we make the assumption that N is linear with time, such
that 2N, = a + Bt, then

642 Genome Research
www.genome.org

dr, 1-P,
dt o+ pt

Taking the logarithm of both sides of this equation gives
1
—log(1-P) = E log(a + Bt) + K
where K is a constant. Rearranging this formula gives

Pi=1-(a+ [St)’%eK.

At t =0, and P, = 0, ¥ = «'/P. Substituting «'/? for ¢X and
rearranging gives

wl =

Pt:1—(1+8)7,

o
which is differentiated to give

1
ar, 1 -3-1
t (1+Bt> B

dt  « a
This expression is approximately equal to

12

dt

Substituting

for dP,/dt in the second equation gives
1 1B
CSH = f —e‘t<§+2)e_2“ dt,
[0X6)

and after integration,

1
CSH = 1+B+2ca
Now
CSH ! CSH !
T1+4B+2ca T4Nc+ 1

where 2N, = a + B/2c. That is, N, is the effective population size
at t = 1/2¢ generations in the past.
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