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Abstract
It is difficult to study the genetic basis of psychological function/dysfunction due to its etiological complexity. Instead, we studied a biological

marker, EEG power, which is associated with various psychological phenotypes and is closer to gene function. Previous studies have consistently

demonstrated high heritability of EEG band power, but less is known about how common or specific genes influence each power band. For 519

adolescent twin pairs, spectral powers were calculated for delta, theta, alpha, and beta bands at bilateral occipital and frontal sites. All four bands

were entered into a multivariate genetic model, with occipital and frontal sites modelled separately. Variance was decomposed into additive (A) and

dominant (D) genetic factors, and common (C) and unique (E) environmental factors. Band heritabilities were higher at occipital (0.75–0.86) than

frontal sites (0.46–0.80). Both common and specific genetic factors influenced the bands, with common genetic and specific genetic factors having

more influence in the occipital and frontal regions, respectively. Non-additive genetic effects on beta power and a common environment effect on

delta, theta, and alpha powers were observed in the frontal region.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of genetic influences has been demonstrated

for many psychological traits and disorders (Bouchard and

Loehlin, 2001; Deary et al., 2006; Ehringer et al., 2006;

Leonardo and Hen, 2006; Preuss et al., 2004). To better

understand these phenotypes, it is often advantageous to look at

a more basic, underlying, preferably biological trait (or

‘endophenotype’), as this will more directly reflect the

influence of the genome (Gottesman and Shields, 1972;

Gottesman and Gould, 2003). The electroencephalogram

(EEG) provides a good endophenotype because it is largely

genetically controlled (van Beijsterveldt and van Baal, 2002;

Vogel, 2000) and is stable over time (test-retest reliability is

around 0.8 for both absolute and relative powers (Pollock et al.,
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1991; Salinsky et al., 1991)). As noted below, at the phenotypic

level it is related to psychiatric disorder (Knott et al., 2001;

Lazzaro et al., 1998; Pogarell et al., 2006; Porjesz et al., 1998),

as well as personality (Tran et al., 2006) and cognition (IQ, g)

(Giannitrapani, 1985; Schmid et al., 2002).

One of the most common and straightforward ways of

quantifying EEG is to divide the frequency spectrum into

discrete ranges (bands), and with a transformation of the data,

determine the amplitude or ‘power’ of each range. EEG band

power at a given site reflects the circuitry and function of the

underlying pyramidal cells (Schaul, 1998). It varies greatly

between individuals (Vogel, 2000), is stable within an

individual in a given condition (e.g. at rest with eyes closed)

(Williams et al., 2005), and changes according to mental state

(Moretti et al., 2004), task demands (Klimesch, 1999), and age

(Li et al., 1996; McEvoy et al., 2001). Dividing the frequency

spectrum into delta, theta, alpha, and beta waves can be done

using fixed bands (e.g. the classical broad bands delta (up to

4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–25 Hz)) or
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individually aligned bands (ranges for each band are set relative

to an individual’s peak alpha frequency) (Klimesch, 1999).

Smit et al. (2005) have shown that for the purposes of genetic

analysis there is little difference between the two, but overall,

the disadvantage of excessive data loss with the aligned method

outweighs any advantage of using individualised data.

Resting EEG power in specific bands has been associated

with various cognitive traits. For example, resting alpha power

was found to be positively associated with IQ (Doppelmayr

et al., 2002), although a significant relationship is not always

found (Gaser et al., 1983; Smit et al., 2006). Aspects of

personality have been found to be associated with specific

resting EEG band powers. Tran et al. (2006) found that delta

and theta powers were positively correlated with extraversion in

males and negatively correlated with conscientiousness in

females. Alpha and beta correlated negatively with neuroticism

in males, although not in posterior sites.

Various forms of psychopathology are associated with

abnormal patterns of resting EEG activity in a particular band

or bands. EEG is an important endophenotype for alcoholism

(see Porjesz et al. (2005) for a review). For example,

predisposition to becoming an alcoholic has been associated

with elevated resting beta power (Rangaswamy et al., 2004).

Increased resting beta power has also been linked to depression

(Knott et al., 2001), as has frontal hemispheric asymmetry in

resting alpha power (Bruder et al., 2005; Coan and Allen,

2004). Recent findings have suggested that frontal resting EEG

asymmetry may also predict future development of anxiety

(Blackhart et al., 2006). ADHD has been linked to abnormally

high resting theta band activity, particularly in the frontal lobes

(Lazzaro et al., 1999; Lazzaro et al., 1998), and this has been

linked more specifically to a decrease in attention (Mann et al.,

1992). Sufferers of obsessive-compulsive disorder exhibit

frontally increased resting delta but decreased alpha and beta

powers, and their EEG band powers tend to correlate positively

with obsessions and negatively with compulsions (Pogarell

et al., 2006).

The summarised evidence indicates that mental disorder

and individual differences in cognition are usually associated

with unusually high or low power in a specific band or group

of bands, rather than a general change across the entire

frequency spectrum. This suggests that if resting EEG power

is to provide a good endophenotype for studying the genetic

basis of psychological function and dysfunction, then its

genetic influences should exhibit some band-specificity. A

general genetic factor influencing all frequencies uniformly

would provide few clues to the genetic basis of a

psychopathology which involved only an increase in beta

power, for example. Many studies have determined the

genetic influences on one band (usually alpha, see van

Beijsterveldt and van Baal (2002) for a review), but these do

not reveal whether common or specific genes are influencing

each band.

A more elaborate study, by van Beijsterveldt et al. (1996),

used multivariate modelling to determine to what extent the

same genes affected EEG in different parts of the brain. From

the analysis it could be concluded that the same genes
influenced alpha at all brain regions, and that there were no

hemispheric differences in the genetic control of delta, theta,

alpha, or beta power. It left unanswered the questions of

whether the same genes influenced the different bands, and

whether genes controlling delta, theta, and beta differ between

specific regions of the brain. Other results of the study are

derived from univariate analyses, but they provide a good basis

for comparison to the current study: the heritabilities of all four

bands were very high and similar to each other (delta 0.76, theta

0.89, alpha 0.89, beta 0.86), there were no mean differences or

heritability differences between the sexes, and there was no

effect of common environment. It is not known whether the

apparent trend of homogeneity of genetic influence across brain

regions, power bands, and sexes is a reflection of the true nature

of the genetic architecture or simply a lack of power to detect

heterogeneity (the sample consisted of 213 twin pairs).

A study by Smit et al. (2005) calculated bi-variate genetic

correlations between delta, theta, alpha, and beta powers. These

ranged from .55 to .75, indicating that 55% to 75% of the

genetic variance overlapped between bands. As the genetic

correlations were neither zero nor unity, it suggested both

common and specific genetic factors contributed to the power

bands. However, the correlations were based on data from one

central electrode, so comparisons could not be made between

brain regions. A multivariate analysis by Anokhin et al. (2001)

also suggested that common as well as specific genetic factors

contributed to EEG power bands and event related potentials

(ERPs), but beta power was not included and statistical power

was low.

Using the largest twin sample to date, the present study

aimed to expand on the EEG literature by studying the

multivariate architecture of the genetic and environmental

influences on the four EEG power bands, determining the

extent to which they are influenced by a common factor versus

band-specific factors. In doing this we also aimed to

disentangle heterogeneity from homogeneity across hemi-

spheres, sex, and age. Specifically, the main objectives were to

(1) confirm that each EEG power band is mainly influenced by

genetic factors and ascertain the mode of transmission of this

influence, and (2) investigate to what extent the same genes

influence all four bands, and, conversely, how important band-

specific genetic effects are. We focussed on occipital and

frontal sites, and while this does not allow us to comprehen-

sively assess variation across brain areas, it allows us to more

broadly attribute brain activity to posterior versus anterior

regions. Functionally, these brain regions are dramatically

different: the occipital lobes perform mainly basic functions in

visual perception, whereas frontal lobes perform higher

cognitive functions such as executive control, planning, and

reasoning. These functional differences may be reflected by

differences in the EEG signal and its underlying genetic

influences. We applied multivariate structural equation

modelling to the classical broad bands delta, theta, alpha,

and beta of resting EEG, from homologous left and right sites.

Thus, the far more subtle hemispheric functional differences

may be contrasted with the lower versus higher order occipito-

frontal differences.
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2. Methods

2.1. Participants

Participants were adolescent twins recruited through South East Queensland

secondary schools as part of a study on the genetics of cognition (Wright et al.,

2001a), of which the recording of resting EEG was a component. Twin pairs

were excluded from participation if parental report indicated that either twin had

a history of head injury, neurological or psychiatric illness, substance abuse or

dependence, or current use of medication with central nervous system effects.

Prior to testing, written informed consent was obtained from all participants and

their parents or guardians. Ethics approval for the study was obtained from the

Human Research Ethics Committee, Queensland Institute of Medical Research.

The full sample consisted of 533 females and 505 males between the ages of

15.42 and 18.16 (16.24 � 0.31). Due to the narrow age range, ages to two

decimal places were used for analysis to enhance the possibility of finding any

genuine age effects. This sample is almost identical to that reported in Smit et al.

(2006), and includes six zygosity groups; 125 monozygotic (MZ; identical)

female pairs (MZF), 114 MZ male pairs (MZM), 69 dizygotic (DZ; non-

identical) female pairs (DZF), 66 DZ male pairs (DZM), 145 opposite sex DZ

pairs (68 female first born (DZFM), 77 male first born (DZMF)). Zygosity was

determined by typing 9 independent polymorphic DNA markers using the

AmpFLSTR1 Profiler1 PCR Amplification Kit and crosschecking with ABO,

MN, and Rh blood groups and/or phenotypic information (e.g. hair, skin, and

eye colour). Based on this, zygosity was assigned with an extremely low

probability of error (less than 10�4).

2.2. General procedure

Two parallel testing sessions were used in the Twin Cognition study

protocol: a psychometric assessment of processing speed and IQ (e.g. Luciano

et al., 2001) and a psychophysiological session where event-related potentials

(ERPs) were recorded during a working memory task (Hansell et al., 2001;

Wright et al., 2001b) followed by the recording of resting EEG (Smit et al.,

2006). As one twin did the psychometric session, the co-twin undertook the

psychophysiological session, and after a short break each twin completed the

complementary session. Two 4 min recordings comprised the resting EEG, the

first with eyes closed and second with eyes open. For the eyes closed condition

participants were informed that the duration of the recording would be

approximately 5 min, and were asked to relax and sit quietly with their eyes

closed, to minimize any movement. For the eyes open condition they were asked

to sit quietly and be relaxed, and to focus on the monitor in front of them. Only

data from the eyes closed condition are used in this study. Recordings were

taken in a semi-darkened, electrically shielded, and sound-attenuated cubicle.

2.3. EEG recording

As described in Smit et al. (2006), EEG was recorded from 15 scalp

locations (Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, Pz, P3, P4, O1, O2) using an

electrode cap. The tin electrodes were arranged according to the International

electrode (10–20) placement system and referenced to physically linked ears,

with the ear impedances matched at the beginning of the recording session. The

ground lead was located just anterior to the Fz electrode. Ocular potentials

(electro-oculogram or EOG) were recorded from single tin electrodes located

on the outer canthus and the centre of the supraorbital ridge above the left eye.

Impedance readings were all below 5 kV. EOG, Fp1, and Fp2 were amplified

with a factor 5K and all other channels with a factor 20K by Grass preamplifiers

(model P511K). Recordings were filtered with a band pass filter of 0.01 to 30 Hz

(6dB per octave) and a 50 Hz notch filter.

Software used for the recording determined that the maximum length of

continuously recorded EEG was 12 s with a discontinuity of 2 s between

successive 12-second blocks. Twenty 12-second blocks were recorded with

eyes open and 20 with eyes closed. To generate power spectra EEG data were

divided into sixty 4-second epochs per condition using EEG analysis software

EPTOR 1.3.3. (Groot, 1999). Eye movement artefacts were removed from each

epoch using a dynamic regression algorithm (Molenaar, 1987), and epochs with

abnormal EEG patterns (>25% of amplitude at 0 mV) or extreme voltages
(exceeding�1000 mV for Fp1, Fp2, and EOG;�250 mV for all other channels)

were excluded. The DC component was removed from each epoch and a

Hanning window was applied to the first and last 5% of each epoch to prevent

spectral leaking. Finally, EEG data were converted to a frequency distribution

ranging from 1 to 30 Hz (resolution 0.25 Hz) using Fast Fourier Transformation

(Niedermeyer, 1999).

The frequency distribution was divided into the four standard broad bands

using fixed bands, such that delta included frequencies ranging from 1.5–4 Hz,

theta 4–8 Hz, alpha 8–13 Hz, and beta 13–25 Hz. Band power was computed as

the sum of the power frequency bins within each band.

2.4. Statistical analysis

Data were analysed using maximum likelihood (ML) estimation procedures

with the statistical package Mx (Neale et al., 2006). Prior to genetic modelling,

data were checked for normality and screened for univariate and multivariate

outliers. Outlying families were detected and excluded by using the %P option

in Mx, which uses a standardised Mahalanobis distance to compute a z-score for

each family. Values outside the range of �3 to +3 indicated extreme families

(taking into account MZ and DZ similarities) in assumption testing analyses on

each power band at each site (univariate outliers) and for the multivariate

models prior to model reduction (multivariate outliers). Extreme families were

excluded so that results may be generalizable, as maximum-likelihood para-

meter estimates are biased by outlying families (Tabachnick and Fidell, 2001).

Multivariate genetic modelling partitioned the total variance into that due to

genetic factors – additive (A) and non-additive (D, e.g. dominance, epistasis) –

and that due to non-genetic factors - common environmental influence shared by

co-twins (C), and a combination of measurement error and unique environ-

mental effects not shared by co-twins (E). For MZ twins the co-variance was

defined as additive (1.0A) plus non-additive (1.0D) genetic factors plus

common environment (1.0C), and for DZ twins, 0.5A + 0.25D + 1.0C. In the

absence of data from separated twins or half siblings D and C are negatively

confounded, so that only one can be estimated for a given variable in a given

model. Which factor to retain was decided independently for each EEG band

based on the ratio of MZ and DZ correlations – if the DZ correlation was less

than half the MZ correlation, then D was modelled, otherwise C was modelled.

For occipital sites (O1, O2) a four-variable Cholesky model was specified in

which ACE components of variance were modelled for all four bands. For

frontal sites (F3, F4) a four-variable Cholesky model was specified in which

ACE components of variance contributed to delta, theta, and alpha, and ADE

components of variance contributed to beta. Sex and age were entered into the

multivariate models as covariates.

Preliminary multivariate model fitting including all four EEG power bands

(delta, theta, alpha, and beta), at each of the frontal and occipital sites

separately, indicated a striking concordance between the analogous genetic

(A) path loadings in the O1 and O2 models, and likewise in the F3 and F4

models, to the point where the left and right hemisphere models appeared

essentially equivalent. There was no such concordance between genetic path

loadings in frontal and occipital models, for example, between O1 and F3.

Therefore, we combined O1 and O2 into an octovariate Cholesky model (and

similarly for F3 and F4), represented schematically in Fig. 1. We tested the

equality of left and right hemisphere genetic loadings for each band by

equating all analogous left/right loadings (e.g. the A1 loadings on delta left

and delta right) at once and comparing model fit. Common environment (C)

loadings displayed no pattern suggesting left/right hemisphere equivalence, so

their equality was not tested, but as a conservative test of C we tested whether it

could be dropped or reduced before reducing the A component further (if C

were dropped after fully reducing the A component it would be a less

conservative test of C because variance is more constrained). Next, to test

for residual hemisphere-specific genetic variance (since all analogous left/

right loadings were equated as described above), factors A2, A4, A6, and A8

were dropped. For the frontal model where these could not be dropped we

tested whether factors A3, A5, and A7 could be dropped, and then reduced the

model further by testing which individual hemispheric specific loadings had to

be retained. The ordering of model reduction steps was decided prior to

analysis to reduce any bias on significance testing. However, we subsequently

checked whether swapping the order of model reduction steps made a sub-

stantive difference, and it did not.



Fig. 1. Schematic representation of the octovariate base Cholesky model for the

occipital and frontal models, from which subsequent reduced models were

derived. Left and right hemisphere sites are included in a single model (F3 and

F4 for the frontal model, and O1 and O2 for the occipital model). Additive

genetic (‘A’ circles) and common environmental (‘C’ circles) factors explain the

variance of EEG power bands delta, theta, alpha, and beta in the left and right

hemispheres (squares). Note for the frontal model, non-additive genetic var-

iance (D) was modelled for beta (left and right) instead of common environment

(C), i.e. C7 replaced by D1, and C8 replaced by D2). Also, A2, A4, A6, and A8

contain a right hemisphere specific loading, e.g. the A2 loading on delta right.

For clarity, unique environmental (E) influences are not shown, but they have

the same structure as A and C.

Table 1

Descriptives for each EEG power band at each electrode site (from raw data,

with outliers excluded)

Mean (�S.D.) mV2 Range

Delta O1 48.76 (�33.75) 7.06–281.67

O2 63.21 (�45.97) 8.06–347.91

F3 45.94 (�18.87) 5.00–152.65

F4 42.55 (�16.92) 4.68–139.02

Theta O1 36.58 (�32.79) 3.49–371.88

O2 47.52 (�40.64) 3.57–288.47

F3 27.02 (�14.40) 2.70–133.07

F4 27.30 (�15.27) 2.51–134.99

Alpha O1 114.13 (�101.24) 3.58–826.79

O2 152.85 (�136.15) 4.40–1055.19

F3 20.01 (�12.57) 2.48–84.94

F4 19.50 (�11.95) 2.60–90.78

Beta O1 10.13 (�6.20) 1.29–45.16

O2 14.06 (�8.58) 1.87–77.25

F3 6.55 (�3.68) 0.85–31.97

F4 7.23 (�4.20) 0.86–34.10

For occipital sites N = 966, for frontal N = 980.
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As well as by reducing the Cholesky model, independent pathway models

were tested. Smit et al. (2005) suggested that common as well as specific

additive genetic factors contributed to each band, so a model reflecting this was

tested, consisting of a general factor influencing all bands and four specific

factors loading on each band. Other models were based on varimax rotations of

factor analyses of the genetic correlation matrices from the occipital and frontal

models. These models were compared to each other and the final reduced

Cholesky models using the Akaike’s Information Criterion (AIC) index.

3. Results

3.1. Preliminary analyses

Mean EEG power and standard deviations for each of the

four frequency bands at occipital and frontal sites are presented

in Table 1. Distributions of the power bands at each brain region

were positively skewed, and thus log transformed (lg 10(x + 1))

to improve the normality of the distributions. Adding one in this

transformation resulted in all values being defined and variables

being less skewed and kurtotic. All further analyses are based

on transformed data unless otherwise specified. Fifteen twin

pairs were identified as univariate outliers at the assumptions

testing stage for O1–O2, and 14 for F3–F4. Twenty-one

additional pairs were identified as multivariate outliers for O1–

O2, and 15 for F3–F4. The composition of the final sample was

483 pairs for O1–O2, and 490 pairs for F3–F4.
Homogeneity of sampling was found with equality of means

and variances (using an a-level of .01) according to birth order,

zygosity group, and sex. The exceptions were for beta at the

occipital sites, where the variance of males and females differed

at both O1 ( p = .0007) and O2 ( p = .00008), with females

being more variable than males. These variances were left free

to vary between sexes for subsequent analyses. In addition,

fixed effects of sex and age significantly influenced some

measures. Sex effects were significant for around a third of

power bands, but most effects were small. The exception was a

strong tendency for females to have higher beta power at the

occipital sites. Age effects were stronger and more consistent in

size and direction. All age effects were significant except for

occipital alpha power, and all were such that EEG power

decreased with age.

Twin correlations are presented in Table 2. Covariances of

twin pairs did not differ significantly according to sex, or between

same sex and opposite sex DZ twin groups for delta, theta, alpha

or beta at any site. While there was a trend for DZ male

correlations to be greater than DZ females, particularly in frontal

areas, 95% confidence intervals were wide, and overlapped. The

wider confidence intervals for the same sex DZ groups than the

opposite sex DZ group was due to the smaller sample size (i.e. 66

and 69 pairs compared with 145 pairs, respectively). MZ twin

correlations/covariances were significantly higher than DZ twin

correlations in all four bands at left and right frontal and occipital

sites (Dx2
1 ¼ 15:70 to 114:74, p < .0001). For beta power

the DZ twin correlations at frontal (left and right) sites were less

than half the MZ correlations, but for all other power bands the

DZ correlation was half or greater than half of the MZ

correlation.

Phenotypic correlations between left and right hemisphere

(O1–O2; F3–F4) within each frequency band were very high,

ranging from .86 (delta F3–F4) to .95 (theta F3–F4 and theta

O1–O2). Phenotypic correlations between occipital and frontal



Table 2

Twin correlations (95% confidence intervals in parentheses) for each zygosity group for delta, theta, alpha, and beta at left and right occipital (O1, O2) and frontal (F3,

F4) sites

MZF (N = 125) MZM (N = 114) DZF (N = 69) DZM (N = 66) DZOS (N = 145) MZ (N = 239) DZ (N = 280)

Delta O1 0.79 (.71–.83) 0.72 (.63–.78) 0.44 (.24–.58) 0.55 (.31–.70) 0.35 (.18–.48) 0.75 (.70–.80) 0.42 (.32–.51)

O2 0.80 (.74–.85) 0.74 (.66–.80) 0.41 (.22–.59) 0.53 (.36–.65) 0.28 (.11–.43) 0.77 (.72–.81) 0.39 (.29–.48)

F3 0.55 (.41–.65) 0.59 (.47–.68) 0.22 (.02–.39) 0.56 (.38–.69) 0.30 (.15–.43) 0.59 (.50–.66) 0.33 (.23–.43)

F4 0.68 (.57–.75) 0.70 (.61–.77) 0.28 (.09–.45) 0.60 (.43–.71) 0.42 (.27–.54) 0.69 (.62–.75) 0.42 (.32–.50)

Theta O1 0.86 (.82–.90) 0.86 (.81–.89) 0.56 (.41–.68) 0.61 (.45–.71) 0.37 (.19–.50) 0.86 (.83–.89) 0.49 (.40–.57)

O2 0.86 (.81–.89) 0.87 (.83–.90) 0.60 (.45–.70) 0.61 (.45–.72) 0.37 (.21–.50) 0.86 (.83–.89) 0.49 (.40–.57)

F3 0.78 (.80–.83) 0.78 (.70–.83) 0.42 (.23–.57) 0.56 (.39–.68) 0.44 (.29–.56) 0.77 (.72–.81) 0.47 (.72–.81)

F4 0.83 (.77–.87) 0.83 (.77–.87) 0.44 (.25–.58) 0.61 (.45–.72) 0.47 (.29–.56) 0.82 (.78–.85) 0.49 (.40–.57)

Alpha O1 0.83 (.78–.87) 0.89 (.85–.92) 0.49 (.31–.62) 0.57 (.40–.69) 0.46 (.31–.57) 0.86 (.82–.88) 0.49 (.40–.57)

O2 0.85 (.80–.88) 0.89 (.85–.91) 0.48 (.31–.61) 0.51 (.32–.64) 0.42 (.28–.54) 0.86 (.83–.89) 0.46 (.36–.54)

F3 0.79 (.73–.84) 0.77 (.69–.82) 0.31 (.09–.48) 0.56 (.38–.68) 0.41 (.25–.53) 0.78 (.73–.82) 0.42 (.31–.50)

F4 0.83 (.78–.87) 0.83 (.78–.87) 0.32 (.12–.48) 0.60 (.44–.71) 0.44 (.29–.56) 0.83 (.79–.86) 0.44 (.34–.52)

Beta O1 0.78 (.71–.83) 0.78 (.70–.83) 0.32 (.13–48) 0.51 (.30–.65) 0.44 (.29–.56) 0.73a (.67–.78) 0.41a (.30–.50)

O2 0.78 (.72–.83) 0.80 (.72–.85) 0.27 (.10–42) 0.52 (.30–.66) 0.45 (.30–.56) 0.78a (.73–.82) 0.39a (.29–.48)

F3 0.81 (.75–.86) 0.76 (.68–.82) 0.23 (.01–.42) 0.30 (.10–.47) 0.35 (.20–.48) 0.79 (.74–.82) 0.31 (.20–.40)

F4 0.80 (.73–.84) 0.82 (.76–.86) 0.28 (.07–.45) 0.25 (.04–.43) 0.41 (.27–.53) 0.81 (.76–.84) 0.33 (.23–.43)

N = maximum number of twin pairs for band and electrode.
a Variance equated between zygosities to estimate twin correlation, but left to vary for subsequent analyses.
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sites were lower, ranging from 0.54 (delta O1–F3) to 0.73

(alpha O1–F3, alpha O2–F4, and theta O2–F4). In addition, the

phenotypic correlations between bands (Table 3) were

generally around 0.6, making them suitable for multivariate

analysis. Correlations were generally higher at occipital

compared with frontal sites, especially in the case of delta–

theta correlations (0.85) which were overall the highest in

magnitude. Genetic correlations (Table 3) showed a similar

pattern, being higher at occipital compared with frontal, and

ranged from .48 (alpha–delta at F4) to .88 (theta–delta at O1).

3.2. Variance components modelling of EEG power in four

bands

Results of genetic modelling for the occipital and frontal

regions are presented in Tables 4 and 5, respectively. Additive

genetic influences played a large role in both occipital and

frontal models, and, additionally, non-additive genetic effects

had a large influence on frontal beta. Corresponding genetic

loadings on the left and right hemisphere of each band could be

equated without significant loss of fit in both occipital and

frontal models (model 2). Dropping the entire C component

(model 3) led to a significant loss of fit for both occipital and
Table 3

Maximum likelihood phenotypic (upper triangle) and genetic (lower triangle)

correlations for delta, theta, alpha, and beta at occipital and frontal sitesa

Occipital Frontal

Delta Theta Alpha Beta Delta Theta Alpha Beta

Delta 0.85 0.64 0.57 0.66 0.50 0.50

Theta 0.88 0.73 0.58 0.62 0.67 0.56

Alpha 0.67 0.73 0.64 0.49 0.63 0.59

Beta 0.59 0.58 0.66 0.76 0.75 0.76

a Values given are for left hemisphere. Correlations for right hemisphere are

all within �.03 of values given.
frontal models, indicating a significant influence of common

environment. Sequential dropping of C factors (from lowest to

highest) indicated one very small factor loading on the left-

hemisphere of all four bands in the occipital model (models 4a

to 4g), and one sizable factor loading on the left and right

hemisphere of delta, theta, and alpha in the frontal model

(models 4a to 4d).

Residual hemisphere-specific genetic loadings were very

small, the largest being 0.12. The factors containing these

loadings could be dropped in the occipital model (model 5) but

not in the frontal model (model 5), indicating that hemisphere-

specific effects were only important to the frontal model.

Independent assessment of each hemisphere-specific loading

in the frontal model (models 7a to 7e) revealed that two were

significant: an additive effect on alpha, and a non-additive

effect on beta. The final best-fitting occipital and frontal

models are shown in Figs. 2 and 3, respectively. For clarity, the

unique environmental influences, left in a full Cholesky

structure, are left out of the figures and presented in Table 6

instead.

The alternative independent pathway models that were

tested did not provide good fits to the data compared to the final

reduced Cholesky models. In the occipital region, the model

with one general genetic factor and four band specific genetic

factors (�2LL = 24317.23, d.f. = 7751, AIC = �10.27) and the

two factor varimax-based model (�2LL = 24522.16,

d.f. = 7754, AIC = 188.66) both fit poorly compared with the

final reduced Cholesky (�2LL = 24249.703, d.f. = 7753,

AIC = �81.797). Similarly, in the frontal model the ‘general

and specific’ model (�2LL = 19619.40, d.f. = 7858,

AIC = �0.60) and both the two (�2LL = 19777.21,

d.f. = 7861, AIC = 151.21) and three (�2LL = 19801.90,

d.f. = 7862, AIC = 173.90) factor varimax-based models all

fit poorly compared with the final reduced Cholesky

(�2LL = 19574.33, d.f. = 7854, AIC = �37.67).



Table 4

Goodness-of-fit statistics for multivariate models of occipital EEG bands delta, theta, alpha, and beta. The best-fitting model is in bold

vs �2LL d.f. D�2LL Dd.f. p-value

1 ACE Cholesky decompositiona 24215.50 7695

2 Equate additive genetic (A) loadings on left and right hemisphere of each band 1 24221.00 7711 5.51 16 0.993

3 Drop C (omnibus drop) 2 24272.54 7747 51.54 36 0.045

4a Drop C8, C7, C6, C5 (all loadings zero) 2 24221.00 7721 0.00 10 1.000

4b Drop C4 4a 24221.66 7726 0.66 5 0.985

4c Drop C3 4b 24223.57 7732 1.91 6 0.928

4d Drop C2 4c 24231.56 7739 7.99 7 0.334

4e Drop C1 4d 24272.54 7747 40.98 8 <0.001

4f Drop right hemisphere C1 loadings 4d 24233.91 7743 2.35 4 0.672

4g Drop left hemisphere C1 loadings 4f 24272.54 7747 38.63 4 <0.001

5 Drop A2, A4, A6, A8* 4f 24249.70 7753 15.80 10 0.106

* A2, A4, A6, and A8 each contain a hemisphere-specific loading (right hemisphere loading without the corresponding left hemisphere loading for that band).
a Bands entered into Cholesky in order of frequency with left hemisphere preceding right, i.e. delta left, delta right, theta left, theta right, alpha left, alpha right, beta

left, beta right.
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A notable feature of both best-fitting models is a common

additive genetic factor (A1) that loads strongly on all four EEG

bands (occipital: 0.52–0.87, frontal: 0.41–0.68), indicating that

in both occipital and frontal regions common genes influence

delta, theta, alpha, and beta bands. Loadings from this common

genetic factor are substantially higher, accounting for relatively

more of the genetic variance, in the occipital model (64% of the

influence from all genetic factors) than in the frontal model

(43%). Furthermore, a factor analysis on the additive genetic

correlation matrix confirmed that one factor accounted for more

of the genetic variance in the occipital model (67%) than in the

frontal (46%) model, even though this excluded the band-

specific non-additive factors in the latter (including these would

lower the percentage of total genetic influence accounted for by

one factor).

The remaining additive genetic factors were essentially

specifics (i.e. vertical arrows in Figs. 2 and 3) on theta, alpha,
Table 5

Goodness-of-fit statistics for multivariate models of frontal EEG bands delta, theta

1 Cholesky decomposition: ACE (delta, theta, alpha), ADE (beta)a

2 Equate left and right hemisphere genetic loadings

3 Drop C (omnibus drop)b

4a Drop C6, C5, C4 (all loadings zero)

4b Drop C2

4c Drop C3

4d Drop C1b

5 Drop A2, A4, A6, A8

6 Drop A3, A5, A7

7a Drop A8 loading on beta right**

7b Drop A6 loading on alpha right**

7c Drop A4 loading on theta right**

7d Drop A2 loading on delta right**

7e Drop D2 loading on beta right**

8 retain genetic right-hemisphere loadings on alpha (additive) and beta (

*A2, A4, A6, and A8 each contain a hemisphere-specific loading (right hemisphere lo

hemisphere-specific loading was assessed for significance independently (7a–7d), i

additive (D) genetic loadings on beta could not be assessed independently, so the
a Bands entered into Cholesky in order of frequency with left hemisphere preceding

left, beta right.
b C loadings of left and right hemisphere could not be equated (D�2LL = 23.59
and beta, with some small (2–13% of variance) cross-path

loadings (i.e. oblique arrows in Figs. 2 and 3). In the occipital

and frontal models, respectively, the ‘theta’ factor (A3 in

occipital, A2 in frontal) accounted for 19% and 39% of the band

variance, the ‘alpha’ factor (A5, A4) 39% and 42%, and the

‘beta’ factor (A7, A6) 41% and 10%. In the frontal model, a

specific non-additive factor accounted for a further 30% of the

variance in beta.

Based on the final multivariate models, heritability estimates

for the occipital region were delta 0.75, theta 0.85, alpha 0.86,

and beta 0.78. For the frontal region, heritabilities tended to be

somewhat lower, being 0.46 for delta, 0.64 for theta, and 0.73

for alpha. For beta, broad heritability was 0.80, consisting of

0.50 additive and 0.30 non-additive heritabilities.

Common environmental influences accounted for only 1 to

2% of the total variance in the occipital model. In contrast,

common environment was much more influential in the frontal
, alpha, and beta. The best-fitting model is in bold

vs �2LL d.f. D-2LL Dd.f. p-value

19530.01 7813

1 19556.61 7830 26.61 17 0.064

2 19591.85 7851 35.24 21 0.027

2 19556.61 7836 0.00 6 1.000

4a 19557.60 7841 0.99 5 0.963

4b 19562.14 7845 4.53 4 0.339

4c 19591.85 7851 29.72 6 <0.001

4c 19603.41 7856 41.27 11 <0.001

4c 19574.27 7851 12.14 6 0.059

6 19574.27 7852 0.00 1 1.000

6 19591.73 7852 17.46 1 0.000

6 19574.28 7852 0.01 1 0.920

6 19574.32 7852 0.05 1 0.827

7a 19588.06 7853 13.78 1 0.000

non-additive) 4c 19574.33 7854 12.197 9 0.202

ading without the corresponding left hemisphere loading for that band). ** Each

.e. to reduce any bias of significance testing. For 7e, the additive (A) and non-

non-additve loading was assessed with the additive loading fixed at zero.

right, i.e. delta left, delta right, theta left, theta right, alpha left, alpha right, beta

, Dd.f. = 3, p < .0001)



Fig. 3. Structural equation model with additive genetic (‘A’ circles), dominant

genetic (‘D’ circles), and common environmental (‘C’ circles) factors explain-

ing the variance of EEG power bands delta, theta, alpha, and beta (squares) in

the frontal region. Path coefficients are standardised such that the squared path

coefficient indicates the percentage of variance accounted for, and 95% con-

fidence intervals are in parentheses. As additive genetic factor loadings on right

and left hemispheres of each band were equated, right and left hemisphere EEG

power bands are collapsed into one square (e.g. the delta square represents delta

left and delta right), but as described in the methods were analysed in an eight-

variable Cholesky model. Also for clarity, the unique environmental (E)

influences are not shown in this figure but in Table 6.

Table 6

Parameter estimates for the influence of unique environment (E) on left and

right delta, theta, alpha, and beta EEG bands

Occipital E1 E2 E3 E4 E5 E6 E7 E8

Delta left 0.48

Delta right 0.33 0.37

Theta left 0.27 0.00 0.25

Theta right 0.18 0.23 0.21 0.15

Alpha left 0.17 �0.03 0.14 0.01 0.25

Alpha right 0.09 0.15 0.12 0.09 0.19 0.22

Beta left 0.22 0.09 0.13 0.04 0.11 0.01 0.35

Beta right 0.11 0.21 0.11 0.09 0.10 0.11 0.23 0.25

Frontal E1 E2 E3 E4 E5 E6 E7 E8

Delta left 0.64

Delta right 0.39 0.46

Theta left 0.31 0.08 0.36

Theta right 0.17 0.25 0.26 0.21

Alpha left 0.22 0.04 0.28 0.04 0.32

Alpha right 0.16 0.17 0.21 0.08 0.27 0.14

Beta left 0.21 0.06 0.20 �0.01 0.10 0.00 0.32

Beta right 0.13 0.20 0.10 0.08 0.07 0.09 0.25 0.21

Loadings greater than j0.04j are significant ( p < .05).

Fig. 2. Structural equation model with additive genetic (‘A’ circles) and

common environmental (‘C’ circles) factors explaining the variance of EEG

power bands delta, theta, alpha, and beta (squares) in the occipital region. Path

coefficients are standardised such that the squared path coefficient indicates the

percentage of variance accounted for, and 95% confidence intervals are in

parentheses. As additive genetic factor loadings on right and left hemispheres of

each band were equated, right and left hemisphere EEG power bands are

collapsed into one square (e.g. the delta square represents delta left and delta

right), but as described in the methods were analysed in an eight-variable

Cholesky model. Also for clarity, the unique environmental (E) influences are

not shown in this figure but in Table 6.
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model, accounting for 13–18% of the variance in delta and theta

bands, and 4–7% in alpha.

Unique environment and error accounted for 11 to 23% of

the variance at occipital sites, depending on band and

hemisphere, and 11 to 40% at frontal, but there were no

striking patterns to the variation within this range, aside from

delta having a relatively higher E component in both occipital

and frontal.

4. Discussion

These results support previous research showing that the

human EEG is a highly heritable trait (van Beijsterveldt et al.,

1996; van Beijsterveldt and van Baal, 2002; Vogel, 2000).

Genetic factors accounted for a substantial amount of the

variance in all power bands and brain regions studied.

Modelling suggested that this may, at least in part, be explained

by common genetic factors influencing all bands in both

hemispheres. However, genetic factors specific to bands and

brain regions were also shown to be influential: in particular,
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non-additive genetic influence was found only for beta power at

frontal sites, and in contrast to previous research, a common

environment factor was found to influence the power bands at

frontal sites. As such, additive genetic (A), non-additive genetic

(D), common environment (C), and unique environment (E)

factors were all found to have important influences on the

human EEG.

To a large degree the same genetic factors were influencing

EEG in the left and right hemispheres, but there was not the

same concordance for genetic influence in the occipital and

frontal lobes of the brain; as such, we refer to occipital and

frontal regions, only specifying left or right hemisphere when

necessary. In both occipital and frontal regions, multivariate

genetic analysis (and a factor analysis) indicated that one

common factor could account for a large proportion of the

genetic variance in all bands. This general factor may reflect

basic structural features such as skull thickness, which would

determine the distance from the electrode (on the scalp) to the

current generators (underlying pyramidal cells), affecting EEG

power over the entire frequency spectrum. Alternatively, it

could reflect neural properties or processes that are influenced

by the same set of genes and have a broad effect on power

across the frequency range. The proportion of genetic variance

that this one general factor could account for differed markedly

between occipital (64%) and frontal (43%) regions. This can be

interpreted as indicating that the genetic architecture under-

lying EEG has more band-specificity, or is more complex, in

anterior regions than in the posterior regions. Such an

interpretation would make sense in light of neuroanatomical

research which demonstrates that the neural structure of the

cerebral cortex is very heterogeneous (Elston, 2003).

Pyramidal cells are the most ubiquitous neurons in the cortex

(DeFelipe and Farinas, 1992; Nieuwenhuys, 1994; Valverde,

2002), and those in frontal areas are larger, much more

structurally complex, and have up to 23 times more spines than

those in occipital areas. This means that neuronal circuits are

many times more complex and have far greater functional

capacity in frontal than occipital areas (Elston, 2003). Since

EEG is partly a reflection of the pyramidal cell circuitry in the

underlying cortex (Schaul, 1998), a more complex genetic

influence on frontal compared with occipital EEG would be

expected.

The finding of band-specificity in the genetic effect on EEG

fits with the research indicating band-specific effects in

psychiatric disorders such as alcoholism (Porjesz et al.,

2005), ADHD (Lazzaro et al., 1998), and obsessive/compulsive

disorder (Pogarell et al., 2006), thereby enhancing EEG power

as a potential endophenotype for these conditions. It also

implies that there may be neural substrates or generators whose

influence on EEG is specific to certain frequency ranges or

bands. Different neural networks (e.g. thalamo-cortical,

cortico-cortical) or neurotransmitter systems (e.g. cholinergic,

GABAergic, dopaminergic) may be responsible for electrical

rhythms of different frequencies. For example, the slow waves

delta and theta have been associated with cholinergic systems

(Steriade et al., 1990), while the beta range involves the action

of GABAA (Whittington et al., 2000).
A striking example of a band- and site-specific genetic

influence on frontal EEG was the large and highly significant

non-additive genetic effect on the beta band in the frontal lobe,

which was not present at the occipital sites. The results of past

research have hinted at genetic dominance in the beta band (van

Beijsterveldt et al., 1996), but some more recent research has

failed to detect any significant effect (Smit et al., 2005). In our

findings, monozygotic twin correlations were more than double

the dizygotic twin correlation for beta in both left and right

frontal areas, and in separate left and right frontal models, a

non-additive genetic effect on beta was large and significant. In

the more powerful left–right combined final frontal model, the

non-additive factor on beta was highly significant (30% of the

variance). Genetic linkage (gene-finding) studies will only be

able to accurately determine the sample size required for a

certain level of statistical power if non-additive genetic effects

are accounted for. From an evolutionary perspective, sub-

stantial non-additive genetic effects suggest that the phenotype

in consideration was subject to intense selection pressure at

some stage (Merila and Sheldon, 1999). In this case that

phenotype may be the balance in neural excitation–inhibition

homeostasis that beta power seems to reflect (Porjesz et al.,

2005).

There are several possible explanations for the non-additive

(i.e. D) effect. As EEG power is a complex trait and probably

polygenic, D is likely to include dominance relationships

between genes at different loci, which is called epistasis

(Lykken, 1982). Another polygenic mechanism that can create

a D effect, called emergenesis, involves gene effects that

combine configurally rather than additively. That is, an

emergenic trait relies on the configuration of its component

traits, which are themselves influenced by independent genetic

effects (Lykken, 1982; Lykken et al., 1992).

Further genetic complexity present in frontal but absent in

occipital regions was found in the form of hemisphere-specific

genetic loadings on alpha (i.e. dashed arrow from A6) and beta

(i.e. dashed arrow from DRH) bands. These loadings were very

small, accounting for less than 2% of the variance in each band,

but significant. These genetic components may be important

when viewed in the context of research suggesting a link

between frontal EEG alpha asymmetry and predisposition to

depressive disorders (Bruder et al., 2005), and that frontal EEG

asymmetry has been shown to have low but significant

heritability (Anokhin et al., 2006). It may be that the small

lateralised genetic effects on alpha comprise genes that also

influence depressive disorders.

A striking result, and a further occipito-frontal difference, is

the presence of a highly significant effect of common

environment, which is negligible in size in the occipital model

but substantial in the frontal model. Aside from a study on

infants (Orekhova et al., 2003) which found a C effect that

decreased with age, no other study has found a significant

influence of common environment on EEG. It therefore seems

to be accepted that beyond early childhood the environment

plays little or no role in determining the human EEG

(particularly as a substantial portion of E may be explained

as error, rather than an effect of unique environment). However,
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our results suggest that environmental influences may play a

more lasting and important role. The large sample size and left–

right combined multivariate analysis yielded greater power to

detect C than previous studies, and may explain why we have

found it where other studies have not. A common environment

effect on frontal EEG is consistent with research demonstrating

neural plasticity in response to environmental cues, particularly

developmental animal research, showing that brains develop

more complex circuitry in enriched environments than in

impoverished ones (see Renner and Rosenzweig (1987)).

Although the circuitry in the visual (occipital) cortex is also

susceptible to environmental influence (Wiesel and Hubel,

1963), there is not likely to be a differential between home

environments in visual input, so a negligible occipital C effect is

unsurprising.

It is important to note that the influence of common

environment is confounded with the influence of non-additive

genetic effects, so that both D and C cannot be estimated for any

single variable. This means that where D is observed (frontal

beta power), C may also play a smaller role (hence depressing

the measured D effect), and, vice versa, D may play a hidden

role where C is observed (frontal delta, theta and alpha) (Neale

and Cardon, 1992). A corollary of this is that there is no

evidence for band-specificity of the C effect in this study, as the

one C factor influencing frontal delta, theta, and alpha powers

may also have an unseen influence on beta power. Another

methodological consideration is the possibility of experimental

testing effects manifesting as a C effect, but this is unlikely

given that the same testing conditions and experimenter were

used for all twin pairs, and that a substantial C effect was not

observed at the occipital sites (a testing effect would have a

global impact).

There are sex differences in the structure and function of the

human brain (Good et al., 2001), and one might expect EEG

data to reflect this. However, finding of sex effects on EEG is

mixed; a few studies report a sex effect of some kind, but they

are not consistently found (see Vogel (2000) for a review). In

the present study, a significant mean effect on sex was found at

six of the 16 power bands (at left and right occipital and

frontal), with these generally indicating lower power for males

(the exception being right frontal delta, which has higher power

in males). Females were found to have a larger variance in beta

in the occipital sites, but we found no evidence for sex

differences in the genetic effects.

Although our adolescent sample had a very narrow age

range, we found significant age effects at all sites for all EEG

bands, with the exception of occipital alpha. In all cases the

direction of the effect was such that older participants tended to

have lower EEG band power than younger participants. This is

consistent with a study by Martinovic et al. (1998), but other

research has found that while slow waves delta and theta

decreased through development, alpha, and beta powers

actually increased (Clarke et al., 2001; Matousek and Petersen,

1973), and further work suggests that developmental changes in

EEG are complex (Klimesch, 1999).

In summary, this study shows that genetic influences are

more complex and more heterogeneous across the cortex than
previous work suggests. Genetic influences take the form of

common and band-specific effects, the former more influential

at occipital sites and the latter more influential at frontal sites.

Importantly, EEG beta power exhibits non-additive inheritance

at frontal but not occipital sites, and the environment plays a

greater role than previously thought, with common environ-

ment having a significant and substantial impact on frontal EEG

power.
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