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ABSTRACT

Visscher, P.M., Thompson, R. and Hill, W.G., 1991, Estirnation of genetic and environmental vari-
ances for fat yield in individual herds and an investigation into heterogeneity of variance between
herds. Livest. Prod. Sci., 78: 273-2%0.

Genetic and environmental variances for fat vield were estimated for 26 large Holstein Friesian
pedigree herds in the UK, using an Animal Model (AM ). Individual herd heritability estimates ranged
from 0.03 to 0.80, but a single test against the combined herd estimate (0.379) was not significant
(P=0.03). Testing variance estimates for each herd at a constant heritability resulted in highly sig-
nificant heterogeneous (phenotypic) variance estimates. A quadratic approximation of the likelihood
surface at the maximum likelihood estimates seemed to over-estimate (Jog)likelihood differences
when testing different parameter values. Three different transformations of the data to reduce the
heterogeneity of variance were tried. Pre-adjustment for the within-herd or herd-year—season phen-
otypic variance was most effective in reducing heterogeneity of variance, and seems the most practical
way to deal with heterogeneity of variance for an AM genetic evaluation.

Keywords: dairy cattle; animal model; heritahilities; heterogeneity of variance; maximum likelihood.

INTRODUCTION

In dairy cattle the model for breeding value prediction for the 1990s in
many counties is, or soon will become, the so-called Animal Model (AM).
With the AM cows and bulls are evaluated jointly, using the BLUP (Best
Linear Unbiased Prediction; Henderson, 1973) method. In theory BLUP re-
quires the true variances and covariances to be known, but in practice esti-
mates (of the ratio) of the {(co)variances are used. Usually the parameters
are estimated with a similar model to that used for the genetic evaluation,
using a REML (Restricted Maximum Likelihood; Patterson and Thompson,
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1971) type estimation procedure. It therefore seems logical to estimate the
parameters required for the AM-BLUP using a REML procedure fitting the
same Animal Model.

Unfortunately AM-REML algorithms are computationally very demand-
ing, so that estimation of population parameters has to be carried out with
relatively small samples. For dairy cattle, one suggestion is to use data from
groups of individual herds to estimate the population parameters (Swalve
and Van Vleck, 1987; Van Vleck and Dong, 1988; Van Vleck et al., 1988).
This assures that information additional to paternal half-sib comparisons, for
example daughter—dam comparisons, is used, since most daughter—dam pairs
are in the same herd. Furthermore, use of individual herd data offers a frame-
work to investigate heterogeneity of variance between herds.

One of the assumptions made by most users of Best Linear Unbiased Pre-
diction (BLUP) evaluation is homogeneity of variance across fixed effect
levels. There is abundant evidence, however, of heterogeneity of variance
across herds or herd-year-seasons for milk production traits (see, for exam-
ple, Hill et al., 1983; Lofgren et al., 1985; Brotherstone and Hill, 1986; Mir-
ande and Van Vleck, 1985; Boldman and Freeman, 1988, for some recent
analyses). Ignoring heterogeneity of variance has consequences for selection
and response to selection. Assuming equal heritabilities between groups, Hill
(1984) showed the proportion of animals that would be selected from the
more variable herds under mass selection. Vinson (1987) used those results
to calculate a loss 1n response to selection. The theoretically correct propor-
tion to be selected from the more variable groups depends on the heritability
and phenotypic variance within each group. For sire evaluation the loss in
efficiency 1s likely to be small if sires are tested across many herd-variance
groups (Vinson, 1987). Random testing of bulls is clearly not the case for so-
called syndicate sires or for proven sires whose semen is imported into an-
other country. Since conversion of breeding values is based on the predicted
breeding values of sires in the latter category (Interbull, 1986), these linear
regressions may be biased if expensive semen is used in the more variable
herds. If it is not known whether the genetic variance, the environmental var-
iance, or both variances are heterogeneous, the effect on accuracy of selection
is not predictable. Using an AM, the effect of heterogeneity of variance on
estimated breeding values (EBVs) is unknown.

The aims of this study were to estimate genetic and environmental vari-
ances for fat yield in individual pedigree herds using an AM, and to investi-
gate heterogeneity of variance between herds. This is the first time an AM has
been used to assess heterogeneity of variance between herds, previous at-
tempts being based on sire models. In order to make appropriate significant
tests for the estimates, likelihood ratio (LR) tests were used. This involved
validating approximations of likelihood functions.
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TABLE |

Sumrmary statistics for individual herd parameters

Parameter Mean Min Max Q1 Q3 STDEV
Mean 212.4 170.3 263.6 189.9 228.1 26.85
Raw o2 1247.1 625.0 2391.2 967.5 1532.8 4111
No. records 296.9 168 485

No. animal effects 500.1 329 841

r{o,, mean) 0.39

The statistics are, respectively, mean, minimum, maximum, lower quartile, upper quartile and the
empirical standard deviation.

Raw a2 phenotypic variance before any corrections.

r{o,, mean): empirical correlation between herd means and herd phenotypic standard deviations.

MATERIAL

Production records from the Milk Marketing Board of a sample of 26 large
Holstein Friesian (HF) pedigree herds, selected on the number of heifers
present in 1986, were taken. After editing, 7720 first lactation fat vield rec-
ords were present from cows calving between 1981 and 1986. Some summary
statistics for individual herds are presented in Table 1: 574 sires were repre-
sented in the complete data set, both young and old (proven) sires; 186 sires
had only 1 daughter, whereas proven sires had up to 450 daughters present;
1740 daughter—dam pairs with records were present, of which only 6 pairs
were not in the same herd.

METHODS

The following linear model was fitted

y=Xb+Zu+e and
v(y)=ZAZ 02 +1c62=2GZ +R

where y, b, u are vectors of the observations, fixed effects and individual ani-
mal effects, respectively, X, Z are the known incidence matrices for the fixed
and random effects, and A is the numerator relationship matrix.
Herd—year-seasons (HYS) were the only fixed effects, and age at calving,
percentage HF and lactation length were fitted as covariables. Three seasons
of 4 months were defined as December-March, April-July and August-No-
vember, which correspond to the season definition for the current UK sire
evaluation. Years were defined as from August to July. All sires were treated
as “base’” animals, hence relationships between sires were not fitted, in part
because many sires had ancestors from foreign populations (the average North
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American HF percentage of the cows was 23% ). All animal effects, including
those of proven s‘res, were treated as random.

The (natural) log-likelihood (L) for a model with one other random effect
besides the residual component is (e.g. Harville, 1977; Searle, 1979)

L=—1/2{log|R|+log|A}+log|C}—log{X'X|+y Py}

where C=full rank submatrix of the coefficient matrix (the matrix contain-
ing the lefi-hand side of the Mixed Model Equations (Henderson, 1973))
and y’' Py=residual sum of squares, with P a projection matrix,

The estimations were carried out using a REML program written by Meyer
(1989), which uses an iterative (grid) search to maximise the likelihood.
Consequently, the second differentials (and asymptotic variances) with re-
spect to the parameters are not a by-product of the algorithm. Asymptotic
variances of the parameter estimates were calculated by. approximating the
likelihood surface by a quadratic function in the parameters of interest. This
was done by fitiing a small grid around the ML estimates. Heritabilities were
spaced at intervals of 0.01, and the variances were fitted 1.0 units (kg?) apart.
The matrix of second differentials then gives the realised (observed) infor-
mation matrix (see, for example, Fisher, 1956), and its inverse is the asymp-
totic covariance matrix of the parameter estimates. In the one-dimensional
case the approximation reduces to a simple quadratic curve and the second
differential matrix reduces to a scalar. The quadratic approximation may also
be used within the grid search algorithm. Both these uses of the approxima-
tion were suggested by Smith and Graser (1986) for derivative free estima-
tion methods.

Significance tests for heritability and variance estimates were carried out
as likelihood ratio (LR) tests (see, for example, Mood et al., 1973), for which
2(L1—L2) is assumed to follow a Chi-squared distribution if .1 and L2 are
the maximum log-likelihoods for different sets of parameters and the param-
eters in L2 are a subset of those in L1. The quadratic approximation was used
to extrapolate the likelihood surface for calculating differences in likelihood
for different parameter values. The extrapolation was checked by evaluating
the likelihood function at a wide range of parameter values. Likelihood ratios
were calculated both for an overall (single) parameter test and for testing
individual herd estimates. An overall test (with 25 degrees of freedom) was
carried out by calculating an overall estimate for a particular parameter, and
comparing the ML pertaining to the overall estimate with the sum of the 26
MLs from the separate herd analyses. The overall estimate was obtained by
adding 26 approximated likelihood curves and fitting a quadratic to the newly
obtained curve. This approach assumes that parameter estimates from differ-
ent herds are statistically independent. Individual herd variance estimates

were tested in two ways.
(1) Assuming the quadratic approximation of the likelihood surface around
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the maximum, the likelihood for the H, (Null-hypothesis) value was max-
imised and compared with the ML value. This allows the remaining (for the
present model only one) parameters to change when comparing the differ-
ence in likelihood. For example, if the likelihood surface was parameterised
in genetic variance and heritability, then the likelihood was maximised at a
value of the genetic variance of 324.5, the H, value obtained from the com-
bined herd analysis.

(2) Differences in likelthood for different variances were calculated at a fixed
heritability value. This test is straightforward: using the likelihood equation
from above evaluated at a particular heritability value, the likelihoods for
different variances are easy to compute. Geometrically, this is looking at a
“slice” of the likelihood “mountain’ at the fixed heritability value. For this
procedure the tests for genetic and environmental variances are equivalent.

Each herd was analysed separately, fitting the above model. To test the dif-
ferent parameter estimates against some overall H,, value, a joint herd analy-
sis was carried out, fitting the same model. The estimates from the joint anal-
ysis were subsequently used as H, values.

Methods to reduce heterogeneity of variance were investigated by using
three different transformations of the data. Firstly, data were corrected for
the within-HYS phenotypic standard deviation (s.d.). These standard devia-
tions were calculated ignoring other fixed effects and random effects. Data
were adjusted in the following way

y;i":y!j[Sdp/Sdi ]
with sd,=population s.d., sd;=s.d. for HYS / and y“=adjusted trait.

The estimate of the population s.d. was calculated from the ML estimate of
the phenotypic variance from the combined herd analysis. An adjustment for
HYS s.d. rather than for herd s.d. was made because it is known that within-
herd variances are often heterogeneous across years (see, for example, Broth-
erstone and Hill, 1986), and because HYS rather than herds are usually fitted
as fixed effects in the breeding value prediction. Secondly, a (natural) log
transformation was made, and finally the square root of the observations were
used in the analyses. The latter transformation was made because the log
transformation was found to over-correct the data in this study for the mean—
variance association.

RESULTS

The results from the individual herd analyses are presented in Table 2. Al-
though for all three parameters the estimates were very heterogeneous, only
few differed significantly from the overall estimates. The standard errors for
the heritability and genetic variance were large, indicating flat likelihood
curves. The standard errors for the environmental variances were somewhat
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TABLE 2

Individual herd REML. estimates and LR tests

Herd A2 s.e.(h?) 4, a? s.e.(o2) s G2 s.e.(02) 4, A4
1 033 018 0.1 161.8 92.2 3.0 326.3 77.6 7.0% 32.6*
2 0.43 0.16 0.1 2249 G7.5 1.0 299.4 76.1 = 9.4% 31.8*%
3 0.59 0.17 1.6 513.6 178.0 1.3 364.4 130.0 1.7 0.2
4 0.49 0,22 0.3 240.5 122.5 0.5 243.2 95.0 8.3* 33.6%
5 0.03 0.17 4.4 16.9 3.3 16272.0¢ 562.4 107.3 0.1 9.6*
6 049 017 0.4 5257 1684 0.4 4475 132.8 04 0.0
7 042  0.30 0.0 .564 2744 .0 4937 2222 .0 0.0
8 0.71  0.16 4.5% 4339 126.1 0.9 184.2 83.9 17.6* 23.2%
9 017 0.13 2.6 109.0 63.0 11.8* 4499 71.0 I.1 20.2%
10 0.28 0.18 0.3 3185 199.5 0.0 770.4 185.8 1.8 8.8*
11 0.37 0.19 0.0 2935 1612 0.0 498.7 137.9 0.1 0.6
12 0.31 0.20 0.1 2816 179.6 0.0 620.9 156.1 0.4 0.7
13 0.25 0.12 1.1 171.9 80.7 34 506.2 78.3 0.1 7.1%
14 031 0.18 0.1 2398 141.0 0.3 5280 118.5 0.0 1.3
15 0.34 0.19 0.0 3189 1831 0.0 615.5 162.1 0.2 I.1
16 017 0.12 3.2 1744 9319 2.3 819.5 117.4 6.4* 8.1*
17 0.59 0.16 1.7 5224 1783 I.3 363.2 129.8 1.7 0.0
18 041 0.32 0.0 501.3 4225 0.2 722.8 3284 0.3 15.0*
19 039 0,23 0.0 3524 2213 0.0 551.2 191.8 0.0 0.3
20 0.80 0.20 4.4 646.0 222.1 2.2 162.0 1215 11.5% 3.2
21 0.55 0.15 1.3 513.9 1685 1.3 4273 1234 0.7 0.4
22 021 0.16 1.1 194.4 1320 0.8 754.9 1472 2.3 3.1
23 0.31 0.26 0.1 250.7 205.1 0.1 552.9 188.1 0.0 0.3
24 0.65 0.31 0.8 749.2 415.8 1.2 415.1 323.9 0.1 5.9%
25 0.10 0.11 6.6 697 37.9 63.7%  580.2 80.1 0.4 5.3*%
26 0.38 0.16 G0 5147 2292 0.9 838.8 191.5 2.7 56.0*

Combining estimates (by adding curves)
1-26 035 0.03 33.7 235 2.4 99.7"% 4448 222 58.4% 2684

Single combined herd analysis estimates, used as H, values
1-26 0.379 3245 5323

4y 23= —2(difference in log-likelihood ) at ML estimate and H, value.
d4= —2(difference log-likelihood) for variances at £7=0.379.
*Significant at less than 5% level.

‘Extrapolation error; estimate is not significant.

*Extrapolation error; estimate is significant at 5% level,

The variance estimates are in units kg,

smaller, since they were estimated with more degrees of freedom. The average
correlation (not presented ) between the genetic and environmental variance
estimates for each herd was approximately —0.85. Results from the com-
bined herd analysis are presented in Table 3. The estimates of the heritability
for the complete data set were robust to transformations of the data. The cor-
relation between herd means and estimated herd phenotypic s.d. was 0.71.
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TABLE 3

Results of combined herd analyses

Analysis 2 g2 h? s.e.{h?)
I (Standard) 3245 5323 0.37% 0.037
I (Adjustment for HYS 3 ) 2613 479.0 0.353 0.036
11 (Log transformation ) 0.0073 0.0123 0.372 0.037
IV {Square root transformation ) 0.378 0.625 0.377 0.037
TABLE 4

Summary of likelihood ratio tests

Analyses
I 1I I v
Separate LR test for each herd estimate
h? P<0.05 2 2 2
P<0.01 0 0 0 1
al P<0.05 2 2 | 1
P<0.01 2 0 1 1
o2 P<0.05 6 2 3 4
P<0.01 5 0 2 3
o iH? P<0.05 13 1 8 9
P<0.01 11 0 8 6
Single LR test
h? 33.7 32.7 36.9 36.0
az {1} 99 7** B7.7%* 55.0%* 62.3%*
a: 58.4%* 23.8 51.6%* 44 §**
of| H? 268.4** 16.9 15F.7%* E54.7%*

Analyses: T=standard, I}=date adjusted for within-HYS phenotypic standard deviation, HI=log
transformation, IV =square root transformation.
Values for separate herd LR tests are numbers of estimates which are significantly different from the

Hy values.

Vatues for single LR tests are —2[difference log-likelihood ].

{!) LR values are overestimates becaunse of extrapolation ervors (see text).

o3 | H* =ML estimate of the phenotypic variance at the heritability estimate from the combined herd

analysis (Table 3), which is used as H,, value.
P 0.01.

A summary of the LR tests is given in Table 4. The single LR tests showed
a significant difference among herds in genetic and environmental variances
(P<0.05), but not in heritabilities. A single test for the variances at a fixed
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heritability value of 0.379 (see Table 3) resulted in highly significant differ-
ences in variances (P<0.01). The ML variance estimates from adding up the
curves were considerably lower in value compared with the estimates from
the combined herd analysis. The extreme low value for the genetic variance
(23.5) is an extrapolation error; excluding herd 5 from the analysis resulted
in an estimate of 180.9 and a LR of 43.2 (still significant).

The likelihood differences in columns 4, 7 and 10 of Table 2 were from
likelihood comparisons with the ML estimates from the combined herd anal-
ysis, which were 324.5, 532.3 and 0.379 for the genetic variance, environmen-
tal variance and the heritability, respectively (see Table 3). For two data sets
the heritabilities and genetic variances were different from the overall esti-
mate (P<0.05). In six cases the environmental variance was significantly
different from 432.3. Assuming the heritabilities to be the same (0.379) in
all herds, 13 of the 26 variances were significantly different from the overall
estimate (see last column of Table 2). Therefore, if the heritabilities are as-
sumed to be equal, the phenotypic variance is highly heterogencous between
herds. Testing heritabilities against a H,, value of close to zero (10~*) resulted
in 17 heritabilities differing from that value (P<0.05). A single LR test against
“zero” showed a highly significant {(P<0.01) LR (205.7, for 25 degrees of
freedom).

In general, the quadratic approximation over-estimated the difference in
likelihood between the ML estimates and the H, values. In some cases, for
example for the genetic variance in herds 5 and 23, this lead to spurious con-
clusions regarding the significance of the estimates. The real difference in twice
the log-likelihood for these herds was only 3.70 and 5.92, respectively. The
curvature at the ML values was much “steeper’” than at other points on the
likelithood surface.

Adjusting the data for an (uncorrected) estimate of the within-HYS vari-
ance resulted in two heritabilities, two genetic variances and two environ-
mental variances (from four different herds) being significantly different
(P<0.05) from the values 0.353, 261.3 and 479.0, respectively, which were
the ML estimates for the complete (combined) data set using adjusted rec-
ords (from Table 3). Testing the variances at a fixed heritability value of
0.353 resulted in one of the variances differing (P<0.05). At the 1% level
none of the parameter estimates was different from the overall estimate. A
single LR test indicated no significance for all three parameters (P> 0.05).

For the log transformed data, two heritabilities, one genetic variance and
three environmental variances for individual herds differed (P<0.05) from
the H, values. However, assuming equal heritabilities (0.372), eight pheno-
typic variances were still significant (P<0.01), and a single LR test was highly
significant (P<0.01). The correlation between herd mean and phenotypic
variance on the log scale was —0.28. The log transformation slightly “over-
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adjusted” the data for heterogeneity of variance. The square root transfor-
mation, however, showed similar results to the log transformation.

DISCUSSION

Estimates of individual herd parameters and their implications

Few extreme heritability estimates were obtained despite the relatively large
standard errors. The combined herd heritability estimate agrees well with the
most recent estimate using a sire model (Meyer, 1987). However, the herds
were chosen on size and may not be a representative sample of the pedigree
herds, and the complete sample was rather small. Since all sires were treated
asuncorrelated random effects, selection would bias the heritability estimates
downwards. Alternatively, an increased variance might be expected as the
sires were from different populations (European and North-American).

Apart from two rather high estimates (for herds 8 and 25), the heritabili- -
ties were stmilar. More data per herd would increase the ability to distinguish
between different heritability estimates, but the herds were the largest avail-
able, and the average herd size in the UK is the largest in Europe. If no infer-
ence could be drawn from these samples, it is not clear how AM herd esti-
mates should be obtained. A multi-lactation analysis would increase the
amount of information substantially, but a multi-trait evaluation is compu-
tationally very demanding and may require different computing algorithms
(Meyer, 1991). The overall, single, LR test may be more suitable for infer-
ences about the population, since sampling will usually result in some indi-
vidual estimates different from the mean value.

The results suggest that the heritabilities are relatively constant and that
the phenotypic variance is heterogeneous. The crude correction for the het-
erogeneity of phenotypic variance, by adjusting data for within-HYS pheno-
typic standard deviation, reduced the heterogeneity substantially. Despite the
relatively large correlation between herd mean and herd variance, the log
transformation over-adjusted the data for heterogeneity. The resulting nega-
tive correlation ( —0.28) between herd mean and herd variance indicates that
if this transformation is applied in a BLUP analysis, assuming a constant her-
itability among herds, the breeding values of superior cows from high yielding
herds would be underpredicted relative to the breeding values of superior cows
from low yielding herds.

Existing literature estimates of heterogeneity of variance are often contra-
dictory both between countries and within countries over time. While some
studies find a correlation between herd mean and herd (phenotypic) vari-
ance (Hill et al., 1983; Mirande and Van Vleck, 1985; Brotherstone and Hill,
1986; Boldman and Freeman, 1988; Meinert et al., 1988 ), others find no evi-
dence of such a relationship (Lofgren et al., 1985; Winkelman and Schaeffer,
1988). Even for the studies that did find a (positive) correlation, the rela-
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tionship was not strong. A typical value would be 0.4-0.5 (for milk, fat and
protein yield). Hence heterogeneity of variance cannot be explained fully by
a scale effect. With a correlation not very close to unity, the log transforma-
tion seems to reverse the trend, in that the association between mean and
variance becomes negative.

Previous studies to quantify heterogeneity of variance were often based on
grouping herds according to some criterion and estimating variances using a
sire model. Grouping on herd mean (Mirande and Van Vleck, 1985; Bold-
man and Freeman, 1988), herd variance (Winkelman and Schaeffer, 1988)
or on a function of the mean and variance, e.g. the coefficient of variation
(Hill et al., 1983; Lofgren et al., 1985; Pearson et al., 1988), are the usual
choices. Lofgren et al, (1985) found no clear pattern of heritability estimates
by grouping herds on herd mean. The “average™ herd mean class had the low-
est heritability for milk yield (0.163). They found consistently higher herit-
abilities in the more variable groups. The effect of their implicit assumptions,
unrelated sires and all sires from the same population, on the obtained esti-
mates is not clear, but the heritability estimates were probably biased down-
wards. Mirande and Van Vleck (1985) looked at trends in genetic—environ-
mental variances over a 22-year period. Within-sire variances increased over
time, thus decreasing the heritability. It is perhaps not surprising that param-
eters should change over such a time period. The trait itself may well have
changed (genetically) in that time, in such a way that a genetic correlation
between measurements on the same trait in different time periods is less than
unity. It is debatable if the same pre-adjustment factors for certain “fixed”
effects can be used for cows calving that far apart. Heritabilities for fat yield
were found to be higher in both high-mean and high-variance herd classes
(Hill et al., 1983). A log transformation indicated that the difference in var-
iance was a greater cause of those higher heritabilities than the high herd
means. Results from daughter—dam regression within-herd classes according
to phenotypic standard deviation and herd mean indicated that heritability
estimates for milk yield would be a function of the herd variance (higher stan-
dard deviation showed higher regression coefficient) and not of the herd mean
(Pearson et al., 1988). Boldman and Freeman (1988) found similar results:
the high herd production groups showed higher genetic and environmental
variance and a higher heritability. There seems evidence that the heritability
18 consistantly higher in the more variable herds. The conclusion concerning
the relationship between herd mean and heritability is less clear.

An interesting question is what causes heterogeneity. Possible explanations
include management factors (e.g. feeding, housing), breeding strategy (sire
selection ), genotype by environment interaction, a common environmental
effect for half-sibs (i.e. a herd-sire effect) and preferential treatment. For the
present analysis, a potential sire~herd effect was confounded with the genetic
variance. Similar results regarding heterogeneity of variance may not be ex-




GENETIC AND ENVIRONMENTAL VARIANCES FOR FAT YIELD 283

pected using an AM compared with using a sire model, since the within-sire
component may be heterogeneous because of environmental variance or be-
cause of the unaccounted for genetic component.

Usually the aim of estimating parameters is to use them subsequently in,
for example, a BLUP evaluation. The question therefore is what strategy
should be used to deal with the problem of heterogeneity of variance between
environments. Ignoring it altogether is the simplest option, and this may not
have been too inefficient until now, when sires and cows are evaluated sepa-
rately, assuming sires were tested over many herd-variance groups and that
heritabilities are higher in the more variable herds. For a separate cow e¢valu-
ation, the problem of heterogeneity of variance is potentially much more se-
rious: ignoring the effect will have a cumulative effect over time, given a se-
lection index type approach and the fact that most cows will have female
ancestors producing in the same herd (Vinson, 1987). The cow genetic index
(CGI) in the UK standardises observations to the within-HYS phenotypic
standard deviation, by regressing the estimate of a within-HYS standard de-
viation to an overall standard deviation depending on the variance of the
estimate (Brotherstone and Hill, 1986). The (national) genetic progress is
affected if it is less efficient that more bull-dams come from the more vari-
able herds as will be the case if correction does not take place. The justifica-
tion for no correction would be that the heritability is also higher in the more
variable herds. With an AM it seems unjustified to ignore the effect, although
the effect of heterogeneity of variance on accuracy of selection is not clear.
Unfortunately biases are difficult to predict since they depend on the struc-
ture of the data and the true parameters. Simulation should indicate what the
loss in efficiency is for certain population structures and parameters.

Hill (1984) showed a standardisation to within-group phenotypic standard
deviation is justified if the heritability is constant across groups. Meinert et
al. (1988) found this strategy to give the best results for the regression of
daughter on her sire’s predicted transmitting ability. For the present data set
this correction seems to be sufficient. A disadvantage of this adjustment is
that it requires regular estimates of within-herd variances, preferably cor-
rected for fixed effects, if the data are to be pre-corrected for heterogeneity of
variance. For small herds (1.e. most herds), this may give sampling problems.
Using a Bayesian argument, parameters from individual herds could be re-
gressed to some overall mean according to their accuracy (sampling vari-
ance ), as in Brotherstone and Hill (1986). However, the within-herd param-
eters are likely to change over time. Brotherstone and Hill (1986) found
repeatabilities for most parameters (mean and variances) between herd-years
to be about 0.7, but even so, changes in management may cause abrupt changes
in parameters (Mirande and Van Vleck, 1985); for example, the effect of
quota introduction in Europe on (genetic) parameters is unknown, Alterna-
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tively, the adjustment could be made in the estimation program. Again, how-
ever, sampling effects should be taken into account,

A log transformation has been proposed and investigated by various au-
thors (e.g. Hill et al., 1983; Boldman and Freeman, 1988; Meinert et al., 1988 ),
based on the evidence of a correlation between herd mean and variance. The
log transformation is justified if the heterogeneity is just a scale effect, result-
ing in the standard deviation being linearly related to the mean. If the mean-
variance correlation has no genetic component, a log transformation will have
the additional advantage of increasing the heritability. If the relationship is
(partly) genetic, the heritability may be different on a log scale, depending
on what proportion of the mean-variance correlation is genetically deter-
mined. Hill et al. (1983) found within-sire variances of log yields stabilised
across herds grouped on the mean, but between sire components relatively
unaltered. Hence the overall heritability increased and the difference between
High and Low increased after the log transformation. For herds split accord-
ing to variance the ratio of within-between sire components before and after
the log transformation remained fairly constant. Even given the higher herit-
ability in high mean and high variance herds, the weights given to untrans-
formed records from those herds in a sire evaluation were theoretically too
large (Hill et al., 1983). Heritabilities for milk yield, for low-, medium- and
high-herd level groups remained nearly constant after a log transformation,
but the low-level group (with the lowest heritability for both untransformed
and transformed yield ) had the relatively highest phenotypic variance after
the transformation (Boldman and Freeman, 1988). Superior cows in low
producing herds would therefore be over-evaluated on the log scale; unad-
justed yields would overevaluate cows from the high-level group. These find-
ings are confirmed in the present study. Caution should therefore be taken in
applying a log transformation, since the genetic and environmental variances
may not respond the same way to this transformation. If the present study
both variances seemed to respond similarly to the transformation, although
the genetic variance was not very heterogeneous to start with. Brotherstone et
al. (1989) and Brotherstone and Hill (1986) looked at within-sire heteroge-
neity of variance by adjusting records for the breeding value of the sire, and
concluded that a log transformation would reduce the heterogeneity. Correct-
ing for a daughter’s sire, by subtracting her sire’s transmitting ability, assumes
homogeneity of genetic variance, which is inconsistent with previous studies
(Hill et al., 1983). The log transformation therefore cannot solely be justified
by looking at the reduction in heterogeneity.

If further investigation indicates that heritabilities are not the same for all
herds, then a different approach should be taken. A multi-trait approach seems
theoretically best (see e.g. Schaeffer et al., 1978; Gianola, 1986), but it may
be tedious to estimate genetic and phenotypic parameters for all herds in or-
der to group them according to some function of the estimated parameters.
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Furthermore, grouping herds according to genetic and/or environmental var-
iances would give sampling problems (Winkelman and Schaeffer, 1988).

Given the literature findings and the results from the present study, it seems
most practical to pre-adjust data for some estimate of the herd or HYS phen-
otypic standard deviation.

The use of quadratic approximations in LR tests

A quadratic approximation of the likelihood surface was used to obtain
asymptotic (co ) variances and to extrapolate the likelihood surface for testing
parameters. The latter use gave spurious likelihood differences for variances
when the H, value to be tested was not close to the ML value. Apparently
although perhaps not surprisingly, the likelihood surface does not “behave™
as a quadratic function over a wide range of parameter values. One way to
investigate the slope of the likelihood surface is to examine the geometric cur-
vature at different parameter values; for a perfect quadratic surface the cur-
vature, here defined as minus the second differential of the likelihood with
respect to the parameter(s) of interest, is constant for all parameter values.
The curvature for a particular parameter at the ML estimate is called (Fish-
er’s amount of ) Information.

For illustration, following Visscher and Thompson (1990), consider a one-
way balanced half-sib design, with 100 sires each having 10 recorded off-
spring. Using true values of the heritability and phenotypic varance of 0.40
and 1.0, respectively, the curvature for different combinations of parameter
values for the genetic and environmental variance is presented in Table 5.
Clearly the curvature changes with different parameter values. Visually, this
i1s demonstrated in Fig. 1, which represents likelihood contours for various
combinations of the values of genetic and environmental variances from Ta-
ble 5, using both exactt likelihoods and likelihood values obtained from a
quadratic approximation of the likelihood surface at the ML values. Close to
the ML values the quadratic approximation seems sufficient, but departures
from a perfect quadratic surface are clearly visible for more extreme values of
the variances, A different parameterisation, for example in heritability and
phenotypic variance, gave similar results. The magnitude of the extrapolation
error is illustrated in Table 6. For different values of estimated heritabilities,
the LR was calculated as twice the difference in log-likelihood and compared
with the LR obtained from approximating the likelihood curve by a quadratic
around the ML estimate. For this example, the predicted LR overestimated
the true difference in log-likelihood when testing values larger than the ML
value, and underestimated the difference for values smaller than the ML value.
The extrapolation error is rather small for the example given, but this reflects
the flat likelihood curve for a heritability estimate based on 100 progeny groups
of 10 half-sibs.

Various authors (e.g. Smith and Graser, 1986; Graser et al., 1987) have
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TABLE 5

Curvature of log-likelihood at various values of the genetic and environmental variance for a one-way
balanced design

H
o2 0.30 0.35 0.40 0.45 0.50
0.50 1092.86 849.89 673.69 541.85 440.77 P(g2)
1068.6 869.1 714.3 592.1 494.1 (g2 ,02)
1305.3 £077.5 895.9 749.4 630.0 P(g2)
—0.89 —0.91 —0.92 —0.93 —0.94 (o2 ,0%)
0.55 892.77 695.86 552.59 445.08 362.42 P(5?)
846.4 692.1 571.6 475.8 398.5 (o2 ,02)
1022.7 850.2 711.4 598.3 505.3 (g2)
—0.89 —0.90 —0.91 —~0.92 -0.93 r(o? ,0%)
0.60 737.27 575.44 457.33 368.50 300.07 P(a?)
677.6 556.4 461.2 385.1 323.4 P(o2 62
809.6 677.0 569.3 480.8 407.6 #(02)
—0.88 —0.89 —0.90 —0.91 ~0.92 (02 ,02)
0.65 614.52 479.90 381.40 307.16 249 88 P(a?)
547.5 450.9 374.7 313.6 263.7 P(g? ¢2)
646.4 543.1 458.5 388.5 330.3 #(52)
—0.87 —0.88 —0.90 —0.91 —0.92 o2 a2
0.70 516.27 403.13 320.14 257.49 209.08 P(s2)
445.9 367.9 306.2 256.5 215.8 Y(a2,02)
519.9 438.3 3711 315.3 268.4 P(c?)
—0.86 —0.88 —0.89 —0.90 —0.91 r(a?,62)

W curvature matrix = — [ matrix of 2*¢ differentials].
r{a? ,02)=correlation between estimates derived from the ¥ matrix. True parameters: 62=40, o2=60.

suggested use of a quadratic approximation of the likelihood surface to obtain
asymptotic variances when the second differentials or the expectations thereof
are not a by-product of the estimation algorithm. However, in data analysis
and simulation it has been found that a quadratic approximation sometimes
does not produce sensible results, in particular when many random effects are
estimated (Meyer, 1989). Visscher and Thompson (1990), discussed differ-
ences in curvature at different parameter values for a hierarchical nested de-
sign. For the example given here, a one-way balanced design, the argument is
analogous: since the variances of the mean squares depend on their expected
values, and the parameters of interest are linear functions of the mean squares,
the curvature depends on the values of the parameters. A cubic approxima-
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Fig. 1. Likelihood contours for balanced design. Parameters: ¢2=0.60; 02 =0.40 (h*=0.40;
o%=1.0). Data: on 10 progeny of 100 sires. Difference between subsequent contour lines is 0.10
log-likelihood. Solid curves: contours for exact likelihoods. Dashed curves: contours for likeli-
hoods obtained from a quadratic approximation of the likelihood surface around the ML values.

TABLE 6

Exact and predicted likelihood ratios {LR ) for a balanced design

h2 (1) H?*(ML)

0.20 0.30 0.40 0.50 0.60

1RI LR2 LR! LR2 LR1 LRZ LR] LR2 LR1 LRZ
0.20 0.0 0.0 [.4 1.2 5.1 3.8 10.9 7.3 18.4 11.2
0.30 1.2 L5 0.0 0.0 L1 1.0 4.2 32 8.9 6.3
0.40 4.3 59 1.0 1.2 0.0 0.0 0.9 0.8 3.5 28
0.50 8.5 13.2 3.6 4.6 0.8 1.0 0.0 0.0 .8 0.7
0.60 13.5 23.5 7.1 10.4 3.0 3.8 0.7 0.8 0.0 0.0

H?*(ML) =Maximum likelihood estimate.
A2 (#)=heritability estimate which is tested against ML value.
LR I'=exact LR from likelihood curve.
LR2=predicted LR from quadratic around the maximum.
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tion would produce better results, since the second differentials are still func-
tions of the parameter values, but if there are many random components, for
example in a multiple trait analysis, this would require a large multi-dimen-
sional grid and the inversion of a rather large matrix. Using a quadratic ap-
proximation for a multi-dimensional grid search may not be efficient, so
transformations of the parameters to make the likelihood surface more qua-
dratic may speed up convergence.
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RESUME

Visscher, P.M., Thompson, R. et Hill, W.G., 1991, Estimation des variances génétiques et de milieu
pour la production de matiéres grasses dans des troupeaux particuliers et analyse de Phétérogénéité
de variance entre troupeaux. Livest. Prod. Sci., 28: 273-290 (en anglais).

Les variances génétiques et non génétiques pour la production de matiére grasse ont été estimées
sur 26 grands troupeaux Holstein Friesian selon le modéle animal {MA). Les coefficients d’héritabi-
lité ont varié de 0,03 4 0,80 suivant les troupeaux mais ils n’ont pas différé significativement (P> 0,05)
d'une estimé globale (0,379). En supposant une héritabilité constante, les estimées de variances phén-
otypigues ont varié trés significativement d’un troupeau a 'autre. L'approximation de la fonction de
vraisemblance par une fonction quadratique a probablement contribué A rendre {rop sensible le test
d’hétérogénéité de variances. Trois transformations différentes sur les données de base ont £té essay-
ées en vue de réduire I'hétérogénéité de variance. Un préadjustement pour la variance phénotypique
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intra-troupeau ou intra-troupeau—année—saison a été le plus efficace pour réduire P'hétérogénéité de
variance, Il parait &tre le moyen le plus pratique de traiter P'hétérogénéité de variance en vue d'une
indexation suivant le modéle animal.

KURZFASSUNG

Visscher, P.M., Thompson, R. u'nd Hill, W.G., 1991. Schiitzung von genetischer und Umweltvarianz
der Fettmenge in einzelnen Herden und Untersuchungen zur Heterogenitiit der Varianzen zwischen
Herden. Livest. Prod. Sci., 28: 273290 (auf englisch ).

Die genetische Varianz und die Umweltvarianz der Fettmenge wurden fiir 26 grofle Holstein Fre-
sian Herdbuchbetriebe in den UK mit einem Tiermodell geschiitzt. Die Schiitzwerte fiir die Herita-
bititdt in den einzelnen Herden lag zwischen 0,03 und 0,80, aber einfache Tests gegenitber der Ge-
amtheritabilitdt (0,379) ergaben keine signifikanten Abweichungen (P>0,05). Ein Test der
Varianzschitzwerte jeder Herde bei konstanter Heritabilitiit ergab eine hoch signifikante Heterogen-
itdt der phanotypischen Varianzen. Wenn verschiedene Parameterwerte getestet werden, scheint eine
quadratische Approximation der Wahrscheinlichkeitsoberfliche um das Maximum die Loglikeli-
hood-Unterschiede zu tberschiitzen. Drei verschiedene Transformationen der Daten zur Reduzi-
erung der Heterogenitét der Varianzen wurden untersucht. Eine Vorkorrektur auf die phinotypische
Varianz innerhalb der Herde oder der Herdenjahrsaison war am besten geeignet, diese Heterogenitit
zu verringern; sie erscheint der praktischste Weg zu sein, um eine Heterogenitit der Varianzen in
einem Tiermodell zu beriicksichtigen.
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