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ABSTRACT

Several nonparametric bootstrap methods are tested to obtain better confidence intervals for the quan-
titative trait loci (QTL) positions, i.e., with minimal width and unbiased coverage probability. Two selective
resampling schemes are proposed as a means of conditioning the bootstrap on the number of genetic fac-
tors in our model inferred from the original data. The selection is based on criteria related to the esti-
mated number of genetic factors, and only the retained bootstrapped samples will contribute a value to the
empirically estimated distribution of the QTL position estimate. These schemes are compared with a non-
selective scheme across a range of simple configurations of one QTL on a one-chromosome genome. In
particular, the effect of the chromosome length and the relative position of the QTL are examined for a
given experimental power, which determines the confidence interval size. With the test protocol used, it
appears that the selective resampling schemes are either unbiased or least biased when the QTL is situated
near the middle of the chromosome. When the QTL is closer to one end, the likelihood curve of its posi-
tion along the chromosome becomes truncated, and the nonselective scheme then performs better inas-
much as the percentage of estimated confidence intervals that actually contain the real QTL’s position is
closer to expectation. The nonselective method, however, produces larger confidence intervals. Hence, we
advocate use of the selective methods, regardless of the QTL position along the chromosome (to reduce
confidence interval sizes), but we leave the problem open as to how the method should be altered to take

into account the bias of the original estimate of the QTL’s position.

NE aim of crop and animal physiologists is to elu-

cidate how complex processes are regulated and
integrated to achieve measurable production traits.
The advent of molecular genetic markers has allowed
quantitative geneticists to demonstrate that, even for
complex traits such as tomato fruit size and composi-
tion (Paterson et al., 1988) or crop yield (Edwards et
al., 1987, 1992; Stuber et al., 1987), a small number of
major genetic factors may explain a large proportion of
the total genetic variance. Therefore, the validity of dif-
ferent models of causal relationships can, in theory, be
compared on the basis of the identity of the genes that
regulate different traits.

The approach of the quantitative geneticist does not
allow the direct identification of the genes, but their
positions can be estimated with the help of genetic
markers. These positions are termed quantitative trait
loci (QTLs). Molecular biologists can evaluate candi-
date genes by testing whether a QTL corresponds to
the expression of a particular gene on the genome map
whose primary product has been identified.
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Whether comparing the QTLs for several traits or
using the candidate gene approach, we have to con-
tend with the uncertainty attached to the estimate of a
locus position, and so, the comparison between the dif-
ferent models becomes a statistical test. Thus, for a sin-
gle QTL, the ability to define a confidence interval
around its estimated position is essential for testing the
alternative hypotheses of close linkage vs. pleiotropy.
The test statistic involved, however, may not follow a
straightforward density of probability function.

LOD score-based or likelihood ratio—based meth-
ods were used by Lander and Botstein (1989) to de-
fine an approximation of a confidence interval on the
estimate of a QTL’s position, which they termed a “sup-
port interval.” Jiang and Zeng (1995) also used likeli-
hood ratios to test hypotheses such as close linkage vs.
pleiotropy. These tests, however, are based on the as-
sumption that the statistics cited above follow some as-
ymptotic x? distribution, which does not hold if the
QTL is of small or medium effect in the framework of
interval mapping, as demonstrated by van Ooijen
(1992) and Mangin et al. (1994). Hence, in practice,
the actual drop-off needed in the likelihood ratio statis-
tic to define such support intervals would vary with
each study and QTL. The problem becomes even more
complicated when other markers are fitted in the mod-
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els in addition to the markers flanking the interval be-
ing scanned, as in the “composite interval mapping” of
Zeng (1993, 1994) and Basten et al. (1996) or in the
“multiple QTL models” of Jansen (1993) and Jansen
and Stam (1994). In particular, when these additional
markers are situated on the chromosome being
scanned, one can observe sharp falls in the likelihood
ratio curve at some marker loci. This is caused by a
change in the set of parameters present in the model
and does not obviously correspond to a sudden de-
crease from one marker interval to the other in the
probability of a QTL being at the position tested. As-
suming the QTL exists, an estimated curve of density of
probability of the QTL’s position would be preferable.
Visscher et al. (1996) approached this concept in an
empirical way, by bootstrapping the original data and
then examining the distribution of the estimates of the
QTL’s position. They simulated simple configurations
of a chromosome with one QTL midway between two
adjacent markers at positions 55 or 15 cM on a 100-cM
map. The bootstrap procedure seemed a good alterna-
tive to the LOD drop-off for defining confidence inter-
vals of estimates of the QTL position, but tended to be
too conservative when the QTL accounted for less than
10% of the total trait variance.

In this study, we introduce selection of the boot-
strapped samples as a means of conditioning our confi-
dence interval estimates on the inferred number of dis-
tinguishable genetic factors. In so doing, we show that
we significantly reduce the width of the estimated con-
fidence intervals.

MATERIAL AND METHODS

Simulation protocol: The protocol follows that presented
by Visscher et al. (1996) and is summarized in Figure 1. Sev-
eral bootstrap methods were compared for the same set of ge-
netic parameters. The respective biases of the different meth-
ods and their divergence from one another were examined.
In contrast to the work presented in Visscher et al. (1996),
we explored the influence of the chromosome length. The
role of the QTL’s “centrality” was also examined (i.e., whether
in the middle or closer to one end of the chromosome). We
focused only on recombinant populations from crosses be-
tween inbred lines. For each genome configuration tested,
1000 backcross populations were simulated, which from now
on we will call “replicates” to remain homogenous with the
terminology of Visscher et al. (1996).

Two series of simulations were carried out: The first series
intended to examine a broad range of issues involved in the
selection step of the selective bootstraps. Two selective and a
nonselective empirical bootstrap procedures were compared.
The marker and trait data were resampled jointly with re-
placement. In the selective bootstraps, the selection was based
on criteria related to the estimated number of genetic factors,
and only the retained bootstrap samples contributed a value
to the empirically estimated distribution of the QTL position
estimate. Symmetrical confidence intervals of X% were calcu-
lated by taking the [(100 — X)/2]th and the [X + (100 — X)/
2]th percentiles of the bootstrap-estimated distribution of the
QTL position as their lower and upper limits, respectively. We
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Figure 1.—Description of our general protocol to test the
selective bootstraps.

investigated the proportion of zero-, one-, two-, and three-
QTL outcomes over the simulated populations and bootstrap
samples. This allowed us to check whether the rejection of the
outcomes with zero and more than one QTL, given their re-
spective proportions, had a significant effect on the size of the
confidence intervals and their conservativeness compared to
just rejecting cases with zero QTL. Thus, we devised the fol-
lowing two sorts of selective bootstraps: (1) a “selective boot-
strap” version 1, where we only retained the resampled data
sets that showed the same number of QTLs on the chromo-
some of interest and the same sign for the QTL of interest as
were observed in the original data set, i.e., one QTL with a
positive additive effect in our simulations, and (2) a “selective
bootstrap” version 2, where we retained the resampled data
and fitted one and only one QTL whenever there was a signif-
icant effect present along the chromosome of interest, i.e.,
whatever the observed number of significant QTLs along the
chromosome provided that a significant effect was detected.
In our “non-selective bootstrap,” as many QTLs as the num-
ber observed from the original data set were fitted, irrespec-
tive of significance or sign, i.e., even when no significant effect
was detected along the chromosome.

Unlike Visscher et al. (1996), who applied the bootstrap
either on every replicate or on replicates with a significant ef-
fect present along the chromosome only (i.e., with one or
more QTLS), in this series of simulations, the bootstraps were
only applied to the replicates that yielded one and only one
QTL on the chromosome. Apart from this difference, as far as
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the bootstrap itself is concerned, our nonselective one is simi-

lar to that implemented by Visscher et al. (1996) in the case
when a single QTL is simulated.

In this first series of simulations, we also examined the ef-
fects of chromosome length and QTL position on the diver-
gence between the two sorts of selective bootstraps described
above.

The second series of simulations was more focused on de-
termining precisely, i.e., without any bias, the percentage of
inclusion of the real QTL position in the estimated confi-
dence intervals to check if the selective bootstrap was actually
providing inclusion percentages closer to the target values.
Because we resorted to a different QTL mapping method in
this second series, as explained below, the nonselective boot-
strap was only compared to selective bootstrap version 2. Also,
the bootstraps were applied on replicates that showed a signif-
icant effect present along the chromosome (i.e., not only on
those that showed one QTL only).

The genomes were made of only one chromosome for sim-
plicity. To generate the simulated genotypes, Haldane’s for-
mula was used to translate genetic distances into recombina-
tion frequencies to be compatible with the QTL mapping
procedures we used (described below). Environmental resid-
uals were normally distributed.

QTL mapping methods: The QTL mapping procedure is
called as many times as the data are resampled, so its compu-
tation time was the factor to minimize in both series of simula-
tions. To keep the computation fast while addressing two dif-
ferent priorities involved in the two series of simulation,
namely precise estimation of the number of QTLs in the first
one and precise estimation of the QTL position in the second
one, we had to resort to two different QTL mapping proce-
dures.

First QTL mapping procedure: In the first QTL mapping
procedure, which we shall designate as “marker selection
method,” we implemented the principles established by Stam
(1991), Zeng (1993), Rodolphe and Lefort (1993), and
Wright and Mowers (1994), which state that the partial re-
gression coefficient of marker i only depends on the QTLs lo-
cated between marker (i — 1) and marker (i + 1). Given a suf-
ficient marker density throughout the genome, we can
overlook the fact that the within-marker type trait distribu-
tions are joint distributions caused by the recombination be-
tween the marker(s) and the QTL. One can then assume no
significant loss of QTL detection power. Thus, we need to
only carry out a selection of the “best” subset of marker re-
gressors from over the whole covered genome. Then, we can
infer the minimum number of QTLs solely from the number
of markers selected, their position relative to each other
(whether adjacent or not), and the sign of their respective
partial regression coefficients. This way, we can decide to re-
ject a bootstrapped sample on the basis of the inferred model
without having lost any time in calculating the precise param-
eter estimates of its QTLs.

Our implementation of this logic consisted of the follow-
ing three stages: (1) selection of a best subset of marker re-
gressors, (2) translation of the subset into a QTL model, and
(3) refinement of the QTL parameter estimates.

Multiple linear models with fixed effects were used to re-
gress the trait phenotypic values onto the marker scores.
Since standard statistical methods were used, the program-
ming of this method was performed in the standard statistical
package Genstat 5, release 3.1 (Genstat 5 Committee, 1993).
The three stages are described below.

At the marker selection stage, a first, “artificially” lax for-
ward procedure, with an inclusion F-ratio of 4.0, added a sub-
set of all the markers of the chromosome; some of which were
included by chance, because of the lax inclusion ratio. Then,

a stringent backward procedure was implemented to reject
some markers. The level of stringency adopted in the back-
ward procedure corresponded to the 5% genome-wise (and
therefore, chromosome-wise) type | error worked out empiri-
cally by permutations as in Churchill and Doerge (1994).
In these permutations, a forward procedure only was imple-
mented on each permuted sample and the observed F-statistic
from the inclusion of the most significant marker in the
model was stored. The top 5th percentile of this F-statistic dis-
tribution determined our exclusion threshold for a 5% ge-
nome-wise type | error.

The forward-backward succession was preferred to fitting
all the markers of the chromosome, and then applying a back-
ward selection (although the latter maximizes the QTL detec-
tion power) because of potential problems of collinearity or
pseudo-collinearity between the marker-regressors that could
arise. This happens for markers that are close to one another
but distant marker-regressors can also be collinear or pseudo-
collinear as a result of chance when there are many. This
would have generated a higher error in the parameter esti-
mates and in the set of parameters that were finally retained.
A second reason for preferring a prior forward selection was a
gain in computing time because the maximum number of re-
gressors fitted was lower.

For a given exclusion F-ratio, varying the value of the F
(lax) inclusion ratio does not alter the QTL detection power.
However, it affects the respective proportions of one-, two-, n-
... QTL outcomes. Detecting two QTLs when there is only one
is a type | error. Thus, although it decreases the power to de-
tect a second QTL by 50%, compared to fitting all the mark-
ers in a first stage, as suggested above, a value of 4.0 for the in-
clusion F-ratio allowed us to keep the “type | erroneous”
detection of a second QTL close to 5% on average in the
bootstrapped samples as described in results. This percent-
age was fairly stable over the different chromosome lengths
tested and, therefore, the inclusion F-ratio was kept at 4.0 for
all the configurations. This target figure of 5% was chosen ar-
bitrarily.

In the interpretation stage (the second stage), when iso-
lated markers were selected during the first stage, i.e., sepa-
rated from one another by nonselected ones, the number of
QTLs was assumed to be the number of selected markers.
When two adjacent markers were selected, if the partial re-
gression coefficients of these two markers were of the same
sign, one QTL was assumed within the interval. If the partial
regression coefficients were of opposite signs, two QTLs were
assumed. If n (n > 2) adjacent markers are selected, n — 1
QTLs were assumed.

Calculation of the QTL parameter estimates: For any pop-
ulation size, there is a certain marker density beyond which
the power to detect a QTL is not significantly increased.
When this density is reached, one can observe that the confi-
dence interval on a QTL position spans several marker inter-
vals. Therefore, for the sake of computation speed, in the de-
sign of the QTL mapping procedure, stress was not put on the
precise location of the QTL within a marker interval.

Thus, when an isolated marker was selected during the
first stage, the QTL was fitted at the marker locus, and its ad-
ditive effect was assumed to be the partial regression coeffi-
cient of that marker. This compromise is one among many
possible compromises, and it is certainly not optimal, but it of-
fers very significant gains in computation speed. Only when
two adjacent markers were selected, and if the partial regres-
sion coefficients of these two markers were of the same sign, a
QTL was fitted within the interval according to the following
formulas (derived in the appendix section):

Dj]k:l/4|nBj+1_1/4|nBj+l/2 Dj,j+1 @
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a=exp(HInB+%InBj 1 +D0j,1), 2

where D;, represents the estimated distance in centimorgans
between the marker “on the left” and the QTL, a represents
the estimated additive effect of the QTL, B;, B;,, represents
the partial regression coefficients of the trait phenotype on
the marker type, the markers j and j + 1 being fitted in turn,
and D;;,, represents the distance in centimorgans between
the flanking markers (j and j + 1).

Compared to the related method of Whittaker et al.
(1996), our method fits only one marker of the interval in
turn. This alleviates the problem of pseudocollinearity be-
tween these markers, which would otherwise affect the accu-
racy of the partial regression coefficient estimates if the flank-
ing markers are close to each other, i.e., 2 or 3 cM, given the
small population sizes we investigated. If more than two adja-
cent markers with partial regression of the same sign are se-
lected, the linear approximation shows its limitations com-
pared to a maximum likelihood-based method. The case is
simply insoluble if we only use the observed additive effect
at each marker, because, for example, when three adjacent
markers are retained, we have four parameters to estimate
(two QTL positions and their two effects) from only three sta-
tistics (the three partial regression coefficients). It is unlikely,
however, that three adjacent markers will be retained in prac-
tice or in our simulated configurations of one QTL per chro-
mosome.

Second QTL mapping procedure: The second series of
simulations were analyzed with the program described in
Visscher et al. (1996). It was amended slightly to perform a
“selective bootstrap” similar to version 2 of the first series of
simulations, as well as the nonselective one, but carries out
the linearized interval mapping by applying the equations of
Whittaker et al. (1996) and only fits a one QTL model on
the chromosome. All the successive pairs of adjacent markers
were tested in turn, and in the nonselective bootstrap, the
pair providing the smallest residual sum of squares was re-
tained to fit the QTL whether or not the F-ratio from the com-
parison of the full and reduced models was significant. In the
selective bootstrap, only the outcomes with a significant F-ratio

were retained. For this second series, the programs were writ-
ten in FORTRAN 77.

The genomic configurations simulated: In the first series,
the heritability and the population size were set so as to get a
realistic experimental power [(1—B); B being the type Il error
of missing a real QTL on the chromosome] while keeping the
population size small. This was to check whether the sampling
with replacement scheme was robust when applied to small
samples for the QTL position estimate. Hence, we chose a rela-
tively high heritability for a single QTL: 10% and simulated
populations of 70 backcross individuals only. One hundred and
fifty bootstraps were first carried out to define a confidence in-
terval. The simulated chromosome lengths were 100, 140, and
180 cM, again to remain realistic. The QTL was simulated in
the middle of the chromosome, except for the longest chromo-
some, where it was also simulated at 15 cM from one end.

We noticed that on most bootstrapped samples, pairs of
adjacent markers were less frequently selected than on the
original replicate data. More often, the markers retained in
the model were isolated. Therefore, the positioning of the
QTLs over the bootstrapped samples was discrete, which in
turn made the lower and upper limits of the confidence inter-
vals take less accurate values. As a consequence, to increase
the resolution of the test protocol, a compromise had to be
reached between accuracy of QTL positioning and speed of
computation in the context of our simulations. Over the
many bootstrapped samples, the estimated QTL positions
more likely appear to be near the real one. Therefore, when
we compared the percentages of inclusion of the real QTL
position by the estimated confidence intervals, we set up a
gradually increasing density of markers around the real QTL
position, i.e., up to one marker every 2.5 cM, but only one
marker every 40 cM at the ends of the chromosome (Figure
2). The power of detection was thus significantly decreased
toward the ends, but it did not affect the comparison between
the different methods in qualitative terms, i.e., which one was
more conservative than the other.

In the second series of simulations, we explored two popu-
lation sizes, 70 and 200 backcross individuals, two chromo-
some lengths, 100 and 180 cM, and a set of QTL positions
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Figure 2.—Presentation of the four marker configurations in the first set of simulations.
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along the chromosome ranging from 5 cM from the first
marker up to a central position. The length and the conserva-
tiveness of confidence intervals of different stringencies (50—
95%) were estimated. The markers were regularly spaced ev-
ery 10 cM. The QTL positions simulated were always exactly
in the center of the intervals to avoid any confounding effect
caused by a variation in detection power within the interval
(G. A. Walling, P. M. Visscher, and C. S. Haley, unpub-
lished results). The heritability of the QTL was adjusted to
maintain approximately the same experimental power for the
two population sizes. This was achieved according to the fol-
lowing formula in Soller et al. (1976):

h3 = y/(y+1) withy = (N;/N,)h?/(1-h3?), 3)

where N, and N, are the population sizes 1 and 2, respectively,
and h? and h3 are the corresponding heritabilities to maintain
the same detection power.

RESULTS

From the first series of simulations: The results of
1000 simulated populations of 70 individuals, using the
“marker selection method,” are presented in Table 1
alongside results from the same configurations, but us-
ing the method of Whittaker et al. (1996). The ge-
nome was made of a 180-cM long chromosome with
markers evenly spaced every 10 cM. To obtain a chro-
mosome-wise type | error of 5%, the same F-ratio of 8.85
was applied in both methods. The resulting QTL detec-
tion powers did not significantly differ between the two
methods and were ~50%. The QTL position did not
have any apparent effect either on the detection power.
The number of two-QTL cases are below 5%, and the
percentage of outcomes with more than two QTLs is
minute. The respective proportions of estimated num-
bers of QTLs for the bootstrapped samples, taken from

the selected replicates, were significantly different from
the ones observed on the original replicates. The pro-
portion of cases with one and two QTLs increased at
the detriment of the other cases. The proportion of two-
QTL cases, however, does not go beyond 6%.

Table 2 shows the results of 1000 simulated popula-
tions of 70 individuals, using the marker selection
method, for several genomic configurations and an un-
even marker density as described above. The exclusion
F-ratio ranges from 7.17 for configuration 1 to 8.4 for
configurations 3 and 4, as they are named in the table,
S0 as to maintain a genome-wise type | error of 5%. The
percentages of estimated number of QTLs from the
original replicates does not vary significantly across the
genomic configurations. Compared to the previous ex-
periment, the QTL detection power has decreased sig-
nificantly because of the lower marker density away
from the simulated QTL position, and it lies only be-
tween 30 and 35%. The proportion of cases with at
least two QTLs has also significantly decreased and
does not go beyond 3.5%. However, the respective pro-
portions of estimated numbers of QTLs for the boot-
strapped samples taken from the selected replicates are
very similar to those from the previous experiment with
the markers regularly spaced. Also, they remain re-
markably stable over the four genomic configurations.

A 95% confidence interval was calculated both with
the nonselective bootstrap described above and with
the selective bootstrap version 1. Over the different
simulated populations, the percentages of confidence
intervals containing the real QTL position were com-
pared. Their difference was tested by pairwise compari-
sons because the bootstraps were applied to the same
sets of replicates. The results are presented in Table 3.

TABLE 1

Comparison of the percentages of n QTL outcomes between the two QTL mapping methods

Percentage of n QTL outcomes

QTL mapping
method Position 0QTL 1QTL 2 QTLs 3 QTLs Cl width
Marker selection 85 51.8 +3.1 419 + 3.1 49+ 14 1.1+07 81.3 +3.8cM
period 148+1.1 79 +1.2 58+06 0.4=*01
15 53.6 = 3.1 416 +3.1 38+1.2 0.9 £0.6 76.2 = 3.8cM
14711 787 1.2 59+06 0.6=0.1
Whittaker et al. 85 50 + 3.2 50 + 3.2 92cM + 4cM
(1996) 17+1.1 83+1.1
15 50 = 3.2 50 = 3.2 86 cM = 4cM
17+x11 83+1.1

One thousand replicates of 70 backcross individuals were simulated with a 180-cM chromosome. One QTL of
10% heritability situated at 85 cM from one end. Markers were regularly spaced every 10 cM. In both methods,

the exclusion of F-ratio was 8.85. The second column mentions the simulated QTL position.

For the second marker selection method: The percentages of zero-, one-, two-, and three-QTL outcomes over
the 1000 replicates are represented in plain text. The percentages of zero-, one-, two-, and three-QTL outcomes
from the 150 bootstraps per replicate averaged over the replicates are printed in bold. For the method Whit-
taker et al. (1996), the columns for the one-, two-, and three-QTL outcomes are fused since these cases cannot
be distinguished by the method. The last column presents the average 95% confidence interval (CI) width in

centimorgans.
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TABLE 2

Results from the first set of simulations—effect of the chromosome length and the QTL position
on the estimated QTL number derived from the first QTL mapping method

Percentage of n QTL outcomes

Chromosome QTL
No. length position 0QTL 1QTL 2 QTLs 3 QTLs
1 100 cM Central 65 + 3 31+3 3+1 05=*+04
153 +1 7771 6.6 = 0.5 04 +0.1
2 140 cM Central 67.9 3 29.7 +3 19=+1 04 +04
154 +1 776 1 6.4+ 0.5 04 +0.1
3 180 cM Central 66.6 = 3 312 %3 18=x1 02+0.2
154 +1 776 1 6.5+ 0.5 0.4 +0.1
4 185cM 15cM 701+ 3 27.1*3 24+1 0.3 +0.3
157+1 7761 6.3+ 0.5 0.4 +0.1

One thousand replicates of 70 backcross individuals were simulated. The heritability of the QTL was 10%.
Markers were densely spaced around the QTL position, every 2.5 cM, and gradually less densely toward the
chromosome ends, every 30 or 40 cM, as shown in Figure 2. The exclusion F-ratio was 7.17 for configuration 1,
8 for configuration 2, and 8.4 for configurations 3 and 4, as they are named in the table, so as to maintain a
genome-wise type | error of 5%. For each replicate that showed one and only one significant QTL, with the
same sign as that simulated, 150 bootstraps were performed. In each of the four configurations, the QTL is
located at a marker locus. The percentages of n QTL outcomes over the 1000 replicates are represented in
plain text. The percentages of n QTL outcomes from the 150 bootstraps per replicate, averaged over the repli-
cates, are printed in bold.

The divergence between the two methods and the re-
jection rate in the selective procedure seem to increase
with the chromosome length and the QTL noncentral-
ity; however, this apparent effect of the QTL noncentral-
ity is not confirmed by the second set of simulations.

The average confidence interval size can be limited
by the chromosome length itself; therefore, its compar-
ison between the two methods is more representative
for the longer chromosome in our case given the large
values we obtain. Thus, in configuration 3, the nonse-
lective procedure yielded an average confidence inter-

val 94.3 cM wide, whereas for the selective one, it was
“only” 63.5 cM wide. This difference was significant at
P < 0.001. The nonselective method seems always too
conservative. Although the noninclusion percentages
are subjected to large errors, those from the selective
bootstrap seem consistently closer to the expected 5%
and, therefore, they seem less biased.

A pairwise comparison for the noninclusion per-
centages was then carried out to compare the selective
bootstrap version 1 against the selective bootstrap ver-
sion 2 in the configuration that most brings out differ-

TABLE 3

Results from the first set of simulations—comparison between selective bootstrap method version 1
and the nonselective one

Noninclusion %

Average Cl width in cM

Chromosome QTL
No. length position Select. Nonselect. P Select. Nonselect.
1 100 cM Central 53*+17 43 %2 0.021 41 48
2 140 cM Central 3724 20x24 0.011 54 72
3 180 cM Central 36+15 2.6 +2.6 0.006 63 94
4 185cM 15cM 52*+25 31+25 0.002 74 114

One thousand replicates of 70 backcross individuals were simulated. The heritability of the QTL was 10%.
Markers were densely spaced around the QTL position, every 2.5 cM, and gradually less densely toward the
chromosome ends, every 30 or 40 cM (same experiment as in Table 2). The first column mentions the configu-
ration number as referred to in the text.

In the fourth column, the subcolumn on the left is the percentage of noninclusion of the real QTL position
in the estimated confidence interval from the selective bootstrap version 1 with its confidence limits. The sub-
column on the right is obtained with the nonselective bootstrap. P is the probability that the two methods yield
the same proportions. The next two columns contain the average confidence interval widths in centimorgans
for the selective and nonselective bootstraps, respectively.

Select., value obtained with selective bootstrap version 1; Nonselect., value obtained with nonselective boot-
strap.



Confidence Intervals on QTL Positions 531

ences between the different bootstrap strategies, i.e.,
configuration 4. The comparison yielded a probability
of 0.12 (result not shown elsewhere) for the null hy-
pothesis that the two bootstrap methods give similar
noninclusion percentages, which is not low enough to
reject it. Thus, no significant differences could be found
for the noninclusion percentages between the two. There-
fore, version 2 can be considered as an acceptable ap-
proximation of version 1 for bootstrapping in cases
when only one QTL is detected from the original data,
the case on which we focus exclusively in this paper.

TABLE 4

Second set of simulations—long chromosome,
small population size?

POS. SEL. E(P)- 50 60 70 80 85 90 95

5 Nosel. O(P)~ 35 44 53 63 69 75 85
Cl 57 72 87 107 118 131 148

Sel. O(P)~ 43 51 59 68 74 79 85

Cl 19 26 35 47 55 66 84

15  Nosel. O(P)— 47 58 65 77 85 89 97
Cl 55 68 83 101 114 126 147

Sel. O(P)~ 45 53 61 75 80 85 92

Cl 20 27 36 49 57 68 86

25  Nosel. O(P)~ 49 59 71 81 85 90 95
Cl 50 63 78 97 109 122 142

Sel.  O(P)-~ 43 52 62 74 79 86 92

Cl 20 28 36 47 54 65 81

35  Nosel. O(P)~ 53 64 74 84 90 93 97
Cl 45 58 73 93 104 119 139

Sel.  O(P)~ 42 53 62 72 79 85 93

Cl 20 28 37 47 55 65 82

55  Nosel. O(P)~ 60 69 80 8 91 95 98
Cl 45 56 71 89 101 116 136

Sel. O(P)~ 46 54 63 76 81 86 92

Cl 22 29 38 48 55 65 78

75  Nosel. O(P)~ 60 71 80 89 93 96 99
Cl 41 52 66 85 97 113 135

Sel. O(P)—~ 43 53 63 74 79 84 92

Cl 20 26 34 45 52 63 81

85 Nosel. O(P)~ 59 71 79 87 93 96 99
Cl 39 52 66 83 98 112 139

Sel. O(P)~ 44 54 66 78 84 90 95

Cl 21 27 36 48 57 70 92

a Comparison between the selective (presence of effect on
the chromosome as a whole and sign of effect) bootstrap
method and the nonselective one for different QTL positions.

Results from 1000 replicates of the following configuration:
genome made up of one chromosome 180 cM long with
markers evenly spaced (one every 10 cM), one QTL of 10%
heritability, a population of 70 backcross individuals, and
selection of the replicates and bootstrapped samples on the
basis of an F-ratio threshold of 8.85 and on the sign of the
QTL effect.

POS., distance between the “first” marker and the QTL
simulated; Sel., whether we applied the selective bootstrap or
not; E(P), percentage of confidence intervals that contain the
real QTL position; O(P), percentage of confidence intervals
that contain the real QTL position; Cl, size of the confidence
intervals in centimorgans.

From the second series of simulations: In this series
of experiments, presented in Tables 4-7, the power of
the experiment was ~50% because of the regular spac-
ing of the markers—every 10 cM for all the genomic
configurations tested, as shown above. Although the
two bootstrap methods were not applied to the same se-
ries of populations with this protocol, and therefore
could not be compared through a pairwise procedure,
it was still possible to detect some significant diver-
gences over the large number of replicates analyzed.
The observed values for the 50% confidence intervals
vary within =4.3%, whereas for the 95% confidence in-
tervals, they vary within +2% only (percentages not
shown elsewhere).

Table 4 shows the results from 1000 replicates of the
following configuration. The genome consisted of one
chromosome, 180 cM long, one QTL of heritability
10%, and a population of 70 backcross individuals. The
selection of the replicates and of the bootstrapped sam-
ples was based on an F-ratio threshold of 8.85 and on
the sign of the QTL effect.

The confidence interval sizes remained constant
over the different QTL positions for both methods.
Apart from the chromosome length itself, which sets an
upper limit, the power of the experiment was the only
parameter that defined the confidence interval size for
a given bootstrap method. It is interesting to note that
the nonselective method generated confidence inter-
vals on the QTL position that were almost twice as large
as those for the selective one: 140 vs. 80 cM. When the
QTL was centrally situated, the selective method
seemed to offer a definite improvement. While the
nonselective method was consistently very conservative
over the whole range of confidence interval stringen-
cies, the selective one was only slightly anticonservative
for the low stringencies and became unbiased for the
90% and 95% confidence intervals.

When the QTL heritability increased for this same
configuration, however, the power of the experiment
became close to 100%, and both methods converged
toward being anticonservative, as is shown in the first
row of data in Table 5. Also, when the QTL was not cen-
trally situated in Table 4, the selective bootstrap seemed
relatively and consistently conservative, whereas the
nonselective one was consistently anticonservative to
the same extent. On average, for example, 92% of the
95% confidence intervals generated by the selective
method contained the real QTL position compared
with 97% with the nonselective method. At a level of
noncentrality corresponding to positions ~15-25 cM
from the first marker in the configuration tested, the
nonselective method seemed the least biased, if biased
at all, across the range of confidence interval stringen-
cies. When the QTL was situated very close to the end
of the chromosome, both methods seemed consistently
anticonservative.

The configurations in Table 6 differ from those in
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TABLE 5

Second set of simulations—long chromosome,
“big” population size?

TABLE 6

Second set of simulations—short chromosome,
small population size?

Pop.
size H2  Selection E(P) 50 60 70 80 85 90 95
70 0.50 No&yes O(P) 45 54 64 74 81 85 93

200 0.0374 No
200 0.0374 Yes

O(P) 64 74 84 91 94 97 99
O(P) 43 52 63 76 82 89 95

a Comparison between the selective (presence of effect on
the chromosome as a whole and sign of effect) bootstrap
method and the nonselective one for different QTL positions.

Results from 1000 replicates of the same configuration as
in Table 2, except that the population size is 200. This set was
intended to explore the effect of the population size, the
experimental power remaining constant, and the effect of an
increase in detection power with the population size remain-
ing constant. Therefore, only the central position of the QTL
was simulated. In the first row, the results from the selective
and nonselective procedures are featured together because
they do not differ because of the high experimental power.

H2, heritability of the simulated QTL; E(P), percentage of
confidence intervals that contain the real QTL position;
O(P), percentage of confidence intervals that contain the real
QTL position.

Table 4 only by the chromosome length, which is now
100 cM long. Table 7 is very similar to Table 6, but the
population size is 200. The values for the confidence in-
terval sizes and the proportions of inclusion are very
similar. When the QTL was very close to one end of the
chromosome, both methods seemed anticonservative,
but the nonselective one less so. When the QTL is
rather centrally situated, the nonselective method is
conservative and the selective one is anticonservative by
the same extent in terms of percentage of inclusion.
This similarity of the results between Tables 6 and Table
7 shows that the population size per se (i.e., for a con-
stant detection power) does not affect the behavior of
the bootstraps and, therefore, does not bring any con-
founding effect in the comparison between the selec-
tive and the nonselective bootstrap.

DISCUSSION

We have simulated simplistic cases of only one QTL
on a single chromosome with an additive effect and no
dominance or epistasis. This was to examine whether
selection during the resampling improved the boot-
strap procedure compared to the nonselective one,
which was conservative over most QTL configurations.

The choice of our two selective resampling methods
was by no means arbitrary or ad hoc. On the contrary,
the choice of our selective method version 1, was moti-
vated by the following reasoning: (1) From the defini-
tion of the bootstrap (see Efron and Tibshirani 1993),
it would seem natural to apply the same rules on the re-
sampled data as on the original data to calculate the

POS.  SEL. E(P)- 50 60 70 80 85 90 95

5 Nosel. O(P)- 42 51 59 71 76 83 90
Clsize: 30 38 46 56 63 70 80
Sel. O(P)~ 40 47 59 68 73 78 87
Clsize: 14 18 24 31 36 42 52
O(P)-~ 57 67 79 88 92 94 98
Clsize: 24 30 39 50 56 65 76
Sel. O(P)~ 44 53 62 73 80 86 92

Clsize: 16 21 26 34 38 44 54

45 No sel.

@ Comparison between the selective (presence of effect on
the chromosome as a whole and sign of effect) bootstrap
method and the nonselective one for different QTL positions.

Results from 1000 replicates of the following configuration:
genome made up of one chromosome 100 cM long with
markers evenly spaced (one every 10 cM), one QTL of 10%
heritability, a population of 70-backcross individuals, and
selection of the replicates and bootstrapped samples on the
basis of an F-ratio threshold of 7.37 and on the sign of the
QTL effect.

POS, distance between the “first” marker and the QTL sim-
ulated; SEL, whether we applied the selective bootstrap or
not; E(P), percentage of confidence intervals that contain the
real QTL position; O(P), percentage of confidence intervals
that contain the real QTL position; CI size, size of the confi-
dence intervals in centimorgans.

statistic of interest, whose distribution we want to esti-
mate. (2) When retaining the position of a QTL de-
tected from the original data, in the first instance, we
implicitly assume that the QTL does exist, i.e., we con-
dition our position estimate on the fact that there exists
a QTL. Indeed, had we not detected a significant QTL
from the original data, we would not have kept the (most
likely) position estimate (in the full model tested). (3) It
would therefore seem a priori legitimate to apply the same
rule during the bootstrapping and only retain position
estimates when the QTL effect appears significant.

A prerequisite to resampling data from a finite size
sample (our replicate), however, is that the raw data
matrix constitutes an unbiased sample from which the
bootstrap parameter estimates asymptotically follow the
real distribution of the parameter (the QTL position).
Because a minimum significance threshold is imposed
in our case, the expected estimated value of a QTL ef-
fect is biased upward in absolute value, as documented
by Hyne et al. (1995). Because QTLs of larger effect
have smaller confidence intervals, the prerequisite is
therefore not respected. This would intuitively make a
case against reapplying on the resampled data the same
procedure as on the original replicates, i.e., including a
selection step. On the other hand, however, there is
nothing in the bootstrap theory that justifies not apply-
ing any selection at all on the bootstrap replicates to
compensate for a bias caused, precisely, by selection of
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TABLE 7

Second set of simulations—Short chromosome,
“big” population size?

POS. SEL. E(P)-~ 50 60 70 80 85 90 95
5 Nosel. O(P)— 42 50 60 71 78 84 92
Clsize: 30 38 46 57 63 71 81

Sel. O(P)- 39 53 64 78 78 83 89

Clsize: 16 20 25 32 37 43 53
45  Nosel. O(P)-~ 59 70 80 87 91 95 08
Clsize: 24 30 38 49 56 64 76

Sel. O(P)- 44 56 64 76 82 88 94

Clsize: 16 21 26 34 38 45 56

a Comparison between the selective (presence of effect on
the chromosome as a whole and sign of effect) bootstrap
method and the nonselective one for different QTL positions.

Results from 1000 replicates of the same configuration as
in Table 4, except that the population size is 200. To keep the
same experimental power, the heritability of the QTL was
3.74%. Selection of the replicates and of the bootstrapped
samples was on the basis of an F-ratio threshold of 7.70 and
on the sign of the QTL effect.

POS, distance between the “first” marker and the QTL sim-
ulated; SEL, whether we applied the selective bootstrap or
not; E(P), percentage of confidence intervals that contain the
real QTL position; O(P), percentage of confidence intervals
that contain the real QTL position; Cl, size of the confidence
intervals in centimorgans.

the original replicates. As we did not find the means to
address the issue in an analytical way, we resorted to nu-
merical simulations to check whether, compared to no
selection step at all, the benefits of inserting the previ-
ous selection step in the bootstrap procedure outweighed
the bias caused by applying the bootstrap on biased
samples. Our selective method, version 2, was meant to
constitute an approximation to the previous version
that is quicker to run and applicable on a wider range
of QTL mapping methods.

The simulations showed that when calculating sym-
metrical confidence intervals, none of the tested boot-
strap methods remained consistently the best overall.
One or the other performed better, depending on the
relative position of the QTL along the chromosome.
This rather inconvenient property may be explained by
the truncation of the distribution of the density of the
probability of a QTL’s detected position when this QTL
is actually situated close to one end of the chromo-
some. Thus, when a QTL is detected, the estimator of
its position is biased toward bringing it closer to the
center of the chromosome, as demonstrated by Hyne et
al. (1995). Even an ideal, unbiased confidence interval,
if applied on a biased estimate, will appear anticonser-
vative. In the absence of bias on the estimation of the
QTL’s position, i.e., when the QTL is actually situated
centrally, the selective bootstrap method seems to be an
unbiased estimator of a confidence interval. When the
estimation of the QTL’s position becomes biased, i.e.,
when the QTL is situated closer to one end of the chro-

mosome, the conservativeness of the nonselective method
compensates the initial bias. In this latter case, however,
because we know the bias, although 95% of the 95%
confidence intervals contain the QTL, the average width
of the confidence interval could be reduced by still im-
plementing a selective resampling scheme that would
take this bias into account. Another means of reducing
the confidence interval width when the QTL is close to
one end of the chromosome would be to take their up-
per and lower limits in a nonsymmetrical way from the
selective bootstrap empirical distribution. For example,
one could retain the bottom value of the distribution as
the lower limit and the 95th percentile as the upper
limit, instead of the 2.5th and the 97.5th percentiles,
respectively. Indeed, picking two points off the empiri-
cal distribution of the estimated QTL position notably
looses much of the relevant information about shape,
as conveyed by the bootstrap histogram (DiCiccio and
Efron 1996). Thus, a postbootstrap analysis could con-
sist of comparing the widths of the confidence intervals
obtained by varying a parameter « from —X to +X and
retaining the narrowest one, 100-X being the coverage
percentage of the interval, and (X + «)/2 and 100 —
(X — «)/2 being their lower and upper percentile lim-
its, respectively. Further theoretical developments will
be needed to achieve this, and the problem is left as an
open question to the reader.

We have also seen that when the power of the exper-
iment increases, the two methods converge and are rel-
atively anticonservative, as shown in Table 5. The con-
vergence can be explained by the increasingly low
proportion of bootstrapped samples that fail to find a
QTL, hence, a very low rejection rate by the selective
bootstrap, thus making little difference to the nonselec-
tive bootstrap. Incidentally, it is important to emphasize
that in our simulations, the 90% of unexplained vari-
ance is of environmental origin. This is different from
the case where there would be several chromosomes
bearing other QTLs. Our QTL would then be one
among other QTLs, and part of the background noise
would be removable. The confidence intervals on the
QTL parameters would then be smaller. The observed
general anticonservativeness in this case, given the
small size of the confidence intervals, is actually caused
by some within-interval variation in detection power,
as studied by G. A. Walling, P. M. Visscher and C. S.
Haley (unpublished results). Thus, to check this hy-
pothesis, we simulated the same configuration, again
with the QTL centrally situated, but at a marker locus
this time. Both bootstrap methods were then conserva-
tive (e.g., 97% of the 95% confidence intervals contain
the QTL). But this within-interval variation constitutes
a different subject matter to the comparison of boot-
strapping methods, and it is relevant only when we are
dealing with small confidence intervals, i.e., because of
high experimental powers or the choice of a low strin-
gency (e.g., a 50% confidence interval as opposed to a
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95% confidence interval). Incidentally, this explains
why the 50% intervals in Tables 4-7 often appear anti-
conservative, even when the corresponding 95% inter-
vals look unbiased.

We did not investigate cases of more than one QTL
on a chromosome because of the confounding effects
that would arise from the difficulty in detecting two
QTLs simulated in coupling, unless they are some con-
siderable distance apart. Another confounding factor is
the bias of a QTL position estimate resulting from the
proximity of another QTL.

The estimation of a QTL position from the marker
and phenotypic data is not a straightforward process.
In our case, multiple linear models are involved and,
furthermore, the variables fitted differ from one boot-
strap sample to the other. Thus, the effect of the sam-
ple size alone on the quality of the bootstrap is difficult
to predict. Some statistics that are based on the tails of
the empirical distribution, such as our confidence in-
tervals, are very sensitive to problems of smoothness
(Efron and Tibshirani 1993). The smoothness ob-
tained from sample sizes as small as 70 might, a priori,
have affected the quality of the percentile method per se
to define a confidence interval and brought some con-
founding effect to our comparison between resampling
schemes. From our comparison between sample sizes
of 70 and 200, while keeping the experimental power
constant by adjusting the trait heritability, it turns out
that the percentile method used to define confidence
intervals is robust even for sizes as small as 70 backcross
individuals because the confidence interval sizes are
similar to those with 200 individuals.

In conclusion, although the biases are relatively
small for the different bootstrap methods we exam-
ined, with commonly found experimental powers of
the order of 50% to detect a particular QTL, a selective
bootstrap significantly reduces the size of the confi-
dence interval on its position estimate, compared to
the nonselective bootstrap presented in an earlier pa-
per, without affecting its coverage probability. Further
reduction in the confidence interval size could possibly
be achieved, when a QTL is detected near a telomere,
by using a bias-corrected, selective, nonparametric
bootstrap and also by implementing the percentile
method in a nonsymmetrical way. The sizes of the con-
fidence intervals obtained and their biases are good
enough for marker-assisted selection, but far from suffi-
cient for cloning or fine-scale mapping.
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APPENDIX:

Calculation of the QTL parameters: Assuming a QTL
of additive effect a and dominance effect d, flanked by
markers j and j + 1, with meiotic or observed recombi-
nation frequencies of R;, between the QTL and marker
jand R, between the QTL and marker j + 1, we have
the following:

Bi=a(l-2R;,) and Bj.; =a(l-2Rj,14), (AD)

the expectations of the regression coefficients of the
phenotype on the marker types obtained by regressing
phenotypes onto markers one at a time. If we then
choose to use Haldane’s function to convert R;, and
Rj.1x into D;, and Djﬂk, the corresponding dlstances in
Morgans, B; and ;. 4, in the case of F,s, backcross popu-
lations (BC), doubled haploid lines (DHL), can then
be expressed as follows:

Bj = aexp (-2 Dj]k) and Bj+1 =aexp (-2 Dj+l,k)'
(A2)

Equations A2 can then be rewritten as a system of two
equations with two unknowns by carrying out this loga-
rithmic transformation:

In (Bj) =Ina-2D;, (A3)

In (Bj+1) = Ina+2D;—2D; .,
(Djk+Djr1k = Djj+1) (A4)

Solving the system we obtain the following:

D, = 1/4InB,,~1/4InB+¥% D, .,  (A5)

a=exp(LInB+%InB, 1 +Dj;,) (A6)

These formulas are used to calculate D;, and a by re-
placing the Bs by the absolute values of their observed
values and by reestablishing the right sign of a accord-
ing to the sign of the Bs. Likewise, d, the dominance ef-
fect in the case of an F, population, is calculated ac-
cording to a formula similar to a, but the Bs are
replaced by regression coefficients of the trait on
dummy variables calculated as VARIATE,, = 1 — |[VARI-
ATE,ppl if VARIATE,p corresponds to the allelic dos-
age minus one as described in Whittaker et al. (1996)
(1,0, +1 for mm, mM, and MM, respectively).

In the case of recombinant inbred lines (RIL), be-
cause R;, and R;,,, are observed recombination fre-
quencies (as opposed to single meiosis recombination
frequencies), the transformation cannot be achieved in
a format as convenient as in A2, which would lead to a
linear system of equations. Nevertheless, Wu and Li
(1996) demonstrated that using the Kosambi metric to
work out the D, (genetic distances), Al can then again
be expressed as A2. This is why we construct the genetic
map assuming no interference, i.e., using Haldane’s
metric in the case of BC, DHL, and F,s, but would as-
sume some and use Kosambi’s metric for RIL.



