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Variance components analyses of multiple asthma traits in a large

sample of Australian families ascertained through a twin proband

There has been a strong interest in searching for
susceptibility genes for asthma, driven by the prospect
of better disease prevention, diagnosis and treatment. A
common approach used for this is to measure different
asthma-related traits, such as atopy, airway responsive-
ness and eosinophilia and subsequently test each trait
individually for linkage to genetic markers genotyped
throughout the genome. Regions of significant linkage
are then followed up with higher resolution association
studies. However, the initial stage of univariate linkage
analysis has a number of caveats, including the lack of
efficient methods to correct for multiple trait testing and
the loss in power arising from the disregard of the
additional information provided by multivariate data
sets. This may result in both false-positive and false-
negative linkage results. One alternative is to perform
multivariate linkage analysis of related traits, a concept

that has long been proposed (1–3) but that has only
recently been implemented for the dissection of complex
traits (4–6). Multivariate analysis not only avoids an
inflated type I error as a result of multiple trait testing, as
it can also provide greater statistical power to detect
quantitative trait loci (QTL) than univariate analysis
(7, 8).

Multivariate linkage analysis is appropriate to analyse
traits that have common QTL. However, it has been
demonstrated that multivariate analysis of traits that have
a high genetic correlation is unlikely to be more powerful
than univariate analysis (8). Thus, in order to guide the
choice of traits for multivariate linkage, it is important not
only to identify traits that have a common genetic
aetiology but also to estimate the degree of genetic overlap.

Although a number of studies have addressed the first
issue (9–12), few have provided estimates of the genetic
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correlation between different asthma traits. Using a
regression-based method, Palmer et al. (13) reported that
the genetic overlap between asthma and baseline lung
function was <10%, whereas the overlap between airway
responsiveness and total serum immunoglobulin E (IgE)
was <30% (14). Using bivariate variance components,
Nystad et al. (15) estimated the genetic correlation
between asthma and wheeze at 0.76.
In the present study, we describe a new sample of 802

Australian asthmatic families ascertained through a twin
proband. The aim of this study was to use this large data
set to estimate the genetic and environmental correlations
between self-reported and clinical asthma traits through
variance components methods.

Methods

Ascertainment of families

Two rounds of ascertainment were used to select families registered
on the volunteer Australian Twin Registry (ATR) with at least one
twin who had reported ever wheezing in his/her lifetime in previous
studies (Fig. 1). The first round of ascertainment (1990–1992) has
been described previously (11). As part of this first round, 863 twins
from 443 families completed a detailed asthma questionnaire,
attended clinical testing and donated blood for DNA extraction.
The second round of ascertainment (1996–1998) involved two dif-
ferent selection approaches: first, extension of 164 round 1 families
to include additional affected sibs or affected children of twins.
Secondly, selection of 690 new families from five other ATR-based
studies with at least one dizygotic (DZ) twin proband and any
additional affected sibs, or at least one monozygotic (MZ) twin
proband and additional affected sibs. As with round 1, 3824 par-
ticipants from these 854 families were invited to complete a similar
asthma and allergy questionnaire, donate blood or a buccal swab
for DNA extraction and, if under the age of 50, to attend full
clinical testing. Questionnaires were sent to 2270 participants of
round 2 and 2100 (93%) from 511 families returned it completed.
The outstanding 1554 participants who were not sent questionnaires
were untraceable, deceased, overseas or unable to attend clinical
testing. Of the 2100 participants with a completed questionnaire,
1965 (94%) also donated blood for genetic and/or haematological
analyses and 1435 (68%) were clinically tested. One family consisted
of one father and no other relatives and, thus, was dropped from
further analysis. When the samples from both rounds were com-
bined, the overall sample consisted of 3073 participants from 802
families: 974 participated exclusively in round 1 (292 families), 1846
exclusively in round 2 (359 families) and 253 (151 families) in both
rounds. Overall, 2716 participants completed one or both asthma
questionnaires, 2852 donated blood and 2087 were clinically tested.
Complete data were available for 1969 participants.

Evaluation of phenotypes

The following procedures were performed with the appropriate
ethical approval of all institutions involved.

Questionnaire administration. The questionnaire used in round 1
was designed to validate the diagnosis of asthma and to obtain data
on respiratory symptoms, environmental exposures relevant to
respiratory disease and family history of asthma (11). The round 2

questionnaire included the key items of the first questionnaire plus a
section for the diagnosis of chronic bronchitis (16). There were two
versions of this questionnaire: one for adults (aged >16 years) and
one to be completed by parents of children (aged £ 16 years). A
participant was considered affected for asthma if he or she answered
�Yes� or �Yes, told to me by a doctor� to the question �Have you ever
suffered from asthma or wheezing’? and �Yes� to the question �Have
you ever taken any medicine for asthma or wheezing’? A participant
was considered affected for doctor asthma if he or she answered
respectively �Yes, told to me by a doctor� and �Yes� to the previous
two questions. Asthma and doctor asthma were highly correlated
(tetrachoric correlation 0.99). For this reason, familial correlations,
heritabilities and bivariate analyses are presented for asthma only.

Lung function test. Forced vital capacity (FVC) and forced
expiratory volume in 1 s (FEV1) were measured with the subject
standing, using the vitalograph 5 wedge bellows spirometers
(Vitalograph Ltd, Buckingham, UK) in round 1 and the Jaeger
Master Scope spirometer (Viasys, Hoechberg, Germany) in round 2,
both compliant with the 1995 ATS requirements (17). The
measurements were repeated to a maximum of six times until a
curve reproducible to within 200 ml was obtained. Both FEV1 and
FEV1/FVC were normalized and adjusted for significant (P < 0.05)
covariates, which included age, gender, height (FEV1) and ever
smoking (FEV1/FVC); the adjustment of covariates was performed
prior to estimation of familial correlations or as part of variance
components analyses. Residual kurtosis was 1.5 for FEV1 and 0.43
for FEV1/FVC.

Airway histamine challenge test. The test was performed in both
rounds after baseline spirometry according to the protocol of Yan
et al. (18) as modified by Woolcock (19). Each dose of saline or
histamine was administered via a DeVilbiss No. 45 nebuliser with a
hand pump (30% of round 2) or a mechanical (70% of round 2)
dosimeter, calibrated at first use. The histamine provocation test
was performed seated on all subjects with a FEV1 ‡ 60% (round 1)
or >70% (round 2) as predicted by the reference values of Quanjer
et al. (20) and Polgar and Promadhat (21), respectively. Each
consecutive dose was given at approximately 2-min intervals until
either a cumulative dose of 7.8 lmol (round 1) or 2.605 lmol
(round 2) of histamine was reached or a fall in FEV1 of ‡ 20% of
the postsaline inhalation FEV1 was observed. Participants with a
baseline FEV1 <60% (round 1) or £ 70% (round 2) of the
predicted value underwent a bronchodilator test, which consisted of
400 lg of salbutamol administered over 60 s via a large spacer. An
airway histamine responsiveness (AHR) test was considered positive
if the participant experienced a drop in FEV1 of ‡ 20% (hand-held
pump) or ‡ 25% (mechanical dosimeter) of the postsaline inhala-
tion FEV1 after the last dose of histamine given. This allowed for
the observed difference in histamine output between both methods.
A participant with baseline airway obstruction was considered
AHR-positive if the bronchodilator test induced an increase in
FEV1 of ‡ 15%.

Skin prick test. The skin prick test (SPT) was performed using a
Hollister-Steier prick lancetter on the volar forearm. The longest
and the perpendicular diameters of the response wheal were
measured after 10 (round 1) or 15 min (round 2) to the nearest
millimetre and the mean wheal diameter estimated. Eleven common
allergens were tested in each round: cockroach mixture, European
house dust mite Dermatophagoides pteronyssinus (D. pter), Ameri-
can house dust mite D. farinae (round 2), house dust (round 1), cat
dander, dog dander, Canary grass (round 1), Timothy grass (round
1), southern grasses mixture, Rye grass, Aspergillus spp. mixture,
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Alternaria spp. mixture, cows milk (round 2) and egg white (round
2). Histamine-buffered saline solution (3.125 mg/ml) was used as the
positive control and glycerine as the negative control. A participant
was defined as atopic if at least one of the 11 allergens tested elicited
a mean wheal diameter at least 3 mm greater than the negative
control wheal. Similarly, a SPT to D. pter was considered positive if
the mean wheal diameter was 3 mm greater than the negative
control wheal.

Measurement of serum total immunoglobulin E (IgE) levels and
eosinophil counts. Total IgE was estimated in both rounds by
standard enzyme immunoassay; all samples were assayed in a
single batch at the conclusion of each round. Serum eosinophil
counts were performed by flow cytometry for round 2 samples
only. IgE was log-transformed and eosinophils normalised using
an inverse normal transformulation; both were adjusted for age
and gender. Residual kurtosis was )0.36 for IgE and )0.07 for
eosinophils.

Genotyping and pedigree error checking

DNA was extracted from blood or buccal swabs according to
standard procedures (22). DNA from 2760 consenting participants
from 735 families was genotyped at 108–440 microsatellite markers
at Sequana Inc. as described by Hall and Nanthakumar (23). This
genotyping data were used to verify familial relationships using
GRR (24): 68 of 735 (9%) families were found to have pedigree
errors, mostly due to sample duplications (4.4%), incorrect self-
reported paternity (2.1%) or incorrect self-reported zygosity
(1.6%). These errors were corrected prior to analyses.

Familial correlations and heritability estimates

Pearson (continuous traits) and tetrachoric (affection traits) corre-
lations were calculated with version 8.02 of sas. Continuous traits
were adjusted for significant covariates (defined above) prior to the
estimation of familial correlations. Heritabilities for both quanti-
tative and affection traits were estimated by maximum likelihood
univariate variance components analysis using solar 2.1.4 (25).
Briefly, this analysis decomposed the expected phenotypic covari-
ance between relatives into a component due to polygenic additive
genetic variance (r2A), dominance genetic variance (r2D), environ-
mental variance due to environmental factors shared between
siblings (r2C) and a component of variance because of environmental
factors not shared between relatives (r2E). The significance of the
parameters in the model was then tested by the likelihood ratio chi-
square test 2[ ln (LH0

)) ln (LH1
)] with n-df, where LH0

is the likeli-
hood of the data under a saturated model H0, LH1

the likelihood
under a nested submodel H1 where the parameters being tested were
fixed to zero, and n the difference in the number of parameters
estimated by H0 and H1. Significant covariates (defined above) were
retained in the means model and proband ascertainment correction
implemented. A proband was defined as a twin who reported or was
reported by the parents to have a history of asthma or wheeze in
either the round 1 or the round 2 questionnaires.

Bivariate analysis of asthma traits

Maximum likelihood variance components analysis was performed
to estimate cross-trait correlations and to partition these into a
component due to both traits sharing the same set of latent additive
genetic factors and to a component due to both traits sharing the
same set of latent-specific environmental factors. For this purpose,

we estimated the genetic and environmental correlations for any
two traits using the multivariate modelling algorithm implemented
in a prerelease version of solar 3.0.3 and outlined in Ref. (26). The
genetic correlation (qA) is defined here as the correlation between
the latent additive genetic factors, whereas the environmental cor-
relation (qE) is defined as the correlation between the latent envi-
ronmental factors not shared between relatives. For eight traits,
there are 28 possible two-trait combinations and, therefore, 28
bivariate analyses were performed. Each bivariate analysis estima-
ted six parameters of interest: r2A and r2E for each trait and qA and qE
between the traits. In addition, the significance of qA and qE was
tested as described above. To correct for multiple testing, the sig-
nificance threshold for these parameters was set at P ¼ 0.05/
28 ¼ 0.0018. As with the univariate approach, the effects of signi-
ficant covariates and proband ascertainment correction were
included in the analyses. The overall cross-trait correlation for any
two traits ti and tj was then calculated as rðti; tjÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffi

r2AðtiÞ
q

�qAðti; tjÞ�
ffiffiffiffiffiffiffiffiffiffiffiffi
r2AðtjÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2EðtiÞ

p
�qEðti; tjÞ�

ffiffiffiffiffiffiffiffiffiffiffiffi
r2EðtjÞ

q
. In this

formula,
ffiffiffiffiffiffiffiffiffiffiffiffi
r2AðtiÞ

q
� qAðti; tjÞ �

ffiffiffiffiffiffiffiffiffiffiffiffi
r2AðtjÞ

q
corresponds to the compo-

nent of the cross-trait correlation that results from traits ti and tj
sharing the same set of latent additive genetic factors andffiffiffiffiffiffiffiffiffiffiffiffi

r2EðtiÞ
p

� qEðti; tjÞ�
ffiffiffiffiffiffiffiffiffiffiffiffi
r2EðtjÞ

q
corresponds to the component of the

correlation that results from both traits sharing the same set of
latent-specific environmental factors. For most traits r2D and r2C did
not significantly influence trait variance in the univariate analyses.
For this reason, these parameters were fixed at zero in bivariate
analyses. At present, solar cannot test the significance of qA or qE
when analysing more than two traits. In addition, the simultaneous
analysis of continuous and affection traits restricted the number of
phenotypes solar could analyse and still achieve convergence to
only four. Nonetheless, multivariate analyses of up to four traits
were performed with parameter estimates that correlated >0.99
with those obtained with the corresponding bivariate analyses (data
not shown). For this reason, only results from the bivariate analyses
are presented.

Results

Participants

Overall, 802 families ascertained via at least one twin
proband participated in this study. These families were of
arbitrary size, ranging from 1 to 10 relatives (mean 4) and
from 1 to 3 generations (mean 2). Over 75% of the
families consisted of two twins (21%), two twins and one
or two parents (36%) or two twins, two parents and one
sib (19%). There were 817 sibships available for analysis,
of which 533 (65%) were of size 2, 211 (26%) of size 3, 63
(8%) of sizes 4 and 10 (1%) of size 5 or larger. The
families included 490 (61%) DZ twins and 312 (39%) MZ
twins. Ancestry was reported by 511 families: 72%
reported being of European ancestry, 3% of native
Australian or New Zealander ancestry, 1% American or
Asian, 9% of mixed ancestry and 15% reported ambigu-
ous or unknown ancestry. Data were collected from 3073
relatives from these 802 families, including 1289 self-
reported asthmatics (Table 1). Of these, 35% used
bronchodilators once a week or more often in the last
12 months and 30% inhaled steroids; 23% reported
having previously been admitted to hospital as a result
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of an asthma attack. These figures were similar for the
919 probands. Males reported a mean age at onset of
asthma of 8.1 and females of 11.9 (P < 0.001).

Familial correlations and heritabilities

Most phenotypes had a high reliability, with a test–retest
correlation >0.8 (Table 2). Typical familial correlations,
uncorrected for ascertainment, ranged from 0.15 to 0.39
for parent–offspring pairs, 0.26 to 0.44 for sib pairs, 0.17
to 0.64 for DZ twin pairs and 0.63 to 0.90 for MZ pairs.
The exception was asthma, which, as expected, showed
low familial correlations as a result of the selective
ascertainment procedure used. Heritabilities corrected for
ascertainment ranged from 0.28 for eosinophils to 0.71
for FEV1. The ascertainment correction had a negligible
effect in variance components modelling for all traits
other than asthma.

Bivariate analyses of asthma traits

All traits were found to be regulated by additive genetic
factors but also by environmental factors not shared
between relatives. We then investigated the extent to
which different traits shared the same set of additive
genetic factors or the same set of specific environmental
factors (Table 3). First, large environmental correlations
were observed between AHR and atopy (0.67), AHR and

asthma (0.63) and between AHR and eosinophils (0.60).
By contrast, the two lung function measurements showed
low environmental correlations with most traits, partic-
ularly with atopy, D. pter and IgE. Secondly, when
compared with the environmental effects, fewer genetic
correlations were significantly different from zero. As
expected, atopy, D. pter and IgE showed a considerable
degree of genetic overlap but the three genetic correla-
tions were significantly different from 1 (P < 0.0018).
This excluded complete pleiotropy between these traits.
As observed with the environmental factors, the genetic
correlations between FEV1 and atopy, D. pter and IgE
were close to zero. Finally, eosinophils had a significant
genetic correlation with IgE (0.44) but with no other trait.
Multivariate analyses of up to four traits were also
performed and parameter estimates were equivalent to
those obtained with the bivariate analyses (not shown).
The genetic and environmental correlations were then
combined with the trait heritabilities to estimate the
overall cross-trait correlations (Fig. 2). As expected from
the low genetic and environmental correlations, FEV1

showed low cross-trait correlations with all traits other
then FEV1/FVC. By contrast, AHR showed high and
comparable cross-trait correlations with most traits, with
equivalent contributions from genetic and environmental
effects shared between traits. The exception was eosin-
ophils. The correlation observed between this trait and
AHR, or between this trait and other traits other than

Table 1. Characteristics of study participants in the full sample and for asthmatics and probands only

Full sample Subsamples

Parents Twins Sibs Children Spouses Total Probands Asthmatics

Subjects total 1011 1568 376 94 24 3073 919 1289
With questionnaire (%) 65 100 100 100 100 88 100 100
Clinically tested (%) 8 98 98 99 54 68 98 87
Donated blood (%) 90 94 96 89 88 93 95 94
Full testing (%) 8 92 94 89 54 64 93 82

Female sex (%) 56 58 50 49 17 56 59 57
Age, mean (range) 53 (34–83) 29 (7–76) 24 (7–50) 22 (7–43) 51 (38–67) 36 (7–83) 28 (7–76) 30 (7–79)
Ever smoker* (%) 48 32 22 29 58 34 31 31
Current smoker (%) 12 17 10 11 13 14 16 13
Asthma (%) 28 47 77 83 26 47 80 100
Doctor asthma (%) 26 43 73 81 25 44 72 92
Positive AHR test� (%) 15 43 39 42 0 41 54 50
Atopy (%) 60 68 75 77 38 69 75 75
Positive SPT to
D. pter (%)

39 54 63 66 8 56 62 63

Mean FEV1 [1] 3.0 3.1 3.2 3.2 3.5 3.1 3.0 3.0
Mean FEV1/FVC 0.80 0.83 0.83 0.81 0.79 0.82 0.82 0.82
FEV1 £ 0.7 predicted (%) 16 7 7 9 0 7 8 9
IgE [IU/ml; geometric
mean (N)]

55 (440) 81 (1344) 131 (309) 168 (69) 52 (17) 82 (2179) 101 (785) 109 (1224)

Eosinophil [·109/l;
geometric mean (N)]

0.19 (542) 0.25 (831) 0.28 (347) 0.35 (74) 0.18 (16) 0.24 (1810) 0.27 (519) 0.28 (1042)

*Sample size for ever smoker, current smoker, asthma and doctor asthma corresponds to the number of subjects with questionnaire.
�Sample size for AHR, atopy, D. pter, FEV1 and FEV1/FVC corresponds to the number of subjects that were clinically tested.
AHR, airway histamine responsiveness; FEV1, D. pter, Dermatophagoides pteronyssinus; forced expiratory volume in 1 s; FVC, forced vital capacity; SPT, skin prick test; IgE,
immunoglobulin E.
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IgE was mostly due to environmental factors shared
between traits.

Discussion

Asthma has long been recognized to be heritable (27).
Large population-based twin studies have estimated the
heritability of asthma to be between 60% and 73% (28–
30). Similarly, most asthma intermediate phenotypes,
such as atopy and total serum IgE, have been shown to be
moderately to highly heritable in population-based sam-
ples (14, 31). The present study involved selective
ascertainment of families through twins who had repor-
ted asthma or wheezing in previous screening question-
naires. Approximately 70% of subjects were found to be
atopic, 44% had previously been diagnosed with asthma

by a doctor and 40% had a positive AHR test. As a result
of this selection procedure, self-reported asthma dis-
played very low familial correlations. On the contrary, the
bias introduced by the ascertainment did not extend to
any of the other asthma-related phenotypes tested. This
has been shown previously (32, 33) and it is likely to
reflect the low to moderate cross-trait correlations
observed between asthma and related phenotypes (range:
)0.25 to 0.42). Also, the ascertainment bias observed for
asthma was largely adjusted by the correction used when
fitting variance components models. Heritabilities cor-
rected for ascertainment ranged from 28% (eosinophils)
to 71% (FEV1).

We performed bivariate variance components analyses
to estimate the genetic and environmental correlation
between asthma traits. Similar analyses have been
performed previously to estimate the genetic and

Table 2. Test–retest and familial correlations for asthma and related traits

Trait correlations* (N pairs) Variance components�

Test–retest� Parent–offspring pairs Sib pairs DZ twins MZ twins r2A r2D r2C r2E

Asthma 0.99 (225) )0.01 (1795) 0.14 (1251) )0.16 (430) 0.34 (263) 0.38 – – 0.62
AHR 0.77 (110) 0.39 (185) 0.32 (675) 0.32 (246) 0.63 (169) 0.58 – – 0.42
Atopy 0.95 (210) 0.25 (324) 0.44 (1232) 0.38 (439) 0.78 (281) 0.49 – 0.16 0.35
D. pter 0.93 (210) 0.05 (312) 0.33 (1225) 0.20 (436) 0.76 (280) 0.30 0.32 – 0.38
FEV1 0.87 (209) 0.15 (303) 0.37 (1199) 0.64 (435) 0.90 (278) 0.71 – – 0.29
FEV1/FVC 0.67 (208) 0.25 (305) 0.28 (1196) 0.37 (434) 0.65 (278) 0.51 – – 0.49
IgE 0.87 (179) 0.24 (1125) 0.26 (964) 0.18 (355) 0.67 (243) 0.52 – – 0.48
Eosinophils – 0.17 (1362) 0.32 (898) 0.17 (230) 0.59 (113) 0.28 – 0.14 0.58

*Tetrachoric (affection traits) and Pearson (continuous traits) correlations, uncorrected for ascertainment. Continuous traits were normalized and, with the exception of test–
retest, adjusted for significant covariates (see Methods).
�Estimated from univariate variance components analyses with ascertainment correction. All traits were adjusted for significant covariates (see Methods).
Variance components estimates are reported according to the best fitting model.
�253 participants were tested in both phases (mean age 36, range: 19–61). The mean timespan between test and retest was 4.8 years (range: 4.2–6.2).
AHR, airway histamine responsiveness; D. pter, Dermatophagoides pteronyssinus; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; IgE, immunoglobulin E; DZ,
dizygotic; MZ, monozygotic.
r2A, additive polygenic variance; r

2
D , dominance genetic variance; r

2
C , variance due to environmental factors shared between siblings; r

2
E , variance due to environmental factors

not shared between relatives.

Table 3. Environmental (above main diagonal) and genetic (below main diagonal) correlations between asthma traits

Environmental and genetic correlations*

Asthma AHR Atopy D. pter FEV1 FEV1/FVC IgE Eosinophil

Asthma 0.63 0.44 0.49 )0.31 )0.28 0.23 0.30
AHR 0.24 0.67 0.60 )0.32 )0.38 0.57 0.60
Atopy 0.46 0.35 0.89 0.02 )0.22 0.71 0.55
D. pter 0.38 0.43 0.76 )0.06 )0.27 0.58 0.52
FEV1 )0.24 )0.20 )0.05 )0.11 0.42 0.04 0.11
FEV1/FVC )0.24 )0.43 )0.22 )0.22 0.33 )0.25 )0.09
IgE 0.41 0.33 0.61 0.58 )0.18 )0.07 0.38
Eosinophils 0.24 0.13 0.27 0.19 )0.21 )0.16 0.44

*Estimated from bivariate variance components analyses with ascertainment correction.
Correlations significantly different from zero are highlighted in bold (P < 0.0018). A negative correlation indicates that environmental or genetic factors induced a negative
phenotypic correlation between the two traits. Affection traits were coded as 0 (unaffected) and 1 (affected).
All traits were adjusted for significant covariates (see Methods).
AHR, airway histamine responsiveness; D. pter, Dermatophagoides pteronyssinus; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; IgE, immunoglobulin E.
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environmental overlap between different allergic diseases
(28, 34) and between different allergic diseases and their
symptoms (15), but not between different asthma inter-
mediate phenotypes. Our analyses showed that many
asthma traits had significant environmental correlations
with each other, often >0.5. This is consistent with the
hypothesis that the same set of environmental factors
regulates the variation of many asthma traits. This
hypothesis is also supported by the observation that
MZ twin pairs discordant for asthma are also likely to be
discordant for other traits and that the case for the
different traits is often the same twin (11, 12). The main
exception in our study was FEV1, which showed very low
environmental correlations with atopy, D. pter and IgE.
This strongly suggests that the environmental factors not
shared between relatives that regulate variation in FEV1

are entirely distinct from the environmental factors that
regulate variation in allergy status.
The bivariate analyses also showed that only a com-

paratively smaller number of traits had genetic correla-
tions significantly different from zero. As expected, the
most significant of these were between atopy, D. pter and
IgE, although there was no evidence for complete
pleiotropy. This implies that although a large proportion
of genetic factors were shared between these traits, there
were still specific genetic pathways that regulated the
expression of each trait individually. Palmer et al. (14)
reported similar results when comparing the genetic
overlap between total and specific IgE with regression

models. They also found that the genetic determinants of
total IgE and airway responsiveness exhibited <30%
sharing, which is consistent with our estimate of the
genetic correlation between these two traits (0.33). In
addition, in the present study, both asthma and AHR
showed some degree of genetic overlap with atopy, thus
supporting the concept that these three traits share a
group of genetic risk factors (10). Interestingly, Eosin-
ophils and IgE were also found to have a significant
genetic correlation, which could explain the recent report
of genetic linkage of eosinophilia to 2q33 (35), a region
previously linked to atopy (36). Finally, there was very
limited or no genetic overlap between FEV1 and any
other trait other than FEV1/FVC. Thus, to a great extent,
baseline FEV1 was genetically distinct from Asthma,
AHR and Atopy, which is also consistent with previous
findings (13).

How can these results be used to guide the choice of
traits for multivariate linkage analysis? The joint analysis
of multiple correlated traits has been demonstrated to
increase the power of linkage analysis, both with real
(4–6) and simulated (7, 37) data sets. However, not all
correlated traits provide the same improvement in power
when analysed with multivariate methods. Traits with
strong genetic correlations provide increased power only
when the pleiotropic QTL and the residual sources of
variation induce cross-trait correlations in opposite
directions (7, 8, 38). As this may be uncommon, multi-
variate analysis of traits such as atopy and D. pter is
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Figure 2. Maximum likelihood cross-trait correlations for eight asthma phenotypes, corrected for ascertainment. The correlation
between any two traits was decomposed into a component due to both traits sharing the same set of latent additive genetic factors (A)
and to a component due to both traits sharing the same set of latent-specific environmental factors (E). The cross-trait correlations
estimated by this maximum likelihood approach were highly correlated (0.98) with the corresponding Pearson (continuous–continuous
traits), tetrachoric (affection–affection traits) or biserial correlations (continuous–affection traits) estimated with sas (not shown).
*Indicates traits with environmental or genetic correlations significantly different from zero.
AHR, airway histamine responsiveness; D. pter, Dermatophagoides pteronyssinus; FEV, forced expiratory volume in 1 s; FVC, forced
vital capacity; IgE, Immunoglobulin E.
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unlikely to be justified. Similarly, traits with minimal
genetic correlations, such as FEV1 and Atopy, are
unlikely to have common QTL and so are also unlikely
to benefit from being analysed with multivariate methods.
Therefore, the traits most likely to provide increased
power for multivariate linkage are traits with low to
moderate genetic correlations, such as Asthma, AHR,
Atopy, IgE and FEV1/FVC. The observed genetic corre-
lations between these imply that although each trait is
regulated to great extent by specific genetic factors, there
is still some degree of genetic overlap that could be
exploited by multivariate approaches. Nonetheless, we
note that the moderate to high environmental correla-
tions observed between some of these traits may prove
counterproductive.
Finally, a number of limitations need to be born in mind

when examining the conclusions of the present study.
First, the clinical protocol differed in a few aspects
between the two rounds of testing. However, these
differences were minor and are unavoidable when pooling
data from different samples or from different studies.
Secondly, the definition of asthma used here may not fully
represent the clinical entity of asthma. Nonetheless, it was
our intention to contrast a self-reported asthma pheno-
type with more objective clinical phenotypes. Thirdly, all

subjects that were tested twice in this study were over the
age of 18. As the majority of our sample (75%) was within
this age group, this is unlikely to have greatly overesti-
mated the reliability of the asthma traits measured. Lastly,
the Bonferroni correction applied when testing the signi-
ficance of genetic and environmental correlations may
have been conservative. The parameter estimates were
nonetheless unaffected by this correction and should be
assessed in conjunction with the reported significance.
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