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Abstract

A statistical analysis strategy for the detection of quantitative trait loci (QTLs) in half-sib populations is outlined.
The initial exploratory analysis is a multiple regression of the trait score on a subset of markers to allow a rapid
identification of possible chromosomal regions of interest. This is followed by multiple marker interval mapping
with regression methods within and across families fitting one or two QTLs. Empirical thresholds are determined
by experiment-wise permutation tests for different significance levels and empirical confidence intervals for the
QTLs’ positions are obtained by bootstrapping methods. For traits with evidence for a significant single-QTL effect,
an approximate maximum likelihood analysis is performed to obtain estimates of QTL effect and the probability of
the QTL genotype for each parent of a group of half-sibs. The strategy is demonstrated in an analysis of previously
published data on chromosome 6 and five production traits from a granddaughter design in dairy cattle. The results
confirm and extend evidence for QTLs affecting protein percentage. Informativeness of markers limited the
possibility of mapping more than one QTL on the same linkage group.

Keywords: dairy cattle, gene mapping, milk protein, quantitative trait loct.

Introduction might test for the failure of the models with only a

Many traits of economic interest in plants and  single QTL.

animals are of a quantitative nature. That is, the

observed phenotypes are continuously distributed — Genetic linkage maps have now been developed for
and reflect the action of many quantitative trait loci ~ the major livestock spedies. The use of crosses
(QTLs) together with environmental effects. The  between genetically divergent lines to map QTLs,
availability of genetic markers has allowed however, will often be difficult in livestock and the
experimental studies in a number of species of the study of existing populations will often be the only
nature and location of some of these QTLs. Such  practical option. Large half-sib families exist in
experiments are often based on crosses between  livestock species where artificial insemination is
inbred lines with large phenotypic differences.  extensively used and a relatively small group of elite
Methods of analysis have focused on identifying  sires has many offspring in the population. Dairy
single QTLs of relatively large effect against an  cattle provide the most striking example of this
asstmed background of no geretic variation on the  structure. ‘Granddaughter’ and ‘daughter’ designs
linkage group. Although methods for the joint  for QTL detection, proposed by Weller et al. (1990),
mapping of two or more QTLs have been developed =~ make use of this existing family structure and the
and applied (e.g. Haley and Knott, 1992; Martinez  fact that the phenotypes are collected on a routine
and Curnow, 1992; Jansen, 1993), distinguishing the  basis for progeny testing. In such designs evidence
effects of multiple linked QTLs from those of asingle ~ for QTLs comes from segregation within paternal
QTL is difficult using these methods. More recently, ~ halfsib families. In the daughter design, such
Visscher and Haley {1996) have looked explicitly at ~ evidence comes from co-segregation of marker
alternative genetic models and discussed how one  alleles and performance in the daughters. In the
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granddaughter design, the evidence comes from co-
segregation of marker alleles in the sons with
performance assessed from records on large numbers
of their daughters (granddaughters of the original
sire).

Inidal QTL studies in cattle were based on the
daughter design and analysed associations with
markers individually (e.g. Neimann-Sorensen and
Robertson, 1961). The development of marker maps
allows information from linked markers to be
combined and the advantages of this for analyses of
half-sib data have been demonstrated (Knott ef al,
1994 and 1996). Recently, granddaughter designs
have been applied in several studies to detect QTLs
in dairy catile. Ron et al. (1994) use a single marker
approach whereas Georges et al. (1995), Spelman et
al. (1996) and Vilkki et al. (1997) used information
from multiple markers.

In this paper, we present a step-wise approach to
analyse data from multiple markers in half-sib
populations. The approach uses exploratory analyses
similar to those employed by Visscher and Haley
(1996), in which trait scores are regressed onto
selected marker information in an attempt to
determine which chromosomal regions contribute to
variation in the trait. Where warranted by the earlier
analyses, these are followed by least-squares based
interval analyses designed to further test and
estimate the effects of major single QTLs. Finally, we
use approximate maximum likelihood analyses to
further refine our understanding of previously
detected effects. We will demonstrate the use of the
methods with the results of an analysis of data from
a granddaughter design in cattle with marker data
from bovine chromosome 6.

Methods

Approaches

The basic approach is developed from methods used
previously for analyses of data from inbred line
crosses (e.g. Haley and Knott, 1992), outbred line
crosses (e.g. Andersson et al., 1994; Haley ef al., 1994)
and half-sib analyses (Knott ef al., 1994 and 1996).
Essentially, the available marker information is used
to calculate “virtual’ markers at chosen points (e.g.
1 cM (centiMorgan) intervals) in the linkage groups
(essentially, the probabilities of each genotype at
each point conditional on available marker
information). The calculated ‘virtual’ markers then
form the basis of further analyses performed via least
squares, maximum likelihood or some other method.
In this study we calculate the “virtual’ markers as
outlined for half-sib families in Knott ef al. (1996). We
assume the common parent of a group of half-sibs

will be male. In this case, we are only interested in
using information on segregation from the sire, as in
a true half-sib structure each dam has only one
progeny and therefore there is no information from
segregation within dams. In the method used, the
marker data is first used to identify the most likely
phase of the two sire gametes based upon progeny
information from pairs of adjacent informative (i.e.
heterozygous) markers. (NB in this, as in other
interval analyses, we assume that the order and
distarices between markers are known in advance).
Following this, the probability of each progeny
inheriting each of the two sire gametes at each
chosen point in a linkage group is calculated based
on the sire genotype, the progeny genotype and, if
available, the dam genotype. These probabilities (our
‘virtual’ markers) then form the basis of our further
analyses. It should be noted that the amount of
information in the marker genotypes can be assessed
from these probabilities (Spelman et al., 1996). At the
position of a fully informative marker we know for
sure which sire allele each progeny has inherited, so
the probability of inheriting one allele will be unity
and the probability of inheriting the other will be
zero. As we move away from the position of a
marker or if markers are less than fully informative
the probability of the most likely genotype drops
below unity. At points where there is no marker
information (i.e. unlinked to any marker) a progeny
has equal probability of being either sire genotype.
The variance of these probabilities can be used to
give a picture across the genome of information per
sire or across sires, as shown by Kruglyak and
Lander (1995).

Weighting the analysis

One of the most likely applications of a half-sib QTL
analysis will be to data generated from a
granddaughter design as applied to dairy cattle
(Weller ef al.,, 1990). In such a design the common
parent is the grandsire of the animals with
phenotypic records but phenotypes of the sons may
be expressed in terms of daughter yield deviations
(DYD). The daughter yield deviation of a son is the
unregressed weighted average of his daughters’
performance, expressed as a deviation from the
population mean (Van Raden and Wiggans, 1991).
The variance of DYD depends on the number of
daughters with records and if there are big
differences in number of offspring between sons,
their observations should be weighted to account for
variance differences. These weights can be expressed
as the reliability of the DYD estimated from the
progeny testing data following Georges et al
(1995).

If A is the reliability of a son’s breeding value (or
transmitting ability), and B is the reliability of the




QTL detection in half-sibs 259

average breeding value of his parents (the so-called
parent average), then the reliability pertaining to the
daughters of the son, ie. the reliability of the DYD,
can be written as,

R=[A/(1~A)-B/(1-B)]/[A/(1-A)-B/(1-B)+1]

which is a simplification of the equation provided in
the appendix of Georges et al. (1995).

Exploratory regressions on multiple markers

The first analyses of a linkage group are simple and
fast protocols to determine whether the
chromosomal region under study is associated with
variation in the recorded traits. The analyses can be
done with standard statistical packages; Genstat 5
Committee (1993) was used in this study. To
undertake the analyses, first, the locations of
informative and evenly spaced markers are
identified from those available in the data set. There
are currently no hard and fast rules that dictate the
number and spacing of markers to select. The
number of markers to be selected depends on the
available markers and their informativeness and the
number of recorded animals. If too many markers
are selected the analysis will take up a significant
proportion of the degrees of freedom and
information from closely linked markers is highly
correlated. On the other hand, selection of widely
spaced markers may not provide information on
regions between markers and gives little opportunity
to test for multiple linked QTLs. Theoretical
calculations have indicated that markers which are
spaced every 25 cM or so should explain most of the
variation on a chromosome {e.g., Dekkers and
Dentine, 1991; Visscher, 1996).

In the first analysis the data are regressed on to the
marker locations selected for a linkage group. If a
marker is uninformative in a particular individual, it
is replaced by the ‘virtual' marker probability
calculated for that position based on other marker
information. The model includes the effect of sire,
marker genotype nested within sire and residual,
with the test of marker within sire providing
evidence on the presence of genetic variance
associated with the region (Neimann-Sorensen and
Robertson, 1961). For each marker we regress on to
the probability of only one of the sire alleles, as the
probabilities of the two sire alleles are completely
confounded (and sum to unity). (NB if the data are
from a granddaughter design, we can replace sire in
the foregoing by grandsire.) The joint regression
onto all marker locations in a linkage group is
equivalent to the ‘chromosomal test’ of Visscher and
Haley (1996), testing for the presence of genetic
variation associated with that chromosome or

linkage group.

The model for these exploratory analyses is:

n
Yi=u +hzlbfkmijk + ey

where Y;; is the DYD for son j of grandsire i, |1, is the
mean for the half-sib offspring of grandsire i, by is
the effect of one of the paternal alleles for marker k
within family i, m; is the probability for son j of
inheriting that paternal allele of marker k conditional
on the marker genotypes and e; is the residual effect
for son j. Under the null hypothesis of no genetic
variation of the trait associated with the linkage
group under study only a family mean is fitted.

If an effect of a chromosome is found, further
analyses can be used to identify whether there is one
or more regions affecting the trait. The regression on
all selected marker locations is compared with the
regression on every pair of adjacent markers. If there
is a single QTL located on the linkage group (or
group of QTLs unseparated by a marker), then its
fwo flanking markers absorb the QTL effect and
regression on those two markers should not be a
significantly worse fit than regression on all markers.
Regression on pairs of markers at a reasonable
distance from the QTL should fit significantly worse
than regression on all markers. Where more than one
important QTL affects the trait, there will be no
single pair of adjacent markers that accounts for as
much variance as do all markers jointly. Thus in a
regression analysis we can look for improvement in
fit comparing including all markers from a linkage
group with each pair of markers in turn.

An alternative approach is dropping each pair of
adjacent markers in turn and comparing regression
on the reduced number to regression on all selected
markers. Dropping pairs of markers that do not flank
the QTL should not affect the fit of the model.

Thus, with these tests, if there is genetic variation
associated with the linkage group regression on all
markers should be significant. If the effects are due
to a single clear-cut QTL in a linkage group, fitting
the best pair of adjacent markers should be as good
as fitting all markers and dropping any other pair of
markers should not result in a significantly worse
fitting model. If two or more regions (QTLs) of the
linkage group affect the trait, dropping two or more
pairs of adjacent markers should result in a worse
fitting model. In practice, the power of the approach
will be affected by the sample size and results may
be less clear-cut.

Interval mapping
Linkage groups that gave evidence in the first
analyses to account for genetic variation in any of the
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traits can be further analysed applying interval
mapping. Interval mapping was originally
implemented via maximum likelihood (Lander and
Botstein, 1989). Martinez and Curnow (1992) and
Haley and Knott (1992) describe interval mapping
using regression methods which are computationally
less demanding than maximum likelihood methods
and gave very similar results, Knott ef al. (1994 and
1996) and Haley ef al. (1994) extend these methods to
outbred populations. In this study we apply the
method described in Knott ef al. (1996) with the
extension that weighted least squares are used to
account for different numbers of recorded daughters
per son. At each 1 cM position, the trait scores from
the sons are regressed on the virtual marker values
(i.e. the probabilities of inheriting a given grandsire
allele), calculated as described previously.

The model used is essentially that given previously
(1 e =4;+ Zbrkmqk + Eq)

However, the summation is now over the number of
QTLs included in the model (one or two in the
analyses performed here) and my, refers to the
virtual marker value at the partlcullar chromosomal
position or positions being considered. The analysis
is nested within families which allows a different
linkage phase between marker genotype and
putative QTLs in the different grandsires. F ratios are
calculated across families by comparing the mean
square due to the putative QTL effect with the
residual mean square. In a one QTL model, the
location where the F ratio has a maximum is the
most likely position of a single QTL and meodel
parameters are estimated at this position (Knott ef al.,
1994 and 1996).

An alternative analysis testing for heterogeneity
between families can be performed in which a QTL is
fitted at the best position within each family, rather
than the single overall best position. If the combined
within family analysis explains significantly more
variance in the trait than the across family analysis, it
suggests different QTLs are segregating in the
different families.

If there is evidence for more than one QTL affecting
the trait on the linkage group, the previous model
can be extended to fit two QTLs at all possible
combinations of positions (Haley and Knott, 1992). It
is impossible to map multiple QTLs at positions
flanked by the same informative markers (Whittaker
et al., 1996). Since informative markers differ between
families, there is no solution common to all families.
Therefore, the model was reduced to fit just one QTL

for a family if a dependency was detected within that
family. A test to compare fitting one versus two QTLs
is the F ratio calculated from the mean squares of the
one and two QTL analyses. Dependencies in the two
QTL analyses, which result in only a single QTL
being fitted in some families, will tend to make the
test for the presence of two QTLs more conservative.

Approximate maximum likelihood interval mapping

~ Where the analyses suggest a single QTL is

segregating, the least-squares analyses provide
estimates of the gametic effects that differ from
family to family. If we are prepared to assume that a
single QTL with two alleles is segregating, we can
obtain better estimates of the QTL effect and
posterior probabilities of the QTL genotype of each
grandsire (i.e. whether heterozygous or homozygous
for the QTL alleles). To do this in a granddaughter
design the probabilities for each son at all locations
of inheriting the first grandsire gamete can be used
in an approximate maximum likelihood analysis,
and similarly in a daughter design (Knott et al., 1996).
The model applied assumes a single QTL with only
two alleles and no dominance. Furthermore, it is
assumed that the QTL does not have a major effect
on the distribution of phenotypes within half-sib
families. The likelihood is optimized at fixed
locations along the chromosome and compared with
the likelihood of the null hypothesis of no QTL. The
test statistic in this study is twice the log likelihood
ratio of the two models. The position with the overall
highest statistic is the most likely position of a
putative QTL. Using the maximum likelihood
estimates, the posterior probabilities of whether the
QTL is homozygous or heterozygous can also be
calculated for each grandsire.

The likelihood for a QTL at a given position requires
three parameters: the frequency of sires homozygous
at the QTL (p), the substitution effect () of the QTL
and the residual variance (0,2 within groups of
progeny inheriting one grandsire gamete. The
likelihood appropriate to the granddaughter design
derived based on Knott ef al. (1996) is:

I-p 1-p
[PXLQQ,+T><LQ%+2—><LQQ]

where

LQQ; = n’;(zg-;o,caﬁ/&-j),
1

Lqu m; f(z,],a/ 2 02/ R, ﬁ) + (1 -mf(zy
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140, = _ﬁi[mi.]. ol 2,031 Ry) + (1 - m)fz,0/ 2,62/ Ryl
B

are the homozygous and two heterozygous
contributions to the likelihood, z; is the corrected
DYD for sire j, son of grandsire i, my is the
conditional probability of son j inheriting the first

gamete from the grandsire i at the considered .

position, R;; is the reliability of the DYD of the son j
of sire i and n; is the number of sons of grandsire 1.

Fzp,6%) = 2rc?) 12 expl—(z - p)*/ 267
is the density function of the normal distribution.

The posterior probabilities of the QTL genotypes of
each grandsire can then be obtained using the
maximum likelihood estimates. The probability that
grandsire 7 is homozygous is:

1-p 1-p
pXLQQ/ [p X LQQ; + - X LQg; + > X Lg2]

and the probability it is heterozygous is one minus
this value.

Two ways of assigning genotypes to the grandsire
are to pick the one with the highest probability or to
only assign a genotype if the probability exceeds a
certain value (e.g. 0-75) (Knott et al., 1991).

Significance thresholds

Lander and Kruglyak (1995) suggest that, no matter
how many linkage groups are analysed, a genome-
wide scan should always be assumed when setting
the significance threshold. This stringent threshold
takes account of the large number of tests being
performed. Lander and Kruglyak (1995) further
distinguish between significant overall linkage with
a genome-wide risk of P < 0:05 for type I errors and
suggestive linkage where one false positive is
expected in a genome wide scan. A further option is
to adjust thresholds for the analysis of multiple traits.
Multiple correlated traits can be reduced to a lower
number of independent traits explaining all the
variance by a principal component analysis on the
phenotypic values or the correlation matrix between
the different traits (Chatfield and Collins, 1989).

For the exploratory analyses of single linkage
groups, the 0-05 significance threshold can be
obtained from standard tables. The overall
significance used for the chromosomal test when
undertaking a genome-wide scan of »n independent
linkage groups (or # [linkage groups X independent
traits]) can be calculated from the nominal
significance level applied to a single linkage group

following Bonferoni:
Poveml‘l =1- (1 - Pnumina!)”'

A very good and simple approximation for the
solution of this equation is,

Puominnl = Poverall"’n'

The suggestive significance level can be obtained
from the binomial distribution as:

Psuggestim = 1/?’!
The stringent overall significance threshold is not
appropriate once a linkage group associated with
variation has been identified and further analyses are
being performed based on pairs of adjacent markers.
Here we would propose to use the nominal
significance threshold of P < (-:05.

The levels of overall and suggestive significance are
also applied in the interval mapping analyses.
Empirical significance thresholds are determined
using permutation tests following Churchill and
Doerge (1994) for the interval mapping analyses
fitting one and two QTLs. The thresholds were
determined for the across family analyses but could
also be applied to obtain an empirical significance
threshold for an individual family. Within families,
the sons’ phenotypes are permuted against their
marker genotypes. It should be noted that the
empirical thresholds obtained by permutation for a
two QTL analysis assume a null hypothesis of no
QTLs versus an alternative hypothesis of two QTLs
affecting the trait. Therefore, these thresholds give no
evidence to distinguish between one, two or more
than two QTLs affecting the trait. A conservative
approach might be to use the single QTL thresholds
for testing the improvement of a two QTL model
over a single QTL model.

The maximum likelihood analyses are relatively
computationally demanding making it difficult to
use permutation tests to define a significance
threshold. This is not problematical in the series of
analyses performed here, as maximum likelihood is
used to provide estimates for QTLs detected in other
analyses.

Confidence intervals for QTL positions

In has proved difficult to obtain confidence intervals
on estimated positions of QTLs. Lander and Botstein
(1989) suggest that the area bounded by a 1 or 2 unit
drop in logarithm of odds (LOD) score provides an
asymptotically 96-8 and 99-8% confidence interval.
However, van Ooijen (1992) shows that such
confidence intervals can often be anti-conservative
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and Visscher e¢f al. (1996) propose bootstrapping to ~ The phenotypic data consisted of DYDs for milk
obtain empirical threshold values for QTL positions  yield, fat yield, protein yield, protein percentage and
as an alternative to the LOD drop-off methods and ~ fat percentage. Further information that was
show that it produces good estimates of the  provided dealt with the parental averages for the
confidence interval. For half-sib analyses resampling  five traits, reliabilities for the breeding values of the
should be performed within family, so from each  sons and reliabilities for the parental averages of
half-sib family with n sons n individuals are sampled  their parents, and number of daughters for each son.
with replacement. The analyses of N resampled  These data were used to calculate the reliability of
replicates allow top and bottom percentiles to be  the sons’ DYDs and apply these as weights in all of
identified to provide limits for the confidence  the least-squares analyses.

interval.
Computation

Exploratory analyses were performed using the
Example statistical package Genstat 5 Committee (1993).
Data Least-squares and maximum likelihood (ML)

The strategy was applied to a granddaughter design  interval mapping analyses were performed with
exploring linkage between bovine chromosome 6  programs written in Fortran 77. ML analyses used a
and five production traits. These data were  grid search of QTL positions along the chromosome,
generated in the MILQTL project, a joint project of  with a Simplex routine used to maximize the
Liege  University, Massey University and  likelihood over other parameters for the fixed QTL
Wageningen Agricultural Universify, and were  positions.

distributed among interested groups for analysis.

The design consists of 20 grandsire families of the  Results :

Dutch Holstein-Friesian population with nine to 139 Principal component analysis revealed, as expected,
half-sib sons. Genotypes were obtained for nine  that the five traits can be reduced to three
microsatellite markers on chromosome 6, spanning a  independent traits that account for 99% of the
95 cM interval. Table 1 gives an overview of the  variance. For exploratory analyses of a single trait
marker information in the different families and the = with 29 autosomes the suggestive and significant
number of sons for each family. thresholds would be P<(034 and P <0-002,

Table 1 Information on the granddaughter design and markers

Marker (position in cM)

Grandsire 1 (0) 2 (13) 3 (20) 431 5 (41) 6 (52) 7 (54) 8 (58) 9 (94) n
1 # # # # 13
2 # # # # # 12
3 # # # 16
4 # ¥ 4 # # 31
5 # # # # 42
6 # # # # # 139
7 # # # # # # # # 13
8 # # # # 53
9 # # # # # 23

10 # # # # 4 # # 71

11 # # # # # # 26

12 # 4 4 # # # # # 12

13 # # # # # # 73

14 # # # # # # 59

15 # # # # 2

16 # # # # # # 38

17 # # # 15

18 4 # # # # # 14

19 # # 16

20 # # # # # # 9

# Denotes that a grandsire is heterozygous for a marker and # is number of half sibs sons in the family.
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respectively. For analysis of three independent traits
the suggestive level and significant thresholds would
be P < (+011 and P < 0:0006, respectively.

For the exploratory analyses we used virtual markers
at the positions of markers 2, 4, 5, 7 and 9 (NB this is
equivalent to using the marker genotype for
individuals in which the marker is fully informative).
Using these markers gave an average of 153 cM
between markers (Table 1). Each of these markers
was informative in at least 10 of the 20 grandsire
families and the markers were reasonably spaced.
The multiple regression of the trait score on these
five markers revealed an effect on milk yield which
approached the single trait suggestive level
(P=0-042) and an overall significant effect for
protein percentage (I’ < 0-0006).

There was no significant evidence for an effect on fat
or protein yield or on fat percentage.

Regression on all markers was then compared to
regression on pairs of adjacent markers. For protein
% this revealed that the model with all five marker
locations included was always significantly
(P < 0-005 in all cases) better than fitting any pair of
adjacent markers. There is thus not one clear region
that accounts for the variance explained by the five
markers, i.e. there must be more than one region
accounting for the effect. For the other traits, no
single pair of adjacent markers explained
significantly less of the variance than the five
markers altogether. The alternative analysis of
protein % in which pairs of adjacent markers were
dropped from the full model indicated that each pair
of markers had an effect, although dropping selected
markers 5 and 7 was only significant at the nominal
level 0-10 > P > 0-05. This suggests that there must at
least be two genetic effects on protein % linked to
this chromosome, one prior to marker 5 (at 41 cM) in
the selected marker set and one post marker 7 (at
54 cM).

Although not all traits showed evidence for QTLs in
the exploratory analyses they were all analysed with
multiple marker interval mapping methods. The
analyses were catried out at 1 cM intervals. Three
empirical thresholds were determined: the P <0-05
nominal level assuming one test and the thresholds
for overall suggestive and significant linkage
assuming 3 independent fraits and 29 autosomal
bovine chromosomes resulting in a total of 87 tests.
For each trait the thresholds were obtained by
100 000 permutations. The estimated thresholds are
given in Table 2.

There was no evidence of any effect in the analysis of
fat yield. For milk yield, protein yield and fat % the

Table 2 Empirical significance thresholds from permutation
analysis for F ratios from least squares, single QTL analyses

Significance level

Nominal, Suggestive, Suggestive,

single three three
Trait trait traits traits
Milk yield 199 229 2-89
Fat yield 1-87 2:17 2-61
Protein yield 1-88 2-18 272
Fat % 2-07 239 301
Protein % 2-03 2:37 295

maximum F value from the least squares interval
analysis were 2-10, 1-99 and 2-34 and exceeded the
nominal threshold vatue of P < 0-05. For protein %
the maximum F value was 2-89 and hence exceeded
the threshold for suggestive linkage and came very
close to the overall significance level derived
assuming 29 independent chromosomes and 3
independent traits. The F-ratio curve for protein % is
shown in Figure 1.

The results from analyses of protein % data within
individual families are shown in Figure 2 for families
for which the test statistic exceeded the nominal 0-05
level. The nominal significance of the maximum F
value in these families varied from P <0-025 to
P < 0-001. The most likely position for a QTL was not
very consistent across these families. In fact at the
most likely position of the QTL from the across
family analysis there was only a significant effect for
grandsires 1 and 16 with an estimated substitution
effect on protein % of 0+12 and 0-09, respectively. The

4 50 60 70 80 90
Position (cM)

0 10 20 30

Figure 1 The F values through the linkage group from
least-squares interval analysis fitting one QTL affecting
protein %. The horizontal lines representing signifiance
thresholds are P, pa < 005 ( —), ‘suggestive” linkage
(CEEETEY Y and P, ,q.y <005 ( ), Positions of markers are
shown by arrows, with filled arrows used for markers
selected for the exploratory analyses.
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other three families had their maximum test statistic
towards the other end of the linkage group.

In order to test whether there was significant
heterogeneity in the position estimates for protein %
between families two log-likelihood ratios were
calculated for each grandsire: one fitting a single
QTL at the best location for that grandsire and one
fixing the position of the QTL at the best overall
position (obtained from a joint analysis of all 20
grandsires). The log likelihood for each grandsire is:

LR[ = ﬂi {loge RSSlI - loge RSSQI]

RSS51; = residual sum of squares for grandsire i fitting
only a mean; R552; = residual sum of squares for
grandsire i fitting a single QTL; n; = number of sons
tor grandsire i.

The overall test was then calculated as the sum of the
difference between the two tests for each grandsire,
le.

TEST = z [LR; (best location for grandsire {)
i=1

— LR; (global location for grandsire )]

where s is the number of grandsires. This test statistic
should approximately be distributed as x* with 19
d.f. (for the 19 additional locations estimated). For
protein %, the value of TEST = 32-2, giving a nominal
P < (:05. This suggests that there may indeed be
heterogeneity between families in the location of
QTLs, possibly because different QTLs are
segregating in different families.

The interval analysis fitting two QTLs at all
combinations of positions was carried out for all

Family 16

127 Family 6
107 /
& 87 Family 9
o y

¢ 10 20 30 40 53 60 70 8 90
Position (cM)

Figure 2 The F values through the linkage group from
least-squares interval analysis fitting one QTL affecting
protein % in individual families 1, 6, 9, 12 and 16.

4000
3500
...3000-
&'2500
2 2000-
£'1500-
K= 1000
500-

0_

0 10 20 30 40 50 60 70 80 90

Position (cM)

Figure 3 Distribution of best estimates of the position of a
single QTL from least-squares interval analysis after 10000
bootstrap resamples of protein % data.

traits and the results were compared to the one QTL
analysis by an F test. For milk yield, fat % and
protein % the two QTL model was better with
nominal probabilities of P = 0-05, 0-05 > P > 0-01 and
0-05 > P > 001, respectively and for the other two
traits P >0-05. The estimated positions of the two
QTLs were 5 and 55 ¢M for protein %. The best single
QTL model for protein % accounts for 8-1% of the
residual variance, inclusion of the second QTL
increased the residual variance accounted for to

12:8%.

The 95% confidence intervals for location obtained
by 10 000 bootstrap samples for each trait fitting one
QTL covered in all cases almost the whole linkage
group. The distribution of the maxima for protein %
is presented in Figure 3. The major mode of the
maxima is close to the best estimated position from
the one QTL analysis (i.e. 13 cM) and about 65% of
the estimates are within 20 cM of this position, but
the remainder are spread across the whole
chromosome.

From previous analyses there was an indication that
there was more than one chromosomal region
affecting protein %, so for this trait the bootstrap
analysis was repeated fitting two QTLs. The 95%
confidence interval for the first fitted QTL ranged
from 0 cM to 55 cM and for the second QTL it ranged
from 20 cM to 90 cM. The combinations of positions
are presented as a two dimensional view in Figure 4.
This figure is of course symmetric around the
diagonal. Maxima appear at several combinations of
positions and although one of these positions is often
around 55 ¢M, this is not always the case.

Finally, we applied interval mapping via the
approximate ML approach following Knott et a4l.
(1996). In analyses fitting a single QTL, both fat %
and protein % gave strong evidence for a significant
effect at the proximal end of the linkage group, with
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Figure 4 Distribution of best estimates of the joint position
of two QTLs from least-squares interval analysis after 10000
bootstrap resamples of protein % data. Frequencies: black
represents 400-600, grey represents 200-400, and white
tepresents 0-200.

maximum log-likelihood test statistics of 22:6 and
313 at 0cM and 5cM, respectively. These test
statistics are for the alternative hypothesis of a linked
QTL versus no QTL on the linkage group and give
P <107 for both fat % and protein %, respectively
when compared with a ;> distribution. The test
statistic curve resembles the figures for the
regression methods as can be seen in Figure 5 for
protein %, but seems to be inflated at the ends of the
linkage groups in relation to the least squares test
statistic curves. Like the least squares interval
mapping results, the analysis using ML gave the
highest test statistic for protein %. For this trait the
results of the ML analysis were compared with those
from least squares. Using least-squares methods and
fitting a single QTL, families 1 and 16 had a
significant F ratio at the overall most likely position
of a QTL (13 cM) when analysed separately (Figure
2). These families were therefore assumed to be
heterozygous for a QTL at this position, the average
substitution effect being 0:11%. In the ML analysis,
the overall estimated frequency of heterozygous sires
was 0-10 and sires of these families had an estimated
probability of 0-9755 and 1-00, respectively, of being
heterozygous for a QTL at 5cM. The estimated
substitution effect on protein % of the QTL was
0-13%. The sires of other families all had estimated
probabilities of less than 0-01 of being heterozygous
fora QTL at 5 cM.
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Figure 5 Log-likelihood test statistic through the linkage
group from the approximate maximum likelihood anatysis
of a single QTL affecting protein %. The two curves show
the log-likelihood curve for the test of a single QTL in the
linkage group versus no QTI, (————) and for the test of a
single QTL in the linkage group plus an unlinked QTL
versus only an unlinked QTL (-------- ).

The maximum likelihood analyses were then
performed for two QTLs in the linkage group for the
trait protein %. Computational limitations meant that
the grid search could only be performed at 9cM
intervals for each pair of positions of the two QTLs
and in addition the best locations for two QTLs from
the regression analyses (5 and 55cM) were
examined. The likelihood was maximum at this latter
pair of positions, where the log-likelihood ratio for
this model compared with the best one QTL model
was 121, a nominal probability of 0-005> P > 0-001.
The overall probabilities of sires being heterozygous
for these two QTLs were 0-10 and 0-82, respectively
and their estimated substitution effects on protein
composition were 0-14% and -0-02%, respectively.

Discussion

In this study we have explored the use of a range of
analytical methods for dissecting quantitative trait
locus effects in data from a dairy population
structured as a number of half-sib families We have
used these analyses to show the likely occurrence of
at least one and probably more QTLs affecting milk
protein % on bovine chromosome 6. The conclusion
that genetic effects on this trait reside on
chromosome 6 is not unique. Georges et al. (1995)
reached a similar conclusion on a different sample
from the Holstein population. Spelman et al. (1996)
concluded that an effect was located on chromosome
6 in broadly the same set of data as we have analysed
here. However, the main purpose of this study was
to demonstrate the use of a structured analysis of
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data of this type in order to develop as full a picture
as possible of the QTL effects.

The basis of the methods we employ is the use of
marker data to derive ‘virtual markers’ at chosen
points through the genome. Analyses are then
performed that are conditional on this virtual marker
information. We have used relatively simple
methods to reconstruct the likely sire gametes and
derive virtual marker probabilities. Although more
sophisticated methods may provide more
information in some circumstances, we have
previously shown that even complete knowledge of
the true sire information may not greatly improve
the power to locate QTLs (Knott et al., 1996).

The procedure we employ is based firstly on use of
exploratory analyses using regression on information
at selected marker locations. This is followed by
interval mapping approaches using regression and
subsequently an approximate likelihood method.
These methods can be complemented by use of
permutation analysis and bootstrap analysis where
appropriate  and feasible to set significance
thresholds and to derive confidence intervals.

The regression-based analyses are robust and fast to
compute (facilitating the use of permutation and
bootstrap analyses). The exploratory analyses
provide a rapid method of giving an overview of
effects associated with a particular linkage group
and present no problem for setting significance
thresholds (as the starting point is an independent
test for each linkage group). Interval mapping by
regression can provide more detailed information on
the location of single QTL whilst retaining
robustness. The ML approach allows more detailed
inference on QTL effects and sire heterozygosity to
be drawn with some penalty in the speed of
computation, increased parameterization of the
model and potential loss of robusiness.

The results of the analyses are broadly consistent
with one another. Only protein % gave much
evidence of being influenced by loci on chromosome
6. For this trait the exploratory analyses suggested
that at least two QTLs were segregating in the
population and in fact hinted that there might be
more than two. The least significant pair of the
selected markers were 5 and 7, and dropping these
from the analysis produced a near significant
(010 > P > 0-05) reduction in fit. If this test had been
significant, then the minimum number of separate
QTLs in the linkage group needed to explain these
results would have been three (one near or outside
each of markers 2 and 9 and one near marker 5). If
we accept that this test was not significant, then a
minimum of two QTLs can explain the result

(one near marker 4 and one near or outside
marker 9).

The interval mapping analyses of protein % fitting
two QTLs also suggested that at least two QTLs were
segregating in the population. The regression and
ML single and two QTL analyses also give similar
test statistic surfaces, although as noted previously,
the surface for the ML test tends to be relatively
larger than the regression test statistic at the ends of
the linkage group. This inflation of the test surface in
the one QTL analysis occurs at the end of the linkage
group where the marker information is rather weak.
This raises the question of whether an effect
unlinked to the chromosome under study could be
inflating this test statistic in regions where marker
information is scarce. We tested this possibility by
fitting a model with one QTL linked to the
chromosome and one unlinked QTL. This model
proved to be a significant improvement over a model
with just one linked QTL, the log-likelihood test
statistic being 6-8 (2 d.f.), it was also a significant
improvement over a model incuding only an
unlinked QTL, the log-likelihood test statistic for the
best position of the linked QTL being 22-6 (3 d.f.).
Having included the additional QTL, the apparent
magnification of the likelihood curve at the end of
the linkage group was reduced (Figure 5). These
results could be taken to demonstrate the presence of
a major gene unlinked to the chromosome under
study but we think it just as likely that it reflects
failures of the wunderlying model, such as
heteroskedastic within sire variances or non-
normally distributed data, for which an unlinked
QTL provides a partial explanation. Segregation
analysis is very sensitive to failure of assumptions
and so other potential causes of model failure should
be examined very closely before accepting the
explanation that major gene segregation is the cause.
The least-squares based exploratory and interval
analyses are much more robust to these sorts of data
problems because they only use mean differences
between marker genotypes in making inferences.

The results of the least-squares interval mapping are
very similar to those of Spelman ef al. (1996), who
used only this analytical method and had slightly
different data set with the same grandsire families
and markers as used here, but incorporating more
animals, Spelman et 4. (1996) also had information
about the genetic relationships between sire families
and the actual length of the microsatellite alleles,
which allowed them to make additional inferences
about the inheritance of putative QTL alleles.
Spelman et al. (1996) only found significant effects
influencing protein % and were cautious in
concluding the presence of a second QTL, but had
exactly the same estimated position for the single
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QTL analysis (13 cM) as well as similar estimated
effects.

The several types of analysis used here point to there
being possibly a second QTL at around 55 cM on the
linkage group. This is very close to the position of
the casein loci (marker 6 at 52 ¢cM; Spelman et al,
1996) which have previously been implicated in
effects on fat percent (Bovenhuis and Weller, 1994).
However, we should perhaps freat estimates of
position and effect for this QTL with caution,
particularly because of the hints of a third QTL from
the exploratory analyses. A putative third QTE, or
perhaps distributional problems with the data, or
even the relatively small number of sires may
explain the high estimated frequency of
heterozygous sires (0-82) obtained from the
maximum likelihood analysis which included two
OTLs.

One difficult problem, which has yet to be fully
resolved in QTL mapping, is that of the significance
threshold. The exploratory analyses provide some
means of addressing this as the initial test for an
overall effect associated with a chromosome 6 can
have a significance threshold determined solely by
the number of chromosomes being examined. For a
single QTL analysis by an interval mapping
approach, significance thresholds can be set by
simulation or by permutation (Churchill and Doerge,
1994). However, setting the test threshold for a
second QTL once one has been detected remains
problematical and requires further study.

A further problematical issue is that of multiple
traits. Here we chose to set thresholds on the
assumption that three independent traits were being
analysed and we wanted to have an overall type I
error of 5%. As the number of independent traits in a
study increases, maintaining the study wide level of
type I errors would lead to a gradually increasing
rate of type II errors. Extending this argument ad
absurdam might lead the very cautious to adopt a
career wide significance threshold, resulting in a low
type I error rate, but thresholds so stringent that no
significant effects were ever located! In general then,
a reasonable approach is to use a threshold
appropriate for a genome scan of a single trait and
accept an increased overall rate of type I errors over
all traits studied.

It is clear that detection of a second QTL even in the
relatively large sample analysed in this study, will
always be challenging, and being able to conclude
the three or more QTLs are segregating, will often be
well nigh impossible. The problem is compounded to
some extent by the fact that markers are not
completely informative, so it becomes completely

impossible to resolve closely linked QTL using least
squares methods. In principle use of ML methods
can allow such models to be analysed, but in practice
the additional information that can be extracted by
such methods is minimal. A better solution would be
to add some more informative markers to regions of
the map such as chromosome 6 where there is
evidence for the presence of more than one QTL.
Even with a dense map of highly informative
markers resolution will be limited by the sample size
and hence the availability of recombination events
separating closely linked markers. Additional
resolution may also be gained by a move towards
analytical methods that take joint account of
information from several correlated traits and such
methods need to be developed for outbred
population structures.

In conclusion, QTL mapping studies demand care in
their analysis and interpretation of their results. This
is underlined by the scale and cost of the studies and
the potential cost of mistaken inferences, both in
misguided breeding decisions and the cost of follow-
up mapping studies. The strategy developed here is
to use simple least-squares methods initially and
follow these up by more focused and highly
parameterized analyses as appropriate. The former
analyses provide for robust exploratory analyses,
whilst the latter analyses are capable of allowing
more detailed interpretation of the data where their
underlying assumptions are appropriate. This latter
point is important as our results suggest that effects
not associated with the linkage group can cause
inflated test-statistics within the linkage group,
especially where markers are low in information. We
have used an approximate ML approach for the
more focused analyses, and despite its relative
simplicity this method has been shown to be
effective for this data structure (Knott et al., 1996;
Elsen ef al., 1997). Full-blown maximum likelihood or
Monte-Carlo sampling based approach, although
more computationally demanding, could also be
appropriate.
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