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ABSTRACT
Widely used standard expressions for the sampling variance of intraclass correlations and genetic

correlation coefficients were reviewed for small and large sample sizes. For the sampling variance of the
intraclass correlation, it was shown by simulation that the commonly used expression, derived using a
first-order Taylor series performs better than alternative expressions found in the literature, when the
between-sire degrees of freedom were small. The expressions for the sampling variance of the genetic
correlation are significantly biased for small sample sizes, in particular when the population values, or
their estimates, are close to zero. It was shown, both analytically and by simulation, that this is because
the estimate of the sampling variance becomes very large in these cases due to very small values of the
denominator of the expressions. It was concluded, therefore, that for small samples, estimates of the
heritabilities and genetic correlations should not be used in the expressions for the sampling variance of
the genetic correlation. It was shown analytically that in cases where the population values of the heritabili-
ties are known, using the estimated heritabilities rather than their true values to estimate the genetic
correlation results in a lower sampling variance for the genetic correlation. Therefore, for large samples,
estimates of heritabilities, and not their true values, should be used.

THERE are three classic papers on the topic of sam- tions for beef cattle traits, argued that using the esti-
pling variances of estimates of genetic correlations mates of heritabilities and genetic correlations in the

in the 1950s: Reeve (1955), who derived expressions expressions of Reeve (1955) and Robertson (1959a),
of the sampling variance for parent-offspring designs; rather than their true (population) values, appeared to
Robertson (1959a), who derived general expressions be closer to the observed empirical sampling variance
for balanced one-way ANOVA designs with equal popu- of the genetic correlation coefficient. This was corrobo-
lation values for heritabilities; and Tallis (1959), who rated by a small simulation study. Furthermore, these
derived general expressions for balanced and unbal- authors implied that the equations derived in Reeve

anced one-way designs. Although the latter article is, in (1955) and Robertson (1959a) were inaccurate, be-
a sense, the most general, it is not referred to frequently cause the empirical sampling variance of estimated ge-
(it does not help that the reference added in the proof netic correlation coefficients was much larger than the
of the Robertson article points to the wrong journal). expected sampling variance, using both their data and

It could be argued that the expressions derived in simulations.
those articles are no longer relevant, since estimation Three areas of confusion can be identified:
techniques have moved on from least-squares methods

1. Should the parameters in the expressions for theto likelihood-based methods [mainly residual maximum
sampling variance of the genetic correlation coef-l ikelihood (REML); Patterson and Thompson (1971)].
ficient in Reeve (1955), Robertson (1959a), andUsing likelihood methods, sampling variances can be
Tallis (1959) be the population parameters orapproximated from likelihood profiles (Meyer and
the estimates of those parameters?Hill 1991). However, numerous publications, particu-

2. How good are the expressions derived in the triolarly in the evolutionary genetics literature, still use the
of articles?expressions derived by Reeve, Robertson, and Tallis.

There appears to be some confusion about the use of 3. What is the impact of estimates that are outside
expressions for the sampling variance of genetic correla- the parameter space, i.e., negative heritability esti-
tions. For example, Koots and Gibson (1996), who mates and/or estimates of genetic correlations
performed a meta-analysis of an impressive number ,21 or .11?
(1500) of estimates of heritabilities and genetic correla-

In this article I review the main expressions of Reeve,

Robertson, and Tallis and clarify under what circum-
stances the expressions should be used. I also review
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Robertson and Lerner (1949) quoted Fisher, but usedcentral to the understanding of the assumptions and
methods. c 2 5 1/[(s 2 2)n(n 2 1)]. (5)

Finally, following Zerbe and Goldgar (1980), an expression
can be derived usingMATERIALS AND METHODS

y 5 B/W 5 [1 1 (n 2 1)t̂]/[1 2 t̂ ]To answer the above questions, we first look at the derivation
of the sampling variance of intraclass correlation coefficients

z {[1 2 t]/[1 1 (n 2 1)t]} Fs21, s(n21) .because this serves as an appropriate paradigm for the sam-
pling variance of the genetic correlation coefficient. Subse- Hence,
quently, expressions for the sampling variance of the genetic

var(t̂) ≈ [d t̂/dy]2 var(y) 5 f(t) c3correlation are reviewed and evaluated.

with
Sampling variance of intraclass correlation coefficients

c3 5 [s(n 2 1)]2 [sn 2 3]/[n2(s 2 1)
Population parameters known: Consider a simple, balanced

(s(n 2 1) 2 2)2 (s(n 2 1) 2 4)]. (6)one-way design with s sires and n progeny per sire, and assume
that parameters are estimated using least-squares methods, Although this expression is trivial to derive, to my knowledge
e.g., ANOVA. Observations are assumed to be normally distrib- this is the first time that it has been documented following a
uted. The expectations and variances of the between- and first-order approximation using the F ratio.
within-sire mean squares (MS) are All the above expressions for ci reduce to the one most

commonly used (i.e., c0 5 1/[n(s 2 1)(n 2 1)]) for large sE[B ] 5 [(1 2 t) 1 nt]s 2
p ,

and n. However, even for large n, there are discrepancies
E[W] 5 [(1 2 t)]s2

p , between the formulas depending on the use of s, (s 2 1), or
(s 2 2) in the denominator. It is likely that the form used byvar(B) 5 2{[(1 2 t) 1 nt]s 2

p}2/[s 2 1],
Robertson and Lerner is incorrect and probably stems from
the use of Fisher’s z-transformation. Fisher showed thatvar(W ) 5 2{[(1 2 t)]s 2

p}2/[s(n 2 1)].

var(z) ≈ n/[2(n 2 1)(s 2 2)],with B and W the between- and within-sire MS, t the popula-
tion intraclass correlation, and sp the phenotypic standard

withdeviation. The variance of the least-squares estimate of the
intra-class correlation, z 5 1⁄2log{[1 1 (n 2 1)t̂]/[1 2 t̂]}.

t̂ 5 [(B 2 W )/n]/[(B 2 W )/n 1 W ] Hence,
5 [B 2 W ]/[B 1 (n 2 1)W ] 5 A/C ,

var(t̂ ) ≈ [dt̂/dz]2 var(z) 5 {4(1 2 t)2[1 1 (n 2 1)t]2/n2]}
can be approximated using a first-order Taylor-series expan-

{n/[2(n 2 1)(s 2 2)]}sion about the expected mean squares,
5 f(t)c 2 .var(t̂) ≈ var(A)/E 2(C) 1 E 2(A)var(C )/E 4(C)

However, as pointed out by Osborne and Paterson (1952),2 2E(A)cov(A,C )/E 3(C)
this is a roundabout way of deriving the sampling variance of

5 2(1 2 t)2[1 1 (n 2 1)t]2 [(sn 2 1)/ the estimated intraclass correlation, by first transforming to z
and then back again.(n2s(s 2 1)(n 2 1))] Population values unknown: Except when doing power cal-
culations and/or investigating the design of experiments≈ 2(1 2 t)2[1 1 (n 2 1)t]2/[(s 2 1)n(n 2 1)]. (1)
(Robertson 1959b) or simulation studies, we do not know

Equation 1 is well known (Robertson 1959b; Falconer and the population values and hence do not know the exact or
Mackay 1996). Its derivation, using means and variances of approximate sampling variance of the intraclass correlation.
mean squares, appears to be first given by Osborne and Pat- The standard practice is to use the formulae derived in the
erson (1952). previous section and to substitute t̂ for t. This is essentially

For large n, Equation 1 reduces to based upon the assumption that E(t̂) 5 t. However, it should
be obvious that if, by chance, the estimate of the intraclassvar(t̂) ≈ 2t 2 (1 2 t)2/(s 2 1). (2)
correlation is too high (or too low), the resulting estimate of

A number of expressions similar to Equation 1, which all the sampling variance will be biased. Using
differ in the terms relating to the number of sires and progeny

d{f(t)}/dt 5 4[1 2 t][1 1 (n 2 1)t]per sire, can be found in the literature. They differ in particu-
lar in the degrees of freedom relating to the between-sire [(n 2 1)(1 2 2t) 2 1] (7)
component of variance. The general expression is

gives a maximum estimate of the sampling variance of t̂ 5var(t̂) ≈ f(t) ci (3) 1/2 [(n 2 2)/(n 2 1)] (see also Taylor 1976). The minimum
estimate of the sampling variance is found for t̂ 5 1 or t̂ 5with
2 1/(n 2 1). Only when there is a scale on which the sampling

f(t) 5 2(1 2 t)2[1 1 (n 2 1)t]2, variance is (nearly) independent of the population values, for
example, Fisher’s z-scale, will the estimate of the samplingWhere ci is a function of s and n, from reference i . The original
variance be correct.expression was derived in a classical paper by Fisher (1921),

Kempthorne (1957) argued that an adjustment to the de-
grees of freedom should be made when estimating the sam-c1 5 1/[sn(n 2 1)]. (4)
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pling variance of an estimate of the intraclass correlation, This is the scenario of Robertson (1959a). The terms P and
Q simplify tosince

var(MS) 5 2E 2(MS)/d.f., P(t1 5 t 2) 5 (1/R 2)[(1 1 r 2
g)(1 1 {rgR 1 rw(1 2 R)}2)

2 4rg(rgR 1 rw(1 2 R))] , (12)E[2MS2/(d.f. 1 2)] 5 2[var(MS) 1 E 2(MS)]/(d.f. 1 2)

5 2[E 2(MS){2/d.f. 1 1})/(d.f. 1 2) Q(t1 5 t 2) 5 [(1 2 R]/R]2 [(1 1 r 2
g)(1 1 r 2

w) 2 4r grw] (13)

5 2 E 2(MS)/d.f. 5 var(MS), with

where d.f. is degrees of freedom. This indicates an unbiased R 5 n/(n 1 (1 2 t)/t).
estimate of the sampling variance as

These correspond to the equations given by Robertson

(1959a, p. 473), although his P and Q were scaled by a factor
vâr(t̂) ≈ 2(1 2 t̂)2 (1 1 (n 2 1)t̂ )2 (sn 2 3)

n2(s 1 1)(s(n 2 1) 1 2) of (nt)2.

2. t1 5 t2 5 t and rg 5 rw 5 r .5 f(t̂)c4 . (8)

A further simplification is if the genetic and within-sire correla-Equation 8 reduces to the standard equation of Osborne and
tion are the same. The expression for the sampling variance

Paterson (1952) and Robertson (1959b) for large sn.
may be written asSimulation study: Simulations were performed to compare

the empirical standard deviation of heritability estimates, the var(r̂g) ≈ [(1 2 r 2)2/R 2] [1/(s 2 1)
predicted standard deviation using the true population values

1 (1 2 R)2/(s (n 2 1))], (14)(Equation 1), and the average estimated standard deviation
(using Equations 1, 4, and 8, with t̂ substituted for t). Indepen-

which corresponds to Robertson’s formula on page 474. Indent between-sire and within-sire sums of squares were sam-
general, when t1 ≠ t2, there is no simple form for the samplingpled from central x2 distributions with (s 2 1) and [s(n 2 1)]
variance of the genetic correlation coefficient.degrees of freedom, respectively, and then scaled to the appro-

Finally, Robertson (1959a) suggested a very simple andpriate mean squares using the population values of t and sp general expression for the sampling variance of the geneticand the values of s and n. Without loss of generality, a pheno-
correlation coefficient by observing the similarity between ex-typic standard deviation of unity was used throughout.
pressions derived for special cases,Since the only difference between the various prediction

equations for the sampling variances are functions of s and var(r̂g) ≈ (1 2 r 2
g)2 [var(ĥ2

1)var(ĥ 2
2)]1/2 /[2h2

1h 2
2] . (15)

n, only results for the Taylor series (Osborne and Paterson

This was the equation used by Koots and Gibson (1996).1952) are presented. The other equations for the sampling vari-
ance differ approximately by factors of (s 2 1)/s (using Fisher’s 3. n → ∞, i.e., Ri 5 1.
formula) and (s 2 1)/(s 1 1) (using Kempthorne 1957).

For a large number of progeny per sire, Tallis’ equation
reduces to a very simple form,

Sampling variance of genetic correlation coefficient
var(r̂g) ≈ (1 2 r 2

g)2/(s 2 1). (16)
Expressions from literature: Tallis (1959) derived a gen-

This equation is equivalent to the approximation of the sam-eral expression for the approximate sampling variance of the
pling variance of a correlation coefficient in the bivariateestimated genetic correlation coefficient for a balanced half-
normal case with (s 2 1) degrees of freedom.sib design. Population values for the intraclass correlations of

There are difficulties in using the approaches for the sam-the two traits are t1 and t2, and the genetic and within-sire
pling variance of the intraclass correlation to determine thecorrelation coefficients are rg and rw, respectively. The general
sampling variance of estimates of the genetic correlation coef-form of Tallis’ expression is
ficient: (1) The estimate of rg is unbounded in principle, so

var(r̂g) ≈ P/(s 2 1) 1 Q/(s(n 2 1)), that large positive and negative values (outside the range 21 to
11) are possible, and (2) the true heritability, or its estimate,for
appears in both the numerator and the denominator of the
equation for the sampling variance of rg (see Equations 9 toP 5 (1 1 r 2

g )[1/(R1R2) 1 A2] 2 2rg(1/R1 1 1/R 2)A
11). This means that in the vicinity of true or estimated h2

1 r 2
g (t1 2 t2 )2/[2(nt1t 2)2] (9) being zero, the estimate of the sampling variance can become

very large because of a division by a small number. Also, ifand
one or both of the estimated heritabilities is ,0, the estimate

Q 5 (1/R1 2 1)(1/R 2 2 1)[(1 1 r 2
g)(1 1 r 2

w) of the genetic correlation coefficient is an imaginary number
(Reeve 1955). Simulation results are less meaningful in these

2 2rg(A 2 rg)] 1 r 2
g(t1 2 t 2)2/[2(nt1t 2)2] (10)

cases, because the estimate of the sampling variance may not
have converged (or never will). For example, in the simulationwith
study of parent-offspring regression in Koots and Gibson

A 5 rg 1 rw[(1/R1 2 1)(1/R 2 2 1)]1/2 . (11) (1996), with true population parameters of h2
1 5 h 2

2 5 0.10
and rg 5 0, the estimates of rg varied from 22.5 and 14.18,Ri 5 n/(n 1 (1 2 ti)/ti), which is the general expression of
and the empirical variance of estimated genetic correlationthe reliability of a progeny test based upon n progeny and a
coefficients was very large when both estimates of the heritabil-heritability of 4ti. Tallis (1959) used a different (but equiva-
ity were close to zero.lent) expression for P and Q, but we find it more convenient

Heritabilities known: Koots and Gibson (1996) argued thatto write the terms as presented here.
in some (rare) cases, the population heritabilities may beSpecial cases:
known when the genetic correlation is estimated, for example,
through prior information or a meta-analysis of relevant litera-1. t1 5 t 2 5 t .
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ture values. In that case, one could proceed with only estimat- products were used to calculate least-squares estimates of the
two heritabilities and the genetic and within-sire correlationing the between- and within-sire covariances, along with the

phenotypic variances, from the data. If the phenotypic vari- coefficients in the standard way (see, for example, Tallis

1959). For estimated sire variances that were positive, estimatesances are assumed to be estimated accurately, i.e., for large
sn, then of genetic correlations could be ,21 or .1. A least-squares

estimate of the genetic correlation coefficient was not possible
r̂g ≈ [(B12 2 W12)/n]/[t1t2 s2

p1 s2
p2]1/2 , when one or both of the heritability estimates were negative.

Since most authors (e.g., Fisher 1921; Robertson 1959a;with B12 and W12 the between-sire mean crossproduct and
Tallis 1959) have explicitly warned against the use of thewithin-sire mean crossproduct, respectively, and ti and s2

pi the
“standard” equations when the true heritability, or its estimate,known intraclass correlations and phenotypic variances for
is close to zero, it seems more meaningful to force the estimatetrait i. The means and variances of the crossproducts, using
of rg to be .21 and ,1. Therefore, if the estimate of theWii and Bii to denote the within and between-sire MS for trait
genetic covariance matrix, i.e., (B 2 W)/n, with B and W thei, are
2 3 2 matrices of between- and within-sire mean squares,

E(W12) 5 (rw[(1 2 t1)(1 2 t2)]1/2)sp1 sp2, respectively, was not positive-definite, REML estimates were
calculated using the sampled between- and within-sire meanE(B12) 5 (rw[(1 2 t1)(1 2 t2)]1/2 1 rg(t1t2)1/2)sp1 sp2 ,
squares and crossproducts. To force the parameters in the
parameter space, a form of “bending” the (least-squares) co-var(W12) 5 [E(W11)E(W22) 1 E(W12)2]/(s(n 2 1)),
variance matrix was applied (e.g., Hayes and Hill 1981; Cal-

var(B12) 5 [E(B11)E(B22) 1 E(B12)2]/(s 2 1),
vin 1993; Visscher 1995). The form of bending applied was
described as attenuating the covariance matrix by Visschercov(W12, B12) 5 0 .
(1995), and estimates of (co)variances are the same if a REML

Using analysis had been carried out on the original data. This was
done by calculating heritabilities on a canonical scale andvar(r̂g) 5 [var(B12) 1 var(W12)]/(n2t1t2 s2

p1 s2
p2) setting negative heritabilities to a small positive value (1026)

and heritabilities larger than one to a value less than one5 P/(s 2 1) 1 Q/(s(n 2 1)), (17)
(1–1026). Following Koots andGibson (1996), simulated data

the sampling variance of the genetic correlation coefficient sets were summarized only if the geometric mean of the esti-
can be calculated by substituting the expressions for E(B12), mated heritabilities was .0.01. For each set of parameters,
E(W12), var(B12), and var(W12) into Equation 17. In particular, simulation was stopped when 105 replicated samples of the
for t1 5 t2 5 t, estimated genetic correlation coefficient were obtained.

P(t1 5 t2) 5 (1/R 2)[1 1 {rgR 1 (1 2 R)rw}2] (18)

and RESULTS
Q (t1 5 t2) 5 [(1 2 R)/R]2 (1 1 r 2

w) . (19) Validation of expressions for sampling variances of
The values of P and Q are larger when the heritabilities are intraclass correlations: Predicted sampling variances of
assumed known; i.e., the sampling variance of the genetic heritability estimates, observed sampling variances from
correlation is larger when heritabilities are assumed known simulations, and the average estimated sampling vari-
(cf. Equations 12 and 13). This is most clearly seen when the

ance from simulation are presented in Table 1. For thenumber of progeny are very large, because then
predicted and estimated sampling variances, only the

var(r̂g) 5 (1 1 r 2
g)/(s 2 1), (20) equation of Osborne and Paterson (1952) was used.

To obtain other predictions, results for the standardwhich is always larger than the derivation for unknown herita-
bilities (Equation 16). These findings are in agreement with error of the heritability need to be multiplied by, ap-
Koots and Gibson (1996), who argued that the estimated proximately, factors of [(s 2 1)/s]1/2 (using Fisher’s
heritabilities, andnot the population values (if known), should

formula) and [(s 2 1)/(s 1 1)]1/2 (using Kempthornebe used to estimate the sampling variance of the genetic corre-
1957). Results (Table 1) indicate that the approxima-lation coefficient. The results arise because of the positive

covariance between the estimated between-sire covariance tion of Osborne and Paterson (1952) works very well,
(from B12) and between-sire variances (from B11 and B22). in that the predicted variation in estimated heritabilities
Hence, the absolute value of the genetic correlation coeffi- is close to the observed variation from simulation, in
cient and the estimates of the heritabilities are positively corre-

particular for a small value of the heritability. For a largelated (unless rg 5 0), which is taken into account by using the
heritability and a small number of sires, it appears thatestimated rather than true values of the heritabilities in the

expressions to estimate the sampling variance of the genetic the approximation of Fisher is better. For example, for
correlation. s 5 2, n 5 1000, and h2 5 0.96, the predicted standard

Simulations: A simulation study was performed in which the error from Osborne and Paterson (1952) is 1.0353
empirical variance of the estimated rg and the average esti-

(Table 1) and from Fisher’s equation, is 0.7323 (notmated sampling variance using the estimates of heritabilities
shown in tables), while the observed standard error wasand correlations was compared to the predicted sampling

variance [using equations from Tallis (1959); see above]. 0.7192. However, further simulations (not shown) with
Independent 2 3 2 matrices of within-sire mean squares and different values of the heritability indicated that both
meancrossproducts (W11, W12, and W22) andbetween-sire mean predictions deviate substantially from the observed stan-
squares and crossproducts (B11, B12, and B22) were sampled from

dard errors for large heritabilities and a small numbera central Wishart distribution with (s(n 2 1)) and (s 2 1)
of sires. For example, for t 5 0.95 (and hence a “herita-degrees of freedom, respectively (see Visscher 1995 for more

details). The resulting matrices of mean squares and cross- bility” of 3.80), the observed standard error in estimated
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TABLE 1

Observed (O), estimated (E), and predicted (P) standard errors of intraclass correlations

h2a 5 0.04 h2 5 0.96

s b nc O[4s(t̂)d] E[4s(t̂)] P[4s(t̂)] O[4s(t̂)d] E[4s(t̂)] P[4s(t̂)]

2 1000 0.0593 0.0590 0.0616 0.7192 0.6716 1.0353
4 1000 0.0350 0.0352 0.0355 0.5169 0.4996 0.5978
8 1000 0.0232 0.0231 0.0233 0.3661 0.3609 0.3914
16 5 0.3288 0.3269 0.3342 0.4721 0.4648 0.4835

10 0.1648 0.1636 0.1656 0.3575 0.3545 0.3686
50 0.0433 0.0432 0.0435 0.2764 0.2746 0.2860

32 5 0.2323 0.2308 0.2332 0.3346 0.3309 0.3374
10 0.1148 0.1147 0.1154 0.2537 0.2518 0.2568
50 0.0302 0.0302 0.0303 0.1967 0.1951 0.1990

100 5 0.1310 0.1303 0.1308 0.1891 0.1880 0.1892
10 0.0649 0.0645 0.0646 0.1433 0.1430 0.1439
50 0.0170 0.0170 0.0169 0.1111 0.1107 0.1114

Estimated standard errors of intraclass correlations were from the Osborne and Paterson (1952) approxima-
tion based on 105 replicated samples. Standard errors of mean estimates were ,0.0002 (h2 5 0.04) and ,0.002
(h2 5 0.96).

a Heritability (four times the intraclass correlation).
b Number of sires.
c Number of progeny per sire.
d Four times the empirical standard error of the estimated intraclass correlation.

heritability was 1.2619, whereas the predictions from estimates of the heritabilities. Only for large designs are
the average estimated and predicted standard errorsOsborne and Paterson (1952) and Fisher (1921)

were 0.2687 and 0.5183, respectively. similar. For powerful designs, i.e., for those designs with
a small probability of obtaining least-squares estimatesThe average estimated standard errors of the her-

itability estimates are close to the observed standard that are out of bounds, the average estimated sampling
variance appears to be closer to the observed samplingerror from simulation. Clearly, the approximation of

Osborne and Paterson (1952), i.e., the substitution of variance than the predicted values (Table 2).
Relationship between heritability estimates and sam-the estimated heritabilities into Equation 1, works very

well, and, therefore, using Fisher’s or Kempthorne’s pling variance of rg: A more detailed investigation into
the relationship between estimated heritabilities, esti-formula will underestimate the true standard error by

factors of [(s 2 1)/s]1/2 and [(s 2 1)/(s 1 1)]1/2. It mated genetic correlation coefficients, and the sam-
pling variance of the genetic correlation estimate wasappears that the average estimated standard error is

closer to the observed standard error than the predic- performed for s 5 100, n 5 1000, h2 5 0.50 (both traits),
and rw 5 rg 5 0.75. One million replicated populationstion using the population values of the heritability.

Sampling variances for genetic correlations: Results were simulated, and both the observed standard error
and the estimated standard error were summarized asare presented in Table 2. Clearly for small n, the empiri-

cal standard error of rg is usually larger than that pre- a function of the geometric mean of the heritability
estimates (i.e., {ĥ1 3 ĥ2}). Simulation results are displayeddicted under the unconstrained (least-squares) model.

For example, for s 5 100 and n 5 10, the empirical in Figure 1. The graph also includes a plot of the pre-
dicted standard error, assuming that the values of thestandard error is 0.833 for h2 5 0.10 and rg 5 0.0, whereas

the predicted value is 0.509. When the parameters are heritabilities on the x-axis are the population values.
Since for a powerful design with many progeny per sireforced in the parameter space, the maximum empirical

standard error is 1.0, when half of the time an estimate the predicted sampling variance of the genetic correla-
tion coefficient does not depend on the heritabilitiesof 11 is obtained, and half of the time an estimate of

21. For small s and n, the empirical standard error can (Equations 14 and 16), the corresponding line in Figure
1 appears to be horizontal. The prediction of the stan-then be smaller than that predicted. For example, for

s 5 100 and n 5 2, the empirical standard error from dard error using population values, i.e., h2 5 0.50 and
rg 5 rw 5 0.75, is 0.0443 for this design. The observedREML was 0.897 for h2 5 0.10 and rg 5 0, whereas

the predicted value was 2.84. For large n (.10), the standard error of genetic correlation coefficients over
all samples, hence also over all possible values of esti-equations perform well. Substituting the estimated pa-

rameters into expressions 8 and 9 is almost always worse, mated heritabilities, was 0.0443, and the correlation be-
tween the estimated genetic correlation and the geomet-because of the real possibility of obtaining very small



1610 P. M. Visscher

TABLE 2

Empirical (O), estimated (E), and predicted (P) standard errors of estimated
genetic correlation coefficients

Least squares REML

s a nb h2
1 5 h2

2
c rg 5 rp

d pLS
e O(s(rg)) E(s(rg)) pPREML

f O (s(rg)) E(s(rg)) P(s(rg))

100 2 0.10 0.00 36 2.625 * 20 0.897 * 2.84
0.10 0.50 39 1.846 * 20 0.834 * 2.13
0.25 0.00 53 2.124 * 31 0.823 * 1.14
0.25 0.50 56 1.526 * 31 0.768 * 0.853

10 0.10 0.00 85 0.833 1.500 74 0.622 1.512 0.509
0.10 0.50 85 0.632 1.144 73 0.550 1.259 0.382
0.25 0.00 100 0.296 0.300 100 0.296 0.300 0.256
0.25 0.50 100 0.238 0.236 100 0.238 0.236 0.192

500 2 0.10 0.00 50 1.812 9.411 35 0.838 7.890 1.27
0.10 0.50 53 1.256 6.761 35 0.767 6.783 0.950
0.25 0.00 84 1.038 3.821 73 0.628 3.540 0.507
0.25 0.50 85 0.776 2.647 73 0.569 3.086 0.380

10 0.10 0.00 100 0.259 0.259 100 0.259 0.259 0.227
0.10 0.50 100 0.207 0.202 100 0.207 0.202 0.170
0.25 0.00 100 0.116 0.116 100 0.116 0.116 0.114
0.25 0.50 100 0.088 0.087 100 0.088 0.087 0.086

1000 2 0.10 0.00 61 1.460 5.576 46 0.782 4.823 0.895
0.10 0.50 63 1.038 4.060 46 0.709 4.122 0.671
0.25 0.00 95 0.619 1.355 90 0.473 1.255 0.359
0.25 0.50 95 0.499 0.997 90 0.418 1.010 0.269

10 0.10 0.00 100 0.170 0.168 0.00 100 0.170 0.168
0.10 0.50 100 0.130 0.128 100 0.130 0.128 0.120
0.25 0.00 100 0.082 0.081 100 0.082 0.081 0.081
0.25 0.50 100 0.061 0.061 100 0.061 0.061 0.061

Empirical and estimated standard errors of geneticcorrelations were estimated from 105 replicate populations.
Predicted standard errors were calculated using equations from Tallis (1959) using the population values
for the heritabilities and correlation coefficients. An asterisk (*) indicates that the estimate was .10.0.

a Number of sires.
b Number of progeny per sire.
c Heritability for both traits.
d Genetic and phenotypic correlation coefficient
e Proportion (3100) of replicates for which estimates of both sire variances were positive, and the geometric

mean of the estimated heritabilities .0.01.
f Proportion (3100) of replicates for which the estimated genetic covariance matrix was positive-definite.

ric mean of the heritability estimates was 0.59 (results prediction is very poor. The reason for this is that the
distribution of the heritability estimate becomes verynot shown).
skewed in these cases, and the Taylor series in Equation
1 ignores higher-order terms by implicitly assuming that

DISCUSSION AND CONCLUSIONS both numerator and denominator in the series are nor-
mally distributed. In fact, they are distributed propor-Population or estimated values: It is clear that all
tionally to x2 distributions, which are known to be highlythe expressions for the sampling variance of intraclass
skewed for a small number of degrees of freedom [thecorrelations or genetic correlation coefficients were es-
coefficient of skewness of a central x2 distribution withsentially derived using a first-order Taylor series about
k degrees of freedom is 23/2/k1/2 (Lancaster 1969, p.the true population values. Hence, these are the values
20)]. Higher-order Taylor series converged only slowlythat should be used to study, for example, the power
(results not shown) and do not improve the predictionof various experimental designs, because they give the
of the sampling variance substantially. For the extremebest prediction of the sampling variance.
case of sires with many progeny it was shown (EquationSampling variance of intraclass correlation: The pre-
2) that the predicted standard error of the estimateddiction of the sampling variance of the heritability esti-
heritability is proportional to t(1 2 t). However, themate based upon population values is accurate for small
observed standard error in this case is a function of t,heritabilities and/or a large number of sires. However,

for a small number of sires and a large heritability, the since (B/ns2
p) is the only term that varies in the Taylor
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Figure 1.—Standard er-
ror of the genetic correla-
tion coefficient against the
geometric mean of the esti-
mated heritabilities, for a
design of s 5 100 and n 5
1000. Population values
were 0.50 for the two herita-
bilities, and 0.75 for the
phenotypic and genetic cor-
relation coefficients. Simu-
lated results based upon 106

samples. —, predicted val-
ues using Equation 14, as-
suming that the values on
the x-axis are the popula-
tion values; – – –, observed
standard error; - - -, esti-
mated standard error, using
the estimated values of the
heritabilities and correla-
tion coefficients.

series. Hence, the Osborne and Paterson (1952) ap- tables). When this value is used for the standard predic-
tion equation (Equation 1), the predicted standard er-proximation is biased downward for large heritabilities

and a small number of sires. Although results were not ror of the heritability is 0.5532, which is closer to the
observed standard error (0.5169, Table 1) than thatshown, the estimate of the heritability is also biased

downward in these cases. However, heritabilities of predicted from the population value of the heritability
(0.5978, Table 1).quantitative traits are not often .0.5, and estimates are

usually based on a reasonable number of families, so Sampling variances of genetic correlations: The ex-
pressions for var(r̂g) from Reeve, Tallis, and Robert-that this problem of an underprediction of the sampling

variance is unlikely to occur. son perform poorly using small population sizes and
small heritabilities when the known population valuesEstimating the sampling variance of intraclass correla-

tions by substituting the estimates of the heritabilities are used to predict the sampling variance of the genetic
correlation coefficient. This is because the estimates ofinto the standard expressions (Osborne and Paterson

1952) works remarkably well, in that the average esti- the genetic correlation coefficient can become very
large (positive or negative) when using least-squaresmated standard error is very close to that predicted. For

a large value of the heritability (h2 5 0.96) and a small methods. Using REML, the equations perform much
better, although the empirical standard errors are gen-number of sires (s 5 2 or s 5 4), the average estimated

standard error is smaller than the predicted standard erally larger than those predicted in Table 2. Substitut-
ing the estimates of the heritabilities and genetic corre-error and appears to be close to the observed standard

error (Table 1). However, further simulations using lations into Equation 15 can result in a very large
estimate of the sampling variance of the genetic correla-more extreme values of t showed that this is not a general

observation. For example, for t . 0.5 (corresponding tion when there is a real chance that the estimates of
the heritabilities approach zero (the numerator ofto “heritability” .2.0) the prediction using population

values is closer to the observed sampling variance than Equation 15 approaches 2/[n(s 2 1)(n 2 1)] for both
intraclass correlations approaching zero, whereas thethe average estimated sampling variation (results not

shown). Part of the reason why the average estimated denominator goes to zero).
Koots and Gibson (1996) showed in one of theirstandard error of the heritability is closer to the observed

sampling variance than the prediction based upon t for simulation studies that the empirical sampling variance
of the genetic correlation coefficient depended on theheritability values in the normal range is that it takes

account of the bias in the heritability estimate. Heritabil- estimates of the two heritabilities and concluded that,
therefore, the estimates of the heritabilities should beity estimates are biased downward, in particular for large

values of t and small values of s. For example, for h2 5 used in, for example, Equation 15, even if the popula-
tion values were known. Further simulation results using0.96, s 5 4, and n 5 1000, the average estimate for

the heritability from simulation is 0.86 (results not in the same population values (K. Koots and J. Gibson,
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Figure 2.—Standard er-
ror of the genetic correla-
tion coefficient against the
geometric mean of the esti-
mated heritabilities, for a
design of s 5 500 and n 5 10.
Population values were 0.10
for the two heritabilities,
and 0.0 for the phenotypic
and genetic correlation co-
efficients. —, predicted val-
ues using Equation 14, as-
suming that the values on
the x-axis are the popula-
tion values; – – –, observed
standard error; - - -, esti-
mated standard error, using
the estimated values of the
heritabilities and correla-
tion coefficients.

personal communication) showed very clearly that the served. When the experiment was large and the popula-
tion values of the correlation coefficients zero, the ob-sampling variance of the genetic correlation coefficient,

conditional on the values of the estimated heritabilities, served and estimated sampling variances, as a function
of the geometric mean of the estimated heritabilities,is accurately estimated by substituting the estimated

(and not the true) heritabilities into Equation 15, in were very similar. These additional results confirm the
results of Koots and Gibson (1996) and reinforce theirthe case of a parent-offspring design, heritabilities of

0.10, and environmental and genetic correlation coeffi- recommendation that the value estimated heritabilities
should be used in calculating the sampling variance ofcients of zero. This appears to contradict the simulation

results in Table 2, which show that the average sampling the genetic correlation coefficient, even in the rare cases
when the population values of the heritabilities arevariance is poorly estimated using estimated parameters.

However, the results in Table 2 indicate that the estima- known. From Table 2 it appears that the average esti-
mated sampling variance of the genetic correlation coef-tion is poor only when the least-squares estimates are

likely to be outside the parameter space. In the cases ficient is closer to the observed sampling variance than
the prediction using population parameters. For onewhere the least-squares and REML estimates are identi-

cal, both the prediction and average estimated sampling design, s 5 500, n 5 10, h2 5 0.10, rg 5 rw 5 0, this was
further explored using the results from 106 replicatedvariance are close to the observed one.

The relationship between estimated heritabilities and samples. Figure 2 shows that for ĥ1ĥ2 . 0.07, the ob-
served, estimated, and predicted sampling variance arethe empirical sampling variance of the genetic correla-

tion was explored in Figure 1 for a powerful design. virtually identical. For each of the geometric mean
classes, the mean estimate of the genetic correlationFrom these results we may conclude that (1) the pre-

dicted sampling variance accurately predicts the average was zero (results not shown), so that for a particular
value of the estimated geometric mean of the heritabilit-observed sampling variance (0.0443), but not the ob-

served sampling variance for given values of the ies, the sampling variance of the genetic correlation
coefficients reflects sampling from a population with theachieved estimates of the heritabilities; (2) for a given

value of the estimates of the heritabilities, the estimated true values of the heritabilities equal to those estimated.
This is in contrast with the previous example, in whichsampling variance follows a very similar pattern to that

of the observed sampling variance (as in Koots and the correlation between the estimated genetic corre-
lation and geometric mean of the heritabilities wasGibson 1996); (3) for a given value of the estimates

of the heritabilities, the estimated sampling variance is positive (10.59). For smaller values of the estimated
heritabilities, Figure 2 shows that the estimated sam-larger than the observed sampling variance; and (4)

when the estimated heritabilities are close to the true pling variance is much larger than either the predicted
or observed sampling variance. The estimated sam-values, the predicted and estimated sampling variances

coincide. For other designs, a similar pattern was ob- pling variance of the genetic correlation coefficient for
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ĥ1ĥ2 5 0.01 was 9.9. It is not clear from these results be biased downward, because of the negative correlation
between the estimate of the heritability and its weightwhy the average estimated sampling variance is closer

to the observed sampling variance than the prediction (the inverse of the sampling variance). Furthermore, a
downward-biased overall heritability estimate would beusing population values.

van Vleck and Henderson (1961) investigated the obtained because the heritability estimate from smaller
experiments tends to be biased downward, and the cor-behavior of the expression derived by Reeve (1955) for

the parent-offspring regression scenario by simulation. responding estimated sampling variance would be too
small, giving too much weight to the smaller experi-They came to the same conclusion as Koots and Gibson

(1996); i.e., in the case of a single progeny and one ments. A joint analysis of data, or an iterative procedure,
in which the estimated sampling variance for each ex-parent, more than 1000 pairs were needed before

Reeve’s expression was reasonably accurate. periment is recalculated from the pooled heritability
estimate (W. G. Hill, personal communication) is toBias in estimate of sampling variance: It is usually

assumed that by substituting the estimates of population be preferred. However, a further complication arises
because of a bias in the estimated sampling variance ifparameters in the prediction equations for the sampling

variance of the heritability or genetic correlation, unbi- the standard prediction equations are used. This bias
may be upward (as shown above) or downward de-ased estimates of those sampling variances are obtained.

However, this is not generally the case for small sample pending on the population parameters. To avoid strong
biases in the pooled heritability estimates, a single datasizes. Furthermore, when comparing the average sam-

pling variation from simulation, it matters whether re- analysis should be carried out.
Conclusion: For the design of experimental popula-sults are expressed in the average standard error (as in

this study) or in the average sampling variance. This is tions to estimate genetic parameters, the prediction of
the sampling variance of heritabilities using Osbornebest illustrated using the example of a half-sib design

with large n and a small population value of t. Then and Paterson (1952) is accurate, unless the population
heritability is large and the number of family groups is

var(t̂) 5 2t2/(s 2 1) and s(t̂) ≈ t √2/(s 2 1), very small. For analysis of data, the estimate of the stan-
dard error of the heritability obtained by substitutingwith corresponding estimates,
the estimated heritability for the true value in the stan-

vâr(t̂) ≈ 2t̂ 2/(s 2 1) and ŝ(t̂ ) ≈ t̂√2/(s 2 1). dard prediction formulas is almost unbiased for the
range of heritabilities and sample sizes likely to be en-If expectations are taken over these estimates, then
countered in practice.

E[vâr(t̂)] 5 E[2t̂ 2/(s 2 1)] For small experiments, estimates of heritability are
biased downward, and estimates of sampling variances5 (2/(s 2 1))[var(t̂) 1 E 2(t̂)]
are generally not unbiased. Combining results from

5 (2/(s 2 1))[2t 2/(s 2 1) 1 t2] different experiments by weighting the heritability esti-
mates by the inverse of their estimates-sampling vari-5 var(t̂)(s 1 1)/(s 2 1)
ances may result in a severely biased heritability esti-

E[ŝ(t̂)] 5 E[t̂ ]√2/(s 2 1) mate, because the smaller experiments tend to have
estimates that are too low, and too much weight is given

5 t√2/(s 2 1) 5 √(var(t̂)) .
to these estimates if their sampling variances are biased
downward too. A joint analysis of all data is to be pre-Hence, for small t and large n, the estimate of the sam-

pling variance can be severely biased upward for a small ferred.
The predicted sampling variance of the genetic corre-number of sires, whereas the estimate of the standard

error is unbiased. It follows that the adjustment of the lation using Reeve (1955) and Tallis (1959) are accu-
rate only if the population heritabilities are not closedegrees of freedom suggested by Kempthorne (1957,

Equation 8) gives an unbiased estimate of the sampling to zero and if the number of families is large. Even if
the population heritabilities are known, the estimatedvariance for small t, but a severely biased estimate of

the standard error. In practice one should therefore be heritabilities should be used in the estimation of the
sampling variance of the genetic correlation coefficient.cautious when comparing or using estimated sampling

variances from different experiments. In particular, I thank Naomi Wray and Bill Hill for helpful comments and
combining heritability estimates from different-sized ex- Ken Koots and John Gibson for many constructive discussions and

the sharing of additional simulation results.periments by weighting the estimates proportionally to
the inverse of the estimated sampling variance should
be avoided because of an induced positive correlation
between the estimate of the heritability and the estimate LITERATURE CITED
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