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Supplementary Appendix 1 

 

Below is a fuller outline of the analysis techniques used in the main text, including the regression 
equations, bootstrap methods and correction of s.e. for  double entry of the data. 

Zygosity Determination in the GHCA samples: Western Reserve Reading Project – DNA analysis by 
buccal swab procedure. Twins Early Development Study - parent questionnaire of physical similarity, 
with follow-up DNA testing in cases where zygosity was unclear. Minnesota Center for Twin and Family 
Research - consensus of four indicators: a standard zygosity parent questionnaire; staff perception of 
physical similarity; an algorithm based on ponderal index, cephalic index and fingerprint ridge count. 
DNA analysis of 12 blood group anitigens from blood samples was performed if there was any 
discrepancy among these three methods. Zygosity was determined in almost all cases using a panel of 
DNA markers. Twin Cognition Study – Cross-checked DNA markers, blood group results and phenotypic 
data. Netherlands Twin Register – typing of DNA or blood group polymorphisms. 

Twin Methodology and DeFries-Fulker Regression: DeFries-Fulker regression analysis (LaBuda, DeFries 
and Fulker, 1986) uses monozygotic (MZ; genetically identical) and dizygotic (DZ or fraternal; sharing 
50% of genetic variation on average) twin pairs, regressing twin two’s score (C) on twin one’s scores (P) 
and the coefficient of relationship (R; 1 for MZ and .5 for DZ pairs). A  third term estimating the 
interaction between the P  and R, yields direct estimates the heritability (proportion of sample variance 
accounted for by genetic influences; h2) and the proportion of variance accounted for by family-wide 
environmental influences (c2). All twin pairs were double-entered, with the twin assignment reversed in 
the second entry (i.e. twin 1 becomes twin 2 and vice versa). In equation 1, β1 estimates c2 and β3  
estimates h2  when the data are suitably transformed. K is a constant: 

 

                                                          C = β1P + β2R + β3PR  + K                                                             (1) 

Further extensions to this equation can test changes in the estimations of h2 and c2 according to IQ 
score: 

                                                        C = β1P + β2R + β3PR  + β4P
2 + β5P

2R + K                                       (2)                                                

In equation 2, β4 measures the linear relationship between twin 1’s IQ score and the predictability of 
twin 2’s IQ score from twin 1’s, independent of genetic relationship. This tests for the linear change in c2 
as twin 1’s score increases. β5 measures how this variable differs as a function of the relationship 
between twin 1 and twin 2 and is the corresponding test for linear change in h2 (Cherny, Cardon, Fulker 
&DeFries, 1992). In the cross-sectional GHCA sample, we first applied equation 1 and 2 to the full 
sample collectively then extended the analysis to examine the effect of age on the estimates derived. 
The sample was split into 3 age groups, childhood ( aged 4-12; n pairs = 6044), adolescence (aged 12-18; 
n pairs = 4304) and adulthood ( ages 18+; n pairs = 549) and orthogonal linear and quadratic contrast 
codes (age_lin and age_quad) were constructed and allowed to interact with all the terms in equation 2. 
In such a regression, β9P

2*age_lin and  β10P
2R*age_lin  test for a difference between the child and adult 

age groups on the relationship between ability and the estimate of c2 and h2 respectively. β16 
P2*age_quad  and β17P

2R*age_quad  compare the estimates for these groups collectively to those for 
the adolescent group .  Applying equation 2 separately for each age group provided estimates for the 
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ability-dependent terms at each age. Additionally, splitting the sample into 6 groups by median splitting 
each age group on IQ score and applying equation 1 separately for each of these subsamples gave 
estimates of c2 and h2 for the top and bottom halves of the ability distribution in each age goup 
separately. For this analysis pairs were only double entered if both twins met criteria for the ability cut-
off. All reported p values for the GHCA sample are derived by bootstrapping the regression estimates in 
the following way: Twin pairs were sampled at random, with replacement, from a single entered dataset 
and twin assignment was randomized for each pair. All regressions described were performed on the 
resulting data and the coefficents saved. This process was repeated 10,000 times. The standard 
deviations  of the resulting betas were used as s.e.s of the estimates and p values we derived  by 
centring the distribution around zero and calculating twice the proportion of the estimates that 
exceeded the observed value. 

In the longitudinal sample, the coefficient of relationship (R) took on the value of 1.0 for MZ and .5 for 
DZ twin pairs as before. For biological siblings the value of .5 for also used, as they are genetically as 
similar as DZ pairs. Adoptive sibling pairs took a value of 0.0, as they are not genetically related. An extra 
variable, the age gap between siblings in days (0 for all twin pairs), was added to equations 1 and 2 and 
allowed to interact with the estimates of c2 and h2: All reported parameters are derived from regressions 
with age gap included as a moderator. This  better enabled comparison of estimates between this 
sample and the cross-sectional twin study presented above (the estimates for when age gap = 0 to be to 
most accurate estimate of the maximum effect of shared environmental factors, the influence of which 
will diminish as age gap increases). If this difference is not modeled the smaller age gap between all 
biologically related pairs compared to the adoptive siblings will overestimate heritability as the 
increased correlation, which can reasonably be attributed to both increased environmental sharing in 
the biological siblings and to genetic influence, will be attributed in the regression purely to genetic 
influence.  Standard errors of the regression estimates are calculated using the method outlined by 

Koehler and Rodgers (Kohler & Rodgers, 2001) by altering the robust cluster command in STATA 
(StataCorp., 2007) to give robust standard errors using  n instead of n - k -1 as a multiplier (for details 
see http://www.ssc.upenn.edu/~hpkohler/data-and-programs/twdfeff/twdfeffprograms.html#x1-
130005). This method of calculation accounts for the fact that the double entered data are only 
independent at the level of the twin pair.  
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These supplementary materials outline the tests of validity performed on the LTS study sample in an 
attempt to ensure that the apparent prolonged critical period found in both our samples could not be 
readily explained by any confounding variables. 

Assortative mating in parents of the LTS twins: We tested for patterns of assortative mating for IQ in 
the parents of the LTS twins. Assortative mating increases between-family variability and therefore 

manifests as c2 in the twin design. If assortative mating was higher among higher IQ parents, then this 
would be a potential explanation for the increased c2 seen in higher IQ individuals at age 16. 

Full-scale WISC-R  IQ scores were assessed in parents at the time of intake of the family into either the 
Twin Infant Project (TIP) or the Longitudinal Twin Study (between 3 and 14 months post partum; the two 
studies were amalgamated to construct the current LTS). In the event that this information was given 
twice during this period, the responses were averaged within parent. If information was available from 

just one parent, this value was used alone. In total, data was available for 400 fathers and 447 mothers, 
for a total of 399 families with complete parental information. The mean IQ score for mothers was 

104.91 (sd = 12.37) and for fathers 107.50 (sd = 12.89). The correlation between parental scores was 
r(399) = .388, p < .001. This demonstrates a moderate amount of assortative mating for IQ in the parents 

of the LTS twins, which could account for some of the variance attributed to c2. In order to assess 
whether the extent of assortative mating was different depending on the ability level of the parents, we 
correlated mean parental IQ and absolute difference between parental scores. The average difference 

was 11.26 points (sd = 8.68). The correlation between mean parental score and the this difference score 
was r(399) = .155, p = .002. This suggests that assortative mating was significantly less strong as mean 

parental IQ score increased. For this reason, patterns of assortative mating cannot account for our 
results. 

Measurement variance in the IQ scale:    The second test we conducted was to examine the factor 
structure of the first unrotated principal component of the intercorrelations among the subtests of the 

WAIS-III assessed at age 16 in the LTS sample. If the factor structure differs according the ability level 
then it follows that the measure of full-scale IQ is actually measuring something different depending on 

the ability of the individual being assessed. This could potentially be a confounding factor in assessing 
differences in etiological influences depending on IQ score. This has been demonstrated inconsistently in 
tests of Spearman’s Law of Diminishing Returns(Spearman, 1927), which posits that “The correlations 

[between different tests] always become smaller—showing the influence of g on any ability to grow 
less—in just those classes of person which, on the whole, possess this g more abundantly. The rule is, 
then, that the more ‘energy’ [i.e., g] a person has available already, the less advantage accrues to his 
ability from further increments of it” (p. 219). To test this hypothesis we followed the methods outlined 

by Jensen (2003). First we extracted the first unrotated principal component from the 11 subtests for 

the entre LTS sample measured at age 16 and then successively for those in the sample with IQs 

measured to be above and below 100 (the population average). Table S1 demonstrates the factor 
loadings derived from this analysis as well as the proportion of variance explained. 
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TABLE S1: Factor loadings for the 11 subtests of the WISC-III for the full sample and for the two ability subsamples 

Age 16 WAIS-III sub-
test 

loading on first principal 
component 

Loading full-scale IQ 
>100 

loading full-scale IQ < 100 

Vocabulary .84 .78 .81 

Similarities .71 .58 .65 

Arithmetic .71 .53 .52 

Digit Span .38 .09 .22 

Information .82 .77 .72 

Comprehension  .78 .68 .74 

Picture Completion .39 .06 .00 

Digit Symbol .42 .20 .17 

Block Design .65 .34 .19 

Picture Arrangement  .35 -.06 .07 

Object Assembly .52 .20 .13 

Variance explained by 
first principal 
component: 

38.80% 22.68% 23.37% 

 

It can be seen that, although all the factor loadings across groups follow the same pattern, the loading 

and the variance explained are lower overall for the two truncated groups. This is due to the restricted 
range in the scores resulting from selecting on full-scale IQ score. To compare the factor structure 
between the two ability groups, we calculated the average intercorrelation for each group using Kaiser’s 

(1968) formula in which the eigenvalue of the first principal component -1 is divided by the number of 

variables -1 The values were .14 and .16 for above a below 100 respectively. We then used Fisher’s 

(1915) r-to-z transformation to test for a significant difference between the two values. For this contrast 
z’ = -.20, p = .83. There is therefore no evidence that the proportion of variance captured by the 

principal component differs between ability levels. Additionally, the congruence coefficient between the 
factors for the two subsamples was found to be .99, demonstrating the extreme similarity between the 
factor loadings.  

Gene x Environment Interactions: Finally we wanted to rule out unmeasured gene x measured 

environment interactions as an explanation for our results. Previous studies have shown that the 
heritability of IQ is moderated by both years of parental education and socioeconomic status (Rowe, 

Jacobson, Van den Oord, 1999; Turkheimer, Haley, Waldron, D’Onofrio& Gottesman, 2003). In the LTS 
sample we were able to test the moderating effect of both parental education and parental IQ score on 

the etiology of age sixteen IQ (both are predictors of socio-economic status). The method of analysis 
used was the moderated paths variance components model outlined in Purcell (2002) (Figure S1). In 
traditional biometric models, variance is partitioned into proportion explained by additive genetic (a2), 
shared environmental (c2) and unique environmental influences (e2), modeling the expected covariance 
between twins. The moderated paths model adds a continuous moderation of these proportions by an 

environmental variable. The mean of the trait of also moderated by the environmental variable, which 
removes the shared variance between the moderator and the trait from the covariance model, meaning 
that any detected interaction will be between the moderator and variance specific to the trait. This 
removes any confounding effect of gene-environment correlations (shared genetic influences between 
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the trait and the moderator).  In the resulting model the expected mean of the trait T in twin i is µ + 
βMMi and the expected trait variance is Var(Ti ) = (a + βxMi )

2 + (c + βYMi )
2 + (e + βZMi 

)2.  
FIGURE S1: Path diagram for one twin in the GxE interaction model. a, c, e = unmoderated additive 
genetic, shared environmental and unique environmental influences. βx; βY and βZ = moderated 
components of a, c and e, respectively. βM = main effect of moderator; M = moderator; µ = grand mean. 

 

Seven variables are therefore estimated in the model: the unmoderated components a,c and e, 
moderated components βx, βY and βZ and main effect βM. Parameters can be dropped successively from 

the model and -2 log likelihoods (-2LL) can be compared to that of the full model to determine the best-

fitting model (the difference between the -2LL has a χ2 distribution with degrees of freedom being Δdf 
between the two models).  

Years of education was self-reported by parents at the time of entry of the families into the study and 
information was available for both parents in the majority of families (n = 452). For some families, data 
for reported more than once at different times and in these cases the mean of the two scores was used. 

To construct the variable used in our analyses maternal and paternal years of education was calculated, 
or if information was only available from one parent this one data point was used (n = 12). Resulting 

scores were standardized. Mean maternal years of education was 14.26 years (sd = 2.29) and paternal 
was 14.58 years (sd = 2.52).  Full-scale WISC-R scores were used as the moderating IQ variables (details 
above) which were also standardized. The correlation between twin one’s age 16 IQ and parental 
education was .40 and between twin one’s age 16 IQ and parental IQ was .51. Twin correlations above 

and below the median on parental IQ and parental years of education for both raw age 16 IQ scores and 
residuals from regressing the parental variables predictors on age 16 IQ are presented in Table S2. 
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TABLE S2: MZ and DZ twin intra-class correlations for age 16 IQ in the LTS as a function of parental 
environmental variables, with and without residualization for shared variance between the two variables 

  parental 
education 

parental IQ parental education 
(residualized) 

parental IQ 
(residualized) 

cut-off MZ DZ MZ DZ MZ DZ MZ DZ 

above median 0.82 0.43 0.78 0.41 0.8 0.39 0.74 0.4 
 
below median 

0.8 0.52 0.78 0.41 0.78 0.48 0.76 0.2 

total sample 0.84 0.51 0.83 0.5 0.79 0.43 0.75 0.34 

 

Table S3 reports model fit statistics using parental education as a moderator of age 16 IQ etiology. It can 

be seen that the moderation of the estimates of a2, c2 and e2 by a parental education can be dropped 
from the model with no decrement in fit. The mean moderation, however, cannot be dropped.  The final 

model gives estimates of a2 = .72, c2 = .07 and e2 = .21.  

 

TABLE S3: Model fit statistics for the moderation model of parental education on age 16 IQ etiology 

model -2LL df Δχ² Δdf p  AIC 

full ACE-XYZ-M 1831.7 392         

drop XYZ  1832.33   0.63 3 0.89 -5.373 

drop M 1911.97   80.97 1 <.001 78.973 

 

Table S4 reports model fit statistics using parental IQ as a moderator of age 16 IQ. We found that 
moderation of c2 and e2 by parental IQ score could be dropped from the model without a decrement in 

fit, but moderation of the mean of age 16 IQ and moderation of a2 could not. The estimates for 
etiological influences as a function of standardized parental IQ score are displayed in figure S2. 

Table S4: Model fit statistics for the moderation model of parental IQ on age 16 IQ etiology 

model -2LL df Δχ² Δdf p  AIC 

full ACE-XYZ-M 1693.21 378         

drop XYZ  1706   12.79 3 <.001 6.793 

drop Y and Z 1693.61   0.4 2 0.818 -3.6 

drop M 1825.06   131.85 1 <.001 129.8 
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Figure S2: Etiological influences on age 16 IQ as a function of parental IQ score 

 

It can be seen that the magnitude of additive genetic influences increases as parental IQ increases, with 
the relative influence of the unique family environment decreasing. When the shared variance between 
parental IQ and age 16 IQ is controlled for, there is no influence of the shared family environment at any 

level of parental education. Importantly, the influence of parental IQ on heritability is in the opposite 

direction to that of the cotwin’s IQ score, in which heritability decreases as score increases, and so 
cannot account for that result.  
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