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Abstract

Using the classical twin design, this study investigates the influence of genetic factors on the

large phenotypic variance in inspection time (IT), and whether the well established IT–IQ

association can be explained by a common genetic factor. Three hundred ninety pairs of twins (184

monozygotic, MZ; 206 dizygotic, DZ) with a mean age of 16 years participated, and 49 pairs

returned approximately 3 months later for retesting. As in many IT studies, the pi figure stimulus

was used and IT was estimated from the cumulative normal ogive. IT ranged from 39.4 to 774.1 ms

(159 ± 110.1 ms) with faster ITs (by an average of 26.9 ms) found in the retest session from which

a reliability of .69 was estimated. Full-scale IQ (FIQ) was assessed by the Multidimensional

Aptitude Battery (MAB) and ranged from 79 to 145 (111 ± 13). The phenotypic association between

IT and FIQ was confirmed (� .35) and bivariate results showed that a common genetic factor

accounted for 36% of the variance in IT and 32% of the variance in FIQ. The maximum likelihood

estimate of the genetic correlation was � .63. When performance and verbal IQ (PIQ & VIQ) were

analysed with IT, a stronger phenotypic and genetic relationship was found between PIQ and IT

than with VIQ. A large part of the IT variance (64%) was accounted for by a unique environmental

factor. Further genetic factors were needed to explain the remaining variance in IQ with a small

component of unique environmental variance present. The separability of a shared genetic factor

influencing IT and IQ from the total genetic variance in IQ suggests that IT affects a specific
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1. Introduction

In an ongoing study of the genetics of cognition, in adolescent Australian twins, inspection

time (IT) was collected as part of a psychometric battery to probe processing speed. The

principal aim is to identify genetic variants that influence individual differences in processing

speed and working memory, both of which play a significant role in higher level functioning.

A major focus is to investigate whether there is a genetic influence on the covariation among

measures of these two basic abilities that accounts for a significant part of the genetic variance

in intelligence. We will then use the correlated biological markers in future linkage and

association analyses to search for quantitative trait loci (QTLs) influencing cognition.

In this paper, we estimate the heritability of the IT measure using the twin design and

model fitting procedures that decompose the large phenotypic variance in IT into genetic and

environmental components (Neale & Cardon, 1992; Plomin, 1986). The classical twin design

compares monozygotic (MZ) twin pairs who share 100% of their genes with dizygotic (DZ)

twins who share roughly 50% of their segregating genes. If the causes of familial similarity

are the additive genes (transmissible from parent to child), the correlation in performance of

MZ co-twins is expected to be twice that of DZ co-twins. An underlying assumption is that

environmental influences on cognition are equivalent in MZ and DZ twins (e.g., Kendler,

Neale, Kessler, Heath, & Eaves, 1993). The potential for genetic influence on individual

differences in IT has not previously been investigated, and while several measures of

information processing speed have been shown to be heritable (.20 to .76), the extent of

the genetic influence is shown to be dependent on the specific processing measure used

(Boomsma & Somsen, 1991; McGue & Bouchard, 1989; Vernon, 1989).

It has been argued by some authors that IT is a better measure of basic information

processing than other elementary cognitive tasks due to the simplicity of the task and the

elimination of the response time confound and speed–accuracy trade-off effects (Deary &

Stough, 1996). It has been vigorously pursued, with adaptations of the visual IT task to the

auditory modality as a test of its validity (Deary, Caryl, Egan, & Wight, 1989; Deary, Head, &

Egan, 1989). From a reductionist approach, it is claimed that IT causes IQ and not the reverse;

empirical efforts to substantiate this theory have focused on exemplifying IT as a biological

mechanism. One demonstration of this was the association between IT and event-related

potentials: faster ITs were characterised by steeper P200 slopes (the positive peak 200 ms

after stimulus onset) and higher intelligence test scores (Morris & Alcorn, 1995).

Other studies have implicated a biological basis to the relationship between information

processing speed and intelligence by demonstrating a genetic contribution to the association

(Baker, Vernon, & Ho, 1991; Ho, Baker, & Decker, 1988; Petrill, Luo, Thompson, &
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Detterman, 1996; Rijsdijk, Vernon, & Boomsma, 1998). Although IT has not directly been

investigated, various elementary cognitive tasks measuring reaction time or accuracy on rapid

automatic naming and perceptual speed tests have been used. For instance, Baker et al. (1991)

reported a heritability of .45 for a general reaction time factor (derived from 11 tests) and

genetic correlations of 1 and .92, with verbal (VIQ) and performance IQs (PIQ), respectively.

However, in an earlier study, it was found that, in addition to a common genetic factor, a

common nonshared environment factor influenced an association between IQ and a rapid

automatic naming factor, but not a symbol processing factor (Ho et al., 1988). The

intercorrelation among elementary cognitive tasks is well known (Jensen, 1998), and therefore

(like other basic component processes) IT is expected to demonstrate a genetic relationship

with IQ, although the possibility of a common environmental relationship cannot be dismissed.

The current study, therefore, uses the twin method to partition the variance in IT among

individuals into genetic and environmental components and examines the extent to which IT

and psychometric intelligence are influenced by the same underlying factors. Following

findings (Deary, 1993; Kranzler & Jensen, 1989) of a stronger relationship between IT and

PIQ than with VIQ, a contrast of these IQ scales with IT will also be undertaken.

2. Method

2.1. Participants

Data are collected in the context of the ongoing Brisbane Memory, Attention, and

Problem-Solving (MAPS) twin study. Here, we report data from the first 390 twin pairs:

97 MZ females, 87 MZ males, 52 DZ females, 48 DZ males, 106 DZ opposite sex pairs. Most

twins had participated in a melanocytic naevi study 2 years earlier (Zhu et al., 1999) and

others were ascertained through mail-outs to secondary schools in the Brisbane region.

Zygosity was determined by ABO, MN, and Rh blood groups and by nine independent

polymorphic DNA markers. Twin pairs were excluded if either one had a history of

significant head injury, neurological or psychiatric illness, substance dependence, or if they

were currently taking long-term medications with central nervous system effects. Participants

had normal or corrected-to-normal vision (better than 6/12 Snellen equivalent). The twins

were mostly in their penultimate year of secondary school and aged between 15 and 18 years

(16.17 years; S.D. = 0.34). Written informed consent was obtained from the participant, as

well as their parent/guardian, prior to testing.

2.2. Experimental protocol

The IT task and IQ test were part of a psychometric battery, which also included a choice

RT task and two reading tests. The session approximated 1.5 h in length, and was either

preceded or followed by a testing session of similar duration that involved the measurement

of event-related potentials during a delayed response task. Tests were computer administered

in the presence of one of three experimenters. One twin completed the psychometric session
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while the other completed the alternate session. The order of session testing was counter-

balanced between twin pairs based on the birth order of the twins. A full description of the

protocol is given in Wright, Boomsma, et al. (2001).

A subsample of twins (49 pairs) returned for retesting approximately 3 months (1–5

months) after their initial test session. All participants approached for retesting agreed. This

sample comprised 23 MZ and 26 DZ pairs (57 females, 43 males). An identical battery of

tests was administered on both occasions. To minimise confound effects, the participants

performed the sessions in the same order on retest.

2.3. IT task

IT was tested by a line discrimination task, which was presented as a pseudocomputer

game of choosing the longer of two worms to go fishing. The two lines of comparison were

described as worms that would quickly burrow into the ground. The participant’s task was to

identify the longer worm in an effort to catch the most fish by pressing the corresponding left

or right arrow key on the keyboard. Feedback in the form of a fish appeared at the lower left-

hand side of the screen following every five correct judgements. Participants were seated

approximately 50 cm from the computer screen. Task instructions were presented on the

screen along with several demonstration trials. The importance of accuracy and not reaction

time was stressed verbally by the experimenter prior to initialising the task.

The vertical lines measured 22 and 27 mm in length, were 9 mm apart, and joined at the

top to a horizontal line 12 mm long (see Fig. 1a). The probability of the longer line appearing

on the left or right was equal. The stimulus duration was variable, ranging between 14.2 and

2000 ms. A dynamic mask, consisting of two vertical lines (37 mm) shaped as lightning bolts

(see Fig. 1b), immediately followed the stimulus and was presented for a period of 300 ms to

limit further stimulus processing (Evans & Nettelbeck, 1993). On each trial, a fixation dot

appeared in the centre of the screen for 1 s (an alerting beep was sounded for 100 ms at the

onset of the dot), followed by a blank screen for 100 ms. The pi figure was then presented,

and the participant’s first response (left or right) was noted. The screen was blanked for

750 ms before the next trial was presented. This produced an effect response–stimulus

interval of approximately 2 s.

We expected a wide range of IT in our unselected participants and so implemented a

Parameter Estimation by Sequential Testing (PEST) procedure (Findlay, 1978; Pentland, 1980)

Fig. 1. The stimulus (a) is presented briefly, it is then hidden by a mask (b).
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to allow an efficient estimation from short to long ITs. The PEST estimated IT using a

staircase method in which the stimulus duration was altered on the basis of the participant’s

previous responses. Stimulus durations (stimulus onset asynchronies, SOAs) were defined by

the screen refresh rate of 14.2 ms. The PEST procedure began on the fourth trial, as the first

three trials were given with long but decreasing durations (113.6 to 56.8 ms) to familiarise the

participants with the procedure. These three trials were disregarded. For every four correct,

consecutive responses the stimulus duration was decreased by the step size, and for every

incorrect response the stimulus duration was increased. The step size was dependent on the

number of reversals, that is, change in direction from increase to decrease and vice versa of

the stimulus duration. After two reversals, the increment reduced to two screen refreshes,

28.4 ms, and following four reversals the step size decreased to one screen refresh. The task

would terminate if either one of two conditions was satisfied: the maximum number of trials

was presented (110) or the PEST estimates became consistent.

2.4. IT estimation procedure

ITwas estimated by fitting post hoc a cumulative normal curve (mean = 0) to accuracy as a

function of SOA. Fig. 2 depicts an individual’s data fitted by an ogive where 100%

asymptotic accuracy is obtained. Setting the mean of the cumulative normal to zero sets

the accuracy to 50% at SOA = 0 indicating chance accuracy in the absence of a stimulus, and

an asymptote of 100% reflects maximal achievable accuracy at very long SOAs.

Fig. 2. An individual’s data to a cumulative normal curve. At an SOA of zero, the probability of a correct response

is .5 and asymptotes to 1 at long SOAs. In this example, chance responding is evident at an SOA of 1 (14.2 ms)

and asymptotes at an SOA of 4 (56.8 ms); at 95% accuracy, the SOA is 3 (42.6 ms).
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The statistic of interest is the standard deviation of the curve, which is the SOA at which

84% accuracy is achieved assuming an asymptote in accuracy of 100% for each individual. A

steeply rising psychometric function will have a lower standard deviation than a more

gradually rising function. Multiplying the standard deviation by the appropriate z score will

give the SOA at which any arbitrary accuracy is reached (e.g., 1.64 for 95%). Participants

whose data provided a poor fit to the cumulative normal curve (R2 < 0.95) were excluded

(i.e., twenty-one participants, or 2.7% of the sample).

2.5. Multidimensional Aptitude Battery (MAB)

A shortened version of the MAB was used, which included three verbal subtests

(Information, Arithmetic, Vocabulary) and two Performance subtests (Spatial and Object

Assembly). All subtests had a multiple-choice format and were timed at 7 min each.

Participants were not penalised for guessing and were encouraged to answer every item

within the time period. Administration and scoring were computerised. Three composite IQ

scores were calculated (verbal, performance, full-scale). The MAB was patterned after the

WAIS-R and, as a result, possesses good psychometric properties (Jackson, 1984, 1998).

2.6. Statistical analyses

Simultaneous equations, established by the known relationship amongMZ andDZ co-twins,

were applied to the raw data. The equations represented in a classical twin design are

rMZ =A+C and rDZ = 1/2A +C, where A represents additive genetic effects and C represents

common environment effects. Nonshared environmental effects that includemeasurement error

(E) are not shared by co-twins and are hence absent from the equations. Such a model assumes

that genetic, common environment, and unique environment components combine in an

additive fashion and that there is random mating in the population (the presence of assortative

mating will overestimate C). Common environment is distributed independently of zygosity

and of both genetic and unique environment factors (Hopper, 1993). The total phenotypic

variance, in the absence of gene–environment interactions and correlations, is equal to 1 and is

expressed as h2 + c2 + e2. These parameters are proportions of genetic, shared environment, and

unique environment variance to total phenotypic variance.

Initially, means and variances were tested across birth order and zygosity to assess

sampling error. This was done by a maximum likelihood estimation (MLE) procedure using

the statistical program Mx 1.50 (Neale, 1997). In this procedure, each of the twin groups (MZ

and DZ) has two means (one each for Twins 1 and 2), two variances, and one covariance

(a total of 10 parameters). Sex differences were also tested by specifying a female mean and

male deviation from that mean but otherwise made no restrictions on the size of variances and

covariances of twins (i.e., one additional parameter). Firstly, a saturated model is fitted

estimating all 11 parameters, then progressively simplified models are compared to the full

model. The fit of each submodel is compared to the one within which it is nested, by a

likelihood ratio chi-square test (Neale & Cardon, 1992). The difference in minus two log

likelihood (� 2LL) between the models is compared to the critical value (alpha = .05) of the
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chi-square distribution for the degrees of freedom difference. A nonsignificant chi-square

indicates that there is no difference between the full model and the reduced model.

MLEs of the correlations for each zygosity group were computed with means and

variances constrained to be equal but including a regression coefficient in the means model

for any sex effects (sex differences in the means can inflate twin resemblance for same sex

twins). MZ and DZ co-twin correlations were inspected for signs of additive genetic effects

(i.e., DZ co-twin correlation is roughly half of the MZ co-twin correlation).

Before fitting variance components models, we fitted empirical models to obtain MLEs of

the phenotypic correlations between the standard deviation of the IT curve (SDIT) and the IQ

variables by constraining intraindividual estimates to be the same for Twins 1 and 2 across

zygosity groups. In this model we also obtained a single estimate of the total variance for each

variable. Subsequently, we fitted models in which we parameterised the total variances and

covariances between variables in terms of A, C, and E. We specified the structure of

covariation between IT and IQ variables as a Cholesky decomposition (bivariate: IT and IQ;

trivariate: IT, PIQ & VIQ). This model assumed as many factors for each source of variance

(A, C, and E) as there were variables. The first factor contained paths leading to all variables

in the model, while the next factor contained paths directed to all variables except the first,

and, in the trivariate case, the third factor had a single pathway leading to the third variable.

Nested AE and CE models were compared to the saturated ACE model using the chi-square

difference test. Paths with low factor loadings were also tested for significance in this manner.

3. Results

3.1. Preliminary analyses

SDIT was normalised by a logarithmic transformation (e.g., Alexander & Mackenzie,

1992; Crawford, Deary, Allan, & Gustafsson, 1998; Deary, McCrimmon, & Bradshaw, 1997).

Any score falling outside ± 3 standard deviations from the mean was considered an outlier

and treated as missing: 1.4% of cases were outlying on first test and two cases on retest.

Computer or experimenter error resulted in the loss of IQ data from six participants (0.76%)

and one person’s IT data. Family-wise outliers were further identified in the bivariate and

trivariate analyses using the Mx%P function, which calculates likelihood statistics for each

family conditional on the model. The output variable of interest was the z score, based on the

Mahalanobis distance of the data vectors (each vector represented a twin pair with scores on

IQ and SDIT). The z score was assessed retaining the same criterion of ± 3 standard

deviations as a basis for exclusion. Two pairs were outlying in the initial bivariate and

trivariate analyses and their scores excluded before the data were reanalysed.

After exclusion of outliers, results from the testing of means and variances across birth

order and zygosity were nonsignificant in all models. There were significant sex differences

in SDIT and all IQ composite scores. Females were able to discriminate between the lines at a

shorter SOA, while males performed better on both scales of the IQ test. Although analyses

were conducted on log-transformed SDIT, IT is reported at the 95% accuracy level for ease of
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interpretation ranging from 42.6 to 712.6 ms (157.9 ± 92.5) for females and between 39.4 and

774.1 ms (160.2 ± 126.4) for males. The FIQ range for females was 79–141 (109 ± 13) and

for males was 81–145 (113 ± 13). PIQ and VIQ means for females were 109 ( ± 11) and 108

( ± 10), respectively, and for males were 111 ( ± 12) and 114 ( ± 17). In all subsequent

analyses, sex effects were adjusted for with a multiple regression procedure. The MLE of the

test–retest correlation for SDIT was .69 and .90, .87, and .89 for FIQ, PIQ, and VIQ,

respectively. Practice effects were demonstrated in SDIT and IQ, with IT (95% accuracy

level) decreasing by 26.9 ms and FIQ, PIQ, and VIQ increasing by 7, 10, and 4 points,

respectively, at the retest.

3.2. Estimating twin correlations and multivariate model fitting

MLEs of the phenotypic correlations for MZ and DZ groups for SDIT and FIQ are

presented in Table 1 — these are based on data where multivariate outlying twin pairs have

been removed. Co-twin correlations for MZs and DZs were, respectively, .34 and .21 for

SDIT and .81 and .51 for FIQ, indicating additive genetic effects for both variables, and the

possibility of some shared environmental influences (or assortative mating) for FIQ.

The MLE of the phenotypic correlation between SDIT and FIQ was � .35 (N= 738),

indicating that a faster IT was associated with a higher IQ score. The 95% confidence interval

extended from � .28 to � .42. The correlation between SDIT and PIQ was � .35, while for

VIQ it was � .26. In accordance with the hypothesis of IT determining IQ and not the

reverse, SDITwas entered first into the bivariate and trivariate models. Common environment

and additive genetic models were compared by dropping all common environment paths for

an AE model and similarly all additive genetic paths for a CE model.

The � 2LL of the fully saturated bivariate model was 5639.358 (df= 1500). The stand-

ardised parameter coefficients from the common factors (A, C, and E) to IT and IQ were,

respectively, .57 and � .48 (A), .18 and � .33 (C), .80 and � .02 (E). Factors influencing

only IQ had the following parameter coefficients: .61 (A), .32 (C), and .43 (E). The change in

chi-square was not significant for the AE model (Dc3
2 = 3.95, P > .05, AIC =� 2.05), but was

significant for the CE model (Dc3
2 = 46.14, P< .05, AIC = 40.14), suggesting that additive

genes are an important source of variation and covariation between measures and that shared

Table 1

Maximum likelihood estimates of the correlations and 95% confidence intervals for MZ twins (above diagonal,

n = 173–182 pairs) and DZ twins (below diagonal, n = 196–206 pairs) for IT and IQ

Twin 1 Twin 2

IT-1 IQ-1 IT-2 IQ-2

IT-1 � .32 (� .18 to � .44) .34 (.21 to .45) � .32 (� .18 to � .45)

IQ-1 � .36 (� .23 to � .47) � .25 (� .12 to � .37) .81 (.76 to .85)

IT-2 .21 (.06 to .35) � .24 (� .10 to � .36) � .27 (� .14 to � .39)

IQ-2 � .22 (� .07 to � .35) .51 (.41 to .60) � .46 (� .34 to � .55)

Co-twin correlations for each measure are shown in bold.
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environment is not. Low factor loadings in the full AE model were tested for significance and

dropped where appropriate; only the unique environment path between SDIT and FIQ could

be dropped. Results of this model are depicted as a path diagram in Fig. 3.

The first additive genetic factor accounted for 36% of variance in SDIT and 32% of

variance in FIQ, such that genetic influences that decreased SDIT increased FIQ. The genetic

correlation between SDIT and FIQ was � .63. FIQ was also influenced by a specific genetic

factor that explained a further 49% of its variance. SDIT was clearly more affected by unique

environment (64% variance) than was FIQ (19%). There were no correlated effects of

nonshared environment.

The � 2LL of the fully saturated trivariate model was 11,608.86 (df = 2264). The change

in chi-square was not significant for the AE model (Dc6
2 = 12.18, P>.05, AIC =.18), but was

significant for the CE model (Dc6
2 = 68.20, P< .05, AIC = 56.20). The standardised path

coefficients for the base (ACE) model and the reduced AE model (model of best fit) are

presented in Table 2.

A common genetic factor mediated the relationship among SDIT (36%), PIQ (30%), and

VIQ (18%). The genetic covariance between SDIT and PIQ was larger than that between

SDIT and VIQ, as demonstrated by a chi-square difference test, which tested the equality of

Fig. 3. Path diagram showing latent genetic and environmental influences on SDIT and FIQ.
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the paths (Dc1
2 = 4.35, P< .05). The genetic correlations between SDIT and PIQ was � .65,

while for VIQ it was � .47. PIQ and VIQ shared a genetic factor that influenced PIQ (42%)

more than VIQ (12%), and VIQ was influenced by a further genetic factor explaining 50% of

its variance. There were also correlated unique environment effects for PIQ and VIQ.

4. Discussion

The significant correlation between IT and psychometric intelligence is well established

and replicated in the current study. To date, there has been no attempt to examine whether

individual differences in IT display familial aggregation. This study used twins to assess the

genetic and environmental variation in IT and its covariance with IQ.

Substantial individual variation in IT and IQ was found in our 16-year-old twin sample.

The IT range was wider (higher upper limit) than that reported by previous studies using

normal samples (Nettelbeck & Kirby, 1983; Nettelbeck & Lally, 1976; Vernon, 1983). Mean

IT was in accordance with past estimates, which have ranged from 80 to 228 ms, although

the standard deviation was slightly higher than previously reported values, reflecting the

wide range of our IT distribution (Mackenzie & Bingham, 1985; Nettelbeck, 1987). It may

surprise some readers that we report IT values as high as 774 ms, within the transformed

SDIT distribution such high ITs were not outlying. We tested the fit of the ogive distribution

to each individual’s data and there were no obvious grounds for excluding participants with

these high values. Perhaps these high values reflect the very representative nature of our

sample in contrast to the mainly selected samples (of undergraduates) used in much of the IT

literature. The IQ range was normally distributed, the mean score was higher than the

population mean of 100.

Variances were equal across birth order and zygosity, with MZ and DZ twin pairs

performing similarly for all measures of IT and IQ. Sex effects in IT were minor with the

significance of the effect attributed to the exceptional power of the analysis. There was a

mean sex difference between males and females in IQ, with males outperforming females.

However, because a shortened version of the MAB was used this finding may be artifactual

since no sex effects have been reported for MAB IQ. A future analysis of the IQ subtest

scores may elucidate the nature of the sex differences found in our sample.

Table 2

Base model (ACE) and best fitting model (reduced AE) parameter estimates from latent factors to SDIT, PIQ, and

VIQ

Variable A1 A2 A3 C1 C2 C3 E1 E2 E3

ACE SDIT .58 – – � .14 – – .80 – –

PIQ � .47 .61 – .20 .29 – � .06 .52 –

VIQ � .41 .11 .53 .30 .52 0 .02 .08 .42

AE SDIT .60 – – – – – .80 – –

PIQ � .55 .65 – – – – – .53 –

VIQ � .43 .35 .71 – – – – .10 .43
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Practice effects emerged in both measures, this was in the form of a decreased IT and

an increased IQ. Findings of improved IT in children and adults on repeated testing have

been shown (e.g, Irwin, 1984, exp. 2; Nettelbeck & Wilson, 1985), although there have

also been findings of no practice effects (Irwin, 1984, exp. 3; Vickers, Nettelbeck, &

Willson, 1972); this suggests that particular task parameters may influence this improve-

ment factor. Although there were mean differences on retest, the rank order of individuals

was largely maintained, as reflected in the test–retest correlation of .69. This reliability

coefficient was within the range of correlations normally reported (Nettelbeck & Rabbitt,

1992; Sen & Goswami, 1983; Vernon, 1983) and was most comparable with a study by

Larson and Saccuzzo (1989) who used a similar retest interval (1 month), age of

participants (19 years), and sample size (220) — retest correlation of .64. Studies of

the computerised MAB across time are scarce, but VIQ has been shown to increase on

repeated administrations, although PIQ and FIQ were not reported (Harrell, Honaker, Hetu,

& Oberwager, 1987).

Twin correlations for IT demonstrated significant familial aggregation. MZ co-twins

showed greater similarity (r=.34) than DZs (r=.21), but this correlation was short of the

test–retest correlation indicating that stable features of the unique environment are also

important. This is a somewhat unusual finding in that behaviour genetic studies of

psychomotor (e.g., motor coordination, pursuit rotor, simple and choice reaction time)

and physiological function (e.g., event-related potentials) have shown that MZ co-twin

correlations normally approach the test–retest correlation of the measure (e.g., Martin et al.,

1985). Unlike psychomotor tasks, IT does not have a motor component (which may

account for a substantial proportion of genetic variance in the measure), hence nonshared

environment factors must be considered in the individual variation of IT performance.

Strategy use in IT has often been an issue of debate (Egan, 1994; Evans & Nettelbeck,

1993; Knibb, 1992). The finding that the IT–IQ correlation increases when those using

strategies are excluded (Mackenzie & Bingham, 1985; Mackenzie & Cumming, 1986) may

be commensurate with our findings if strategy use is influenced by nonshared environment

rather than genes.

Confirming previous studies (Deary & Stough, 1996; Kranzler & Jensen, 1989; Nettel-

beck, 1987), we found a significant correlation between IT and FIQ (� .35), which was

higher for PIQ (� .33) than VIQ (� .26) when these were analysed separately; these were

toward the lower range of estimates reported. This study is perhaps the largest study

conducted on IT and the unselected nature of our sample suggests that our IT–IQ correlation

estimates are unbiased and stable (although this is more apparent in the FIQ correlation,

which is a more reliable measure than the subscales).

Bivariate model fitting indicated that the covariance between IT and FIQ was due to a

common genetic factor, which explained 36% of the variance in IT and 32% of the variance in

FIQ. In the trivariate analysis, this factor explained significantly more variance in PIQ (30%)

than in VIQ (18%). There was no significant common environmental factor. The genetic

correlations between IT and each of the IQ measures were higher than the phenotypic

correlation (especially for PIQ); indicating that variation in genes that produce faster ITs are

strongly related to the variation in genes that promote higher IQs. These findings are in
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agreement with previous genetic studies of information processing variables/factors, which

report around half of the variance as genetic (Boomsma & Somsen, 1991; McGue &

Bouchard, 1989; Rijsdijk et al., 1998; Vernon, 1989; Wright, Smith, Geffen, Geffen, &

Martin, 2000) and with studies that show the processing speed–IQ association is genetically

mediated (Baker et al., 1991; Rijsdijk et al., 1998). The results showed that a further genetic

factor (explaining 49% of variance) was needed to explain the genetic effects on FIQ. In the

trivariate analysis two genetic factors emerged (one loading on PIQ and VIQ, and the other

influencing only VIQ) indicating that different sets of genes (in addition to common genes)

affect group factors of intelligence. The remaining variance in IT was composed of nonshared

environment, but including a large proportion of measurement error as demonstrated by the

imperfect test–retest correlation.

Like others who have investigated elementary cognitive tasks, we have demonstrated that

IT shares a substantial genetic relationship with IQ. Furthermore, it was shown that IT shares

greater genetic variance with PIQ than VIQ. That different strengths and patterns of genetic

and environmental associations have been found across elementary cognitive tasks suggests

that there may not be a single processing speed mechanism influencing intelligence but rather

different component processes (e.g., speed of perceptual apprehension, speed of short-term

memory retrieval), and that the genes influencing these component processes constitute the

genes for IQ. Our findings of a stronger PIQ–IT association may be interpreted within this

framework such that PIQ involves increased levels of the process tapped by IT than does VIQ

(the selection of PIQ and VIQ subtests was based on their low relationships across scales).

Crawford et al. (1998) suggested that IT might relate to a spatial orientation and speed

process since it is noticed in Performance subtests like Block Design and Object Assembly,

which load highly on the perceptual–organisation factor.

While the results appear to favour a component theory of intelligence, where diverse

information processes independently contribute to the overall end state of higher cognition

(Kranzler & Jensen, 1991; Sternberg & Gardner, 1982), the size of the nonshared environ-

mental influences on IT leave open the possibility that genetic overlap between IT and IQ also

drives the relationship of other elementary cognitive tasks with IQ. This could be tested by

including more tasks in a genetically informed analysis, but rather than using a unitary

processing speed factor use individual task measures in the multivariate analysis.

In summary, this study is the first investigation of the possible genetic influences on

individual differences in IT and of the extent to which genetic influences mediate its

association with psychometric intelligence. The findings provide potentially important

information for the biological bases of the information processing–IQ relationship. IT is a

basic measure since it assesses speed of perception, which has been linked to rate of sampling

information from the environment, without any speed stress on responding. While the genetic

influence upon IT is of similar magnitude to that of other elementary cognitive tasks, it is not

known whether IT shares the same genetic variance with other information processing

measures. This will be a critical issue to broach in future genetic research directed towards

lower and high-level information processes. Our larger study that examines several compo-

nent indices of information processing will address this to some extent using multivariate

genetic analysis.
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