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ABSTRACT

Several statistical models have been proposed for
the genetic evaluation of production traits in dairy
cattle based on test-day records. Three main ap-
proaches have been put forward in the literature: ran-
dom regression, orthogonal polynomials, and, more
recently, character process models. The aim of this
paper is to show how these different approaches are
related, to compare their performance for the genetic
analysis of lactation curves, and to assess equivalence
between sire and animal models for repeated mea-
sures analyses. It was found that, with an animal
model, a character process model with 11 parameters
performed better, regarding the likelihood criterion,
than a quartic random regression model (with 31 pa-
rameters). However, although the likelihood was
higher, the genetic variance was very different with
the character process model from the unstructured
model, which raises important issues concerning
model selection criteria. There are advantages in com-
bining methodologies. A quadratic random regression
model for the environmental part, combined with a
character process model for the residual, performed
better than the quartic random regression model and
had fewer parameters. A character process structure
allowing for a correlation pattern modeled the residual
better than a simple quadratic variance, and had only
one extra parameter.

(Key words: lactation curve, random regression, or-
thogonal polynomials, character process models)

INTRODUCTION

Several methodologies have already been proposed
for genetic evaluation of production traits for dairy
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cattle based on test-day records. Currently, the most
commonly used test-day models are random regres-
sion models (Diggle et al., 1994; Jamrozik and Schaef-
fer, 1997). The idea of these models is to consider a
mean curve in the population, which can be either
parametric or non-parametric, and to model individ-
ual deviations from this mean curve for each animal.
These deviations are usually modeled with polynomial
functions and, more specifically, orthogonal polynomi-
als that have desirable numerical properties. Esti-
mates of genetic values at each time are directly ob-
tained from these individual curves. Another ap-
proach, called character process models, recently
proposed by Pletcher and Geyer (1999), concentrates
on the modeling of the covariance structure. If a com-
pletely unstructured matrix were considered, which
corresponds to a multivariate analysis, the number of
parameters to be evaluated would be very large. The
character process approach aims at reducing the num-
ber of parameters in the covariance structure by con-
sidering appropriate parametric functions for the vari-
ance and correlation. The aim of this paper is to inves-
tigate how character process models can be
incorporated into the mixed model framework well-
known by animal breeders, to contrast them with the
random regression approach, and to assess equiva-
lence between sire and animal models for repeated
measures analyses.

MATERIALS AND METHODS
Theory

Mixed model framework. Each individual has sev-
eral observed measurements over time. For simplicity,
individuals are assumed to have the same number of
measurements J taken at the same times (t4, ..., t;),
although this assumption is not required for the mod-
els considered. Assuming a sire model, for individual
i within sire s, the model can be written:
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Vi=X8+us+p;+e [1]

where y; is the vector of observed measurements for
individual i: y; = (yi1, ..., Vig)’, X;3 represent the fixed
effects, u, is the vector of additive genetic values of
sire s at the different times of measurement: ug = (ug,
..., Ugy)’, p; 1s the permanent environmental effect (for
example, the cow effect in the case of dairy cattle eval-
uation), and e; is a residual term that can also be
considered as a short-term environmental effect. As
measurements taken on a same individual are corre-
lated, the random vectors are assumed to follow multi-
variate normal distributions: us ~ N(0, G), p; ~ N(O,
P), e; ~ N(0, E), and y; ~ NX;3, V) where V=G + P
+ E. Two different approaches have been proposed to
model the covariance structure.

Random regression models. The idea of these
models is to fit a mean curve, either parametric or non-
parametric, in the population and to model individual
deviations from this mean curve. For example, in the
case of lactation curve analysis, an exponential curve
of Wilmink (1987) can be assumed for the general
curve of the population:

g(t) =+ Oélt + azexp(—Dt) [2]

where t stands for days in milk. Individual deviations
(genetic and environmental) from this curve are mod-
eled with parametric functions of time, for example,
polynomials. If a linear deviation is assumed for the
genetic part, then

Ugj = ag + bstj, [3]

where ag; and b are assumed to be normally distributed
and correlated. In this case, ug corresponds to the
genetic value of sire s at time t;, and the genetic covari-
ance between observations at two ages t; and t; is
given by:

G(ti, t_]) = COV(usj, usj) = Var(as) [4]
+ Cov(as, bs)(ti + t)) + Var(bytit;

The aim is to try to find the best parametric curve to
model individual deviations. The covariance structure
is then derived from the chosen regression model. In
practice, orthogonal polynomials are often used be-
cause of their desirable numerical properties.
Character process models. These models concen-
trate on the modeling of the covariance structure it-
self. The idea is that if a completely unstructured form
were considered for the covariance matrices, the num-
ber of parameters to be estimated would be far too
large in practice. Therefore, parametric functions are
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assumed to model the variance and correlation struc-
tures and to reduce the number of parameters. The
covariance function between observations at two given
times t; and t; can be written as:

C(ti, tJ) = V(ti) V(tj) p(ti, tJ) [5]

where v(t;) is a variance function, which is an arbi-
trary function of time, and is usually assumed to be
a polynomial, and p(t;, t;) is a correlation function. As
the variance function has to be positive, we model its
logarithm. For example, if a linear variance function
is assumed:

In v3(t;) = a + bt; [6]

Pletcher and Geyer (1999) proposed a list of several
possible correlation functions, such as a standard nor-
mal p(t;, t;) = exp(-0(t; — tj)2) where 6 > 0, a Cauchy
p(t;, t;) = /(1 + 6(t; — t;)*) where 6 > 0, or an exponential

correlation p(t;, tj) = 6%~ % where 0 < 6 < 1 can be
considered. Therefore, in the case of a log-linear vari-
ance and exponential correlation, for example, the ge-
netic covariance between observations at two ages t;
and t; can be written as:

G(t,, t) = exp[a + b[t—;tl]] ot~ b 71

Pletcher and Geyer (1999) originally assumed sta-
tionarity in correlation, i.e., the correlation between
two ages is a function only of the time distance |t; —
t;| between them. This assumption can be relaxed by
implementing a non-linear transformation upon the
time axis, f(t), such that correlation stationarity holds
on the transformed scale, but on the original scale the
correlation is non-stationary (Jaffrezic and Pletcher,
2000; Nunez-Anton, 1998). The correlation function is
then defined as p(t;, t;) = p(|f(t;) — f(t;)]), and the correla-
tion functions suggested by Pletcher and Geyer (1999)
remain valid. As proposed by Nunez-Anton and Zim-
merman (2000), a Box-Cox transformation seems to
offer good flexibility with only one extra parameter:

f(t,\) = " = 1)/\
=Int

ifA#0
ifA=0

Considering an exponential correlation function,

p(ti, ;) = 6]~ Y|, the correlations on the subdiagonals
are monotone increasing if A < 1 or monotone decreas-
ing if A > 1. If A = 1, the non-stationary model reduces
to a stationary one.
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In the general case, the inverse of covariance matri-
ces defined by character process models are not sparse.
However, when considering an exponential correlation
function, the inverse of the covariance matrix is tridia-
gonal. This model is, in fact, equivalent to the struc-
tured antedependence models (Nunez-Anton and Zim-
merman, 2000) of order 1 and corresponds to a continu-
ous and non-stationary  generalization  of
autoregressive model of order 1. Sparseness of the
inverse can be useful when analyzing large data sets.

Orthogonal polynomials. Kirkpatrick and Heck-
man (1989) proposed use of orthogonal polynomials as
a non-parametric way of smoothing previously esti-
mated covariance matrices. As originally presented,
the orthogonal polynomial approach is similar in spirit
to the character process models in that both methods
forgo the shapes of individual deviations in favor of
directly modeling the covariance structure. Meyer
(1998) has shown that this approach is equivalent to
considering orthogonal polynomials in a random re-
gression model.

Estimation procedure. For both models, classical
mixed model equations can be used to estimate fixed
effects 8 and to predict genetic values u. An average
information algorithm (Gilmour et al., 1995) can be
applied for the REML estimation of variances and pa-
rameters in the character process model. Recent ver-
sions of the program ASREML (Gilmour et al., 2000)
allow character process models to be used.

Comparison of Methods

Data set. These methodologies were applied to the
genetic evaluation of first lactation milk production
for dairy cattle. Lactation curves were fitted to test-
day records for 9277 progeny of 464 Holstein-Friesian
sires, assumed unrelated. Observations were made
over two years (1993 and 1994). The lactation stage
of animals at first test varied between 4 and 40 d, with
successive tests at approximately 30-d intervals. All
cows had 10 measurements. The fixed effects consid-
ered were the age at calving, the percentage of North
American Holstein genes, and herd-test-month. An ex-
ponential curve of Wilmink (1987) was fitted as a fixed
regression model for the general curve of the popula-
tion (equation 2). Parameter D was assumed to be
known and equal to 0.068, chosen based on previous
studies (White et al., 1999).

In classical quantitative genetics theory, when un-
related sires are considered, sire and animal models
are equivalent. In the case of repeated measures, more
complex covariance structures are involved, and the
equivalence is not straightforward. We therefore per-

Journal of Dairy Science Vol. 85, No. 4, 2002

JAFFREZIC ET AL.

formed all the analyses with both a sire and an ani-
mal model.

Model comparisons. The aim was to compare the
performance of random regression and character pro-
cess in modeling genetic and permanent environmen-
tal parts for lactation curve analysis. In a first analy-
sis, residual terms were assumed to be independent
and with constant variance over time. In order to have
a reference value for the likelihood, we fitted a satu-
rated model for the covariance structure, i.e., we con-
sidered completely unstructured genetic and environ-
mental covariance matrices, which corresponds to a
multivariate analysis. The other models were com-
pared to this value to evaluate their goodness-of-fit.
Many different combinations of variance (polynomials
up to quadratic) and correlation functions (exponen-

tial: 6] ~ %, Gaussian: exp(-0(t; - t;)%), Cauchy: 1/(1 +
6(t; — t;)), stationary or non-stationary, were consid-
ered for the character process approach. Polynomials
up to the quartic order were fitted for the random
regression models. All the analyses were performed
using ASREML (Gilmour et al., 2000).

Residual structure. In a second analysis, the as-
sumptions of independence and constant variance of
the residuals were relaxed. A character process struc-
ture was considered at the residual level. This corres-
ponds to the models proposed by Diggle et al. (1994)
and Zhang et al. (1998), in which a random regression
is considered to model within-subject variation and a
stochastic process is added to model serial correlation.

RESULTS

In order to make the description easier, the different
models have been numbered (see Table 1) and are
referred to in the text using these numbers. In order
to have an informal but quantitative measure for the
goodness-of-fit of variance and correlation functions,
the concordance correlation coefficient proposed by
Vonesh et al. (1996 [see Appendix]), which considers
the unstructured covariance matrix as reference,
was used.

Model Comparisons

The model with a completely unstructured genetic
covariance matrix did not converge properly with AS-
REML. Estimates of the genetic parameters were ob-
tained in this case with another REML program which
uses a different algorithm (Meyer, 1985) for multivari-
ate analysis.

Sire and animal models. In general, when analyz-
ing single measurements, a sire model gives the same
results as an animal model using a simple pedigree
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Table 1. Model comparisons (likelihood values are given with reference to the unstructured model in absolute

values).
Log-likelihood
Model Genetic Environmental NPCov! Sire Animal
Unstructured
1 Us? US 110 0
2 Quad RR? US 61 22
3 Repeatability UsS 57 103
Character process + constant residual variance
4 Quad-ExpNS Quad-ExpNS* 11 863 316
5 Quad-Exp Quad-ExpNS 10 870 349
6 Quad-Exp Quad-Exp 9 1370 501
7 Lin-Exp Quad-ExpNS 9 885 623
8 Lin-Exp Quad-Exp 8 1396 711
Random regression + constant residual variance
9 Quartic Quartic 31 506
10 Quad Quartic 22 522
11 Cubic Cubic 21 793
12 Quad Quad 13 1362
13 Quad Lin 10 2902 1397
Random regression + character process
14 Quad Quartic Quad-Exp 25 85
15 Quad Quad Quad-Exp 16 326
16 Quad Quad Quad-Zero® 15 631

"Number of parameters in the covariance structure.

Unstructured covariance matrix.
3Quadratic random regression.

4Quadratic variance — non-stationary exponential correlation.

5Quadratic residual variance — correlation set to 0.

with sires specified and dams unknown. In this case,
the sire model is just a reparameterization of the ani-
mal model and vice-versa. The sire model provides
estimates of between-sire variance V(B) = (1/4)V(A)
and within-sire variance V(W) = (3/4)V(A)+V(E). The
animal model estimates V(A) and V(E) directly.

With repeated measurements, the two models do
not necessarily give the same results. In the case of
random regression models, an animal model with an
order p polynomial for the genetic effect and an order
q polynomial for the environmental effect will give
the same results as a sire model, with an order p
polynomial modeling differences between sires and an
order q polynomial within sires, provided q > p. (The
within-sire differences are modeled as the sum of an
order p and an unrestricted order q polynomial, equiv-
alent to an unrestricted order q polynomial if q > p).
If q < p, the within-sire differences are modeled as an
order p polynomial. However, the leading coefficient
is forced to be the same as that of the between-sire
polynomial. The restricted nature of the within-sire
polynomial in this case means that the animal model
is not equivalent to a sire model with order p polynomi-
als for between- and within-sire components.

With character process models, there is no equiva-
lence between the two types of model. For example, if
a first-order autoregressive structure is assumed for

genetic and environmental components, the corres-
ponding within-sire structure would have to be a lin-
ear combination of two autoregressive structures.

For repeated measurements, the fact that the
within-sire component is the sum of genetic and envi-
ronmental components means that it may well be dif-
ficult to model with simple structures, and that in
those cases in which the animal and sire models are
not equivalent, we might expect the animal model to
do better.

Model selection. The best fitting animal model for
the likelihood criterion among all the character pro-
cess and random regression models considered in the
first analysis was a character process with quadratic
variance and non-stationary exponential correlation
for both genetic and environmental parts. With only
11 parameters, the likelihood was, in fact, higher than
a quartic-quartic random regression model (difference
of 190), which had 31 parameters.

Figure 1 shows that estimates obtained with the
animal model for the best character process (Model 4)
improved the fit for the within-sire variance compared
to the sire model. Vonesh’s coefficient (see Appendix)
for the within-sire variance was 0.8 for the animal
model and only 0.6 for the sire model. In this case, the
animal model was equivalent to considering the sum of
two character processes for the within-sire component,
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Within sire variance
-
N

Test number

Figure 1. Within sire variance. Model 1: Unstructured. Model 15:
Quadratic random regression + residual character process. Model 4:
Character process with quadratic variance and nonstationary expo-
nential correlation — Sire and animal models.

Model 1 Model 15 = = = Model 4 (sire) — ~Model 4 (animal) ‘

instead of one for the sire model. However, the be-
tween-sire component in the animal model was very
different from the estimate from the unstructured
model (Model 1), as shown in Figure 2. This seems to
be due to the fact that the model attached more weight
to the within-sire component and neglected the be-
tween-sire part. When calculating the information ma-
trices, it could be shown that 80% of the information
for the genetic variance in the animal model came
from the within-sire component. Moreover, it seems
that the likelihood only reflected how well the within
sire component was fitted and was very little influ-
enced by the goodness-of-fit of the between-sire part.
In fact, the difference between estimates obtained
with Model 4 and the unstructured model (Model 1)
was not reflected in the likelihood. This may be a very
important problem in model selection as animal breed-
ers are mainly interested in modeling of the genetic

-y
N
s

\
|
|
|
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\
/

Between sire variance (*4)
[+7]

Test number

Model 1

Model 15 - - = Model 4 (sire) — =—Model 4 (animal) ‘

Figure 2. Between sire variance. Model 1: Unstructured. Model
15: Quadratic random regression. Model 4: Character process with
quadratic variance and nonstationary exponential correlation — Sire
and animal models.
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part. Likelihood may, therefore, not be the most appro-
priate criterion to select a model.

Residual Structure

In order to avoid misspecification of the between-
sire component, we considered a more complex struc-
ture that would better capture the within-sire part.
As proposed by Diggle et al. (1994) and Zhang et al.
(1998), we considered an additional stochastic process
at the residual level to model variance and correlation
that could not be taken into account in the previous
models. The residual variance was assumed to change
according to a quadratic function (Jaffrezic et al.,
2000), and we considered an exponential correlation
function.

Table 1 shows that a very significant improvement
of the likelihood was reached with this structure com-
pared to the simple random regression models. When
considering, for example, the quadratic-quartic ran-
dom regression model—Model 10— with only three
additional parameters (Model 14), the likelihood was
much closer to that obtained by the unstructured
model—difference of 85—whereas the difference was
522 without the additional stochastic process. More-
over, the likelihood of a quadratic-quadratic random
regression model with the additional character pro-
cess structure (Model 15) was higher than the qua-
dratic-quartic model (Model 10) with a difference in
likelihood of 196 with fewer parameters (16 instead of
22). The likelihood was also higher when considering a
character process structure on the residual rather
than only a quadratic variance (assuming indepen-
dence of the residuals), asin Model 16. For a quadratic-
quadratic random regression model, the parameter
in the correlation function was 0.14, which was sig-
nificantly different from zero, and with this extra pa-
rameter the difference of likelihood was 305 compared
to a simple quadratic residual variance (Models 15
and 16). This means that there are additional short-
term environmental effects that could not be taken
into account with the models considered in the first
analysis.

The same estimation pattern as previously observed
for between-sire component in an animal model (Model
4) was obtained when a character process was added
at the residual level to the previously considered char-
acter process models. Based upon the likelihood crite-
rion, the model that would be chosen is a quadratic
random regression for the genetic part, quartic for the
permanent environmental part, and character process
model with quadratic variance and exponential corre-
lation for the residuals (25 parameters), as in Model
14. However, in practice it would be preferable to keep
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Table 2. Genetic correlation matrix.
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Model 1: Unstructured

1

0.96 1

0.89 0.96 1

0.80 0.90 0.98 1

0.75 0.87 0.97 0.98 1
0.70 0.83 0.94 0.97 0.99
0.69 0.81 0.94 0.97 0.99
0.62 0.73 0.88 0.90 0.94
0.58 0.64 0.82 0.85 0.87
0.69 0.73 0.88 0.89 0.90

1

0.99 1

0.97 0.97 1

0.90 0.93 0.97 1

0.93 0.94 0.97 0.99 1

the number of parameters as small as possible while
keeping a reasonable fit, and therefore the model with
quadratic polynomial for both the genetic and environ-
mental parts and a character process with quadratic
variance and exponential correlation for the residual
part (16 parameters), Model 15, would be favored.

Goodness-of-Fit Analysis

Genetic structure (between-sire component). 1t
seems that simple models, such as quadratic random
regression, were able to capture both the genetic corre-
lation and variance patterns. The genetic correlation
remained quite high over time, as shown in Table 2,
and Jaffrezic and Pletcher (2000) showed that this
pattern can easily be captured with classical models.
The Vonesh’s coefficient for the chosen model, with a
quadratic random regression, compared to the un-
structured one (Models 15 and 1) was 0.9. The genetic
variance also seemed to be quite well modeled with
the chosen model (r, = 0.8), as shown in Figure 2.

Although simple models seemed to capture the ge-
netic covariance structure, the likelihood criterion
should be considered with caution when choosing the
genetic model, as shown in the animal model analysis
for character processes.

Environmental structure (within-sire compo-
nent). The likelihood-based criterion led to the choice
of more sophisticated models for the environmental
covariance structure. Table 3 gives the unstructured

environmental correlation and covariance matrices.
For the chosen model presented in the previous analy-
sis (Model 15), the fit seemed to be good for the correla-
tion structure (r. = 0.99). The overall variance-covari-
ance matrix was also well-fitted by the chosen model
(r. = 0.99).

However, the difficulty of modeling the environmen-
tal covariance structure, and therefore the require-
ment for complicated models, seemed to be mainly due
to the substantial increase in variance at the end of the
lactation (Figure 1). This pattern has been observed in
previous studies (Rekaya et al., 1999), and does not
seem to be well-accommodated with standard polyno-
mial functions. However, removing the last test from
the analysis allows much simpler models to be used.
In this case, even a simple character process model
with linear variance and exponential correlation for
the genetic part and quadratic variance with non-sta-
tionary exponential correlation for the environmental
part (Model 7 in Table 1), with only 9 parameters,
seemed to accommodate the covariance structure well.
The likelihood difference with the unstructured model
was 192 in the 9-test analysis, whereas it was 885
with 10 tests for the sire model.

DISCUSSION

In classical quantitative genetics theory, when un-
related sires are considered, sire and animal models

Table 3. Correlation (below diagonal) and covariance (above diagonal) matrices for the within-sire compo-

nent.

Model 1: Unstructured

12.7 7.6 6.6 6.0 5.7
0.59 12.9 8.6 8.0 7.5
0.53 0.68 12.3 8.6 8.0
0.49 0.63 0.70 12.1 8.6
0.47 0.61 0.68 0.72 11.6
0.44 0.58 0.64 0.70 0.76
0.42 0.55 0.61 0.66 0.72
0.40 0.52 0.58 0.63 0.69
0.36 0.48 0.54 0.58 0.63
0.28 0.37 0.43 0.46 0.51

5.3 5.0 4.6 4.1 3.6
7.0 6.6 6.0 5.5 4.8
7.5 7.1 6.5 6.1 5.3
8.2 7.7 7.1 6.5 5.8
8.7 8.2 7.6 6.9 6.2
11.4 8.6 7.9 7.1 6.4
0.77 111 8.3 7.5 6.7
0.72 0.77 10.4 7.8 7.0
0.66 0.70 0.75 10.3 7.8
0.53 0.56 0.61 0.68 12.8
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are equivalent. This is, however, in general no longer
the case with repeated measures. For random regres-
sion models, sire and animal models are only equiva-
lent when a lower- or equal-order polynomial is consid-
ered for the genetic compared to the environmental
part. In general, the equivalence does not hold for
character process models. With an animal model, a
character process model with 11 parameters per-
formed better, regarding the likelihood criterion, than
a quartic-quartic random regression model (with 31
parameters). However, although the likelihood was
higher (difference of 190), the genetic variance was
misspecified with the character process model. This
was because the model attached more weight to the
within-sire component and neglected the between-sire
part. This discrepancy could not be detected with the
likelihood, which may not be the most appropriate
criterion for model selection. Other criteria should be
investigated, such as choosing the model that offers
the most accurate genetic values or which gives the
best response to selection.

These analyses showed that additional flexibility
could be obtained when combining both random regres-
sion and character process models in the analysis, as
proposed by Zhang et al. (1998). Even the simple qua-
dratic random regression model with an additional sto-
chastic process at the residual level performed better
than a quartic polynomial, with fewer parameters. It
was also shown that a character process structure,
allowing for a correlation pattern, performed better
than a simple quadratic residual variance with only
one extra parameter. This may be due to a short-term
environmental effect, which cannot be taken into ac-
count by the random regression model. This additional
effect may be even more important for daily record
analysis.
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APPENDIX
Vonesh’s Coefficient

The concordance correlation coefficient r, described
by Vonesh et al. (1996) was used to evaluate the good-
ness-of-fit for both the variance and correlation func-
tions estimated by the models when compared to the
unstructured covariance matrix, which corresponds to
a multivariate analysis. For the correlation structure,
for instance, we consider:

Gy — 99 1

Dilyi — Y2+ L@ — 9+ T(T - D - 9)%/2

I, =

where §;; represents the estimated correlation between
observations at times t; and t; given by the model, and
vij is the correlation between observations at times t;
and t;in the unstructured matrix. T represents the total
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number of times at which measurements were taken.
y and § are the mean of the correlation values for the
unstructured matrix and the model, respectively. The
concordance coefficient for the variance estimate is
much simpler and given by

Sy - 902
Dlyi—y?+ 5§ - 9%+ Ty - 9)°

r.=1- [9]

975

where y; now refers to variances rather than corre-
lations.

The coefficient r, directly measures the level of
agreement (concordance) between y; and §;, and its
value is reflected in how well a scatter plot y; versus
¥ij falls about the line identity. The possible values of
r. are in the range -1 <r. < 1, with a perfect fit corres-
ponding to a value of 1 and a lack of fit to values < 0.
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