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Common genetic variants contribute to risk of rare 
severe neurodevelopmental disorders
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There are thousands of rare human disorders that are caused by single 
deleterious, protein-coding genetic variants1. However, patients with 
the same genetic defect can have different clinical presentations2–4, 
and some individuals who carry known disease-causing variants 
can appear unaffected5. Here, to understand what explains these 
differences, we study a cohort of 6,987 children assessed by clinical 
geneticists to have severe neurodevelopmental disorders such as 
global developmental delay and autism, often in combination 
with abnormalities of other organ systems. Although the genetic 
causes of these neurodevelopmental disorders are expected to be 
almost entirely monogenic, we show that 7.7% of variance in risk is 
attributable to inherited common genetic variation. We replicated this 
genome-wide common variant burden by showing, in an independent 
sample of 728 trios (comprising a child plus both parents) from the 
same cohort, that this burden is over-transmitted from parents to 
children with neurodevelopmental disorders. Our common-variant 
signal is significantly positively correlated with genetic predisposition 
to lower educational attainment, decreased intelligence and risk 
of schizophrenia. We found that common-variant risk was not 
significantly different between individuals with and without a known 
protein-coding diagnostic variant, which suggests that common-
variant risk affects patients both with and without a monogenic 
diagnosis. In addition, previously published common-variant scores 
for autism, height, birth weight and intracranial volume were all 
correlated with these traits within our cohort, which suggests that 
phenotypic expression in individuals with monogenic disorders is 
affected by the same variants as in the general population. Our results 
demonstrate that common genetic variation affects both overall risk 
and clinical presentation in neurodevelopmental disorders that are 
typically considered to be monogenic.

We carried out a genome-wide association study (GWAS) in 6,987 
patients with severe neurodevelopmental disorders and 9,270 ances-
try-matched controls, using common variants with a minor allele fre-
quency ≥ 5% (Fig. 1, Extended Data Fig. 1, Supplementary Tables 1, 
2 and Methods). The patients were recruited by senior clinical geneti-
cists in the UK and Ireland as part of the Deciphering Developmental 
Disorders (DDD) study6,7. They all had at least one abnormality that 
affects the morphology or physiology of the central nervous system, 
and to be recruited to the study their clinical features were sufficiently 
severe that their disorder was thought likely to be monogenic. In addi-
tion to neurodevelopmental defects—for example, global develop-
mental delay, intellectual disability, cognitive impairment or learning 
disabilities in 86% of the cohort, and autism spectrum disorders in 
16% of the cohort (Fig. 2a)—88% of the recruited patients also had 
abnormalities in at least one other organ system (Fig. 2b and Extended 
Data Table 1).

We did not find any single-variant associations at genome-wide  
significance (Extended Data Fig. 2a), which was unsurprising given the 
heterogeneity of our clinical phenotype and the presumption that these 
disorders are monogenic. We did, however, observe a modest inflation 
in the test statistics (λ = 1.097, Extended Data Fig. 2b), which could 
indicate either residual bias between cases and controls or a polygenic 
contribution of common variants to disease risk. We therefore esti-
mated common-variant heritability using linkage-disequilibrium score  
(LD score) regression8, which can differentiate between these two  
possibilities, and found that 7.7% (standard error (s.e.) = 2.1%) of vari-
ance in risk (on the liability scale) for neurodevelopmental disorders in 
our sample was attributable to common genetic variants, when assum-
ing a population prevalence of 1% (Methods). This common variant 
heritability estimate (h2) is similar to that which has been reported for 
common disorders such as autism (h2 = 11.8%, s.e. = 1.0%)9 and major 
depressive disorder (h2 = 8.9%, s.e. = 0.4%)10. To replicate this signal, 
we analysed an independent set of 728 trios recruited as part of the same 
study, but who were not in the initial GWAS. We calculated polygenic 
scores for each individual by summing the genetic effects across all inde-
pendent variants from our discovery GWAS (Fig. 1 and Methods). We 
then performed a polygenic transmission disequilibrium test11, which 
compares the mean parental polygenic scores to those of the affected 
children. We found that our neurodevelopmental disorder risk score 
was over-transmitted in these trios (P = 0.0035, t = 2.48, degrees of 
freedom = 727, one-sided t-test), which confirms that common variants  
contribute to risk of disorders widely presumed to be monogenic.

Previous studies have shown that the risk of more common neuro
psychiatric disorders—for example, schizophrenia and bipolar  
disorder12,13—and variation in other brain-related traits, including 
educational attainment13, is driven in part by shared common genetic 
effects. We therefore used the LD score method14 to test for genetic 
correlation between our GWAS of neurodevelopmental disorders 
and available GWAS data for common neuropsychiatric disorders, 
cognitive and educational traits and anthropometric traits, as well as 
negative-control diseases that have well-powered GWAS but are not 
related to neurodevelopment. We found that genetic risk for neurode-
velopmental disorders was significantly negatively correlated with 
genetic predisposition (as measured by Spearman’s g) to higher edu-
cational attainment15 (rg = −0.49, s.e. = 0.08, P = 5.3 × 10−10) and 
intelligence16 (rg = −0.44, s.e. = 0.10, P = 2.2 × 10−5), and positively 
correlated with genetic risk of schizophrenia (rg = 0.28, s.e. = 0.07, 
P = 2.7 × 10−5) (Fig. 3 and Extended Data Table 2). None of the anthro-
pometric or negative-control traits were significantly genetically cor-
related with our data, after accounting for multiple testing. We also 
used partitioned LD score regression17 to show that heritability of 
neurodevelopmental disorders was nominally significantly enriched 
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in cells of the central nervous system (P = 0.02), and in mammalian 
constrained regions18 (P = 0.009) (Supplementary Table 2), consistent 
with similar analyses for other neuropsychiatric and cognitive traits. 
Together, these results suggest that thousands of common variants have 
individually small effects on brain development or function, which in 
turn influences neuropsychiatric disease risk, cognitive traits and risk 
for severe neurodevelopmental disorders.

We next investigated how general our genetic correlation findings 
were by attempting to replicate them in another cohort of patients with 
neurodevelopmental disorders (Fig. 1). We obtained GWAS data for 
1,270 neurodevelopmental disorder cases from Australia, and 1,688 
ancestry-matched Australian controls. This sample size is too small to 
do direct genetic discovery or to reliably apply LD score regression, so 
we tested common-variant polygenic scores using summary statistics 
from our discovery GWAS and published GWAS, including educational 
attainment15 and intelligence16. This approach requires specification 
of P-value thresholds and is less robust to population structure and 
cryptic relatedness, but it produced similar results to the genetic cor-
relation analyses in our discovery GWAS and we therefore believe it 
is well-suited to a replication analysis. We replicated our observation 
of lower polygenic scores for educational attainment and intelligence 
in neurodevelopmental disorder cases from Australia, as compared to 
controls (P = 1.0 × 10−8 and P = 7.6 × 10−4 for educational attainment 
and intelligence, respectively), and found that cases had a nominally 
significantly increased score for schizophrenia (P = 0.014) (Methods 
and Extended Data Table 3). We did not see a significant difference 
between Australian cases and controls for the score constructed from 
our own discovery GWAS. If the two cohorts had identical phenotypes, 
we should have had 95% power (Methods) to detect a difference; this 
suggests that differences in how the British and Australian cohorts were 
recruited diluted our ability to quantify their shared genetics.

These findings could mean that common variants entirely explain 
a subset of patients with neurodevelopmental disorders and are not 

relevant in the remainder, or that the disorders of all patients have both 
rare- and common-variant contributions (Fig. 1). We have exome- 
sequenced our cohort of patients as well as their parents, and have 
previously reported a variety of both de novo and inherited diagnos-
tic variants19,20. We therefore compared polygenic scores for cognitive 
traits and neuropsychiatric disorders between patients for whom we 
had identified diagnostic or probably diagnostic variants in a known 
developmental-disorder gene21 (n = 1,127) and those who had no 
candidate diagnostic variant (n = 2,479), and found no significant 
differences for any polygenic score that we tested, after controlling for 
multiple testing (Extended Data Table 4 and Methods). We showed by 
simulations that if the ‘diagnosed’ cases had the same distribution of the 
polygenic score for educational attainment as did controls, we would 
have had sufficient power to detect a difference between them and 
the undiagnosed cases (Methods). This is consistent with a previous 
study in autism11 that similarly found no evidence for a difference in 
polygenic risk scores between autism cases with a de novo diagnostic 
mutation compared to those without such a mutation. This suggests 
that in many patients both common and rare variants contribute to 
their neurodevelopmental disorder. However, as the DDD project 
continues to identify new diagnoses, we anticipate that the increase 
in power may show that monogenic and polygenic contributions are 
not purely additive.

In addition to showing that common variation affects overall risk of 
severe neurodevelopmental disorders, we sought to determine whether 
it can also affect individual presentation of symptoms. We identified 
four phenotypes measured in our neurodevelopmental disorder cohort 
for which independent GWAS data are available: autism (16% of the 
cohort), birth weight, height and intracranial volume. Compared to 
the age and sex-adjusted population average, our patients with neuro
developmental disorders were—on average—0.72 s.d. shorter and 
weighed 0.15 s.d. less, and had a head circumference that was 1.20 s.d. 
smaller. We constructed common-variant polygenic scores for the four 

Fig. 1 | Outline of analysis exploring the contribution of common 
variants to risk of severe neurodevelopmental disorders. We first 
conducted a discovery GWAS in a large dataset of patients with 
neurodevelopmental disorders, and replicated the common-variant 
contribution by analysing polygenic transmission in independent trios 
from the same cohort. Next, we looked for overlap of common-variant 

effects between neurodevelopmental disorder risk and other published 
GWAS, and replicated these findings in an independent Australian cohort. 
Finally, we explored how polygenic effects were distributed within our 
discovery cohort of patients, and whether common variants contributed to 
expressivity of specific phenotypes.
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phenotypes as described above, and tested for an association between 
the relevant score and phenotype in our cohort. In all four cases, there 
was significant association (Table 1 and Extended Data Table 5), which 
demonstrates that common variation contributes to the expression of 
these traits in our study. Consistent with previous reports9, we also 
found in our cohort that individuals with autism had higher polygenic 
scores for educational attainment compared to those without autism. 
We next tested for an association between the educational-attainment 
polygenic score and severity of the overall neurodevelopmental pheno-
type. We found that patients with severe intellectual disability or devel-
opmental delay (n = 911, Methods) had higher scores (that is, genetic 
predisposition to greater educational attainment; a proxy for higher 
cognitive function, P = 0.004, Table 1) than those with mild or mod-
erate disability or delay (n = 1,902). This finding—which might seem 
initially counter-intuitive—is consistent with epidemiological studies22 
that have found that the siblings of patients with severe intellectual 
disability showed a normal distribution of IQ, whereas the siblings of 
patients with milder intellectual disability had lower IQ than average, 
which suggests that mild intellectual disability represents the tail-end 
of the distribution of polygenic effects on intelligence and severe intel-
lectual disability has a different aetiology.

The study of human disease genetics has often been segregated into 
rare, single-gene disorders and common, complex disorders. There 
is abundant evidence that rare variants in individual genes can cause 
phenotypes that are seen much more commonly in individuals without 

a monogenic cause, including genes for maturity onset diabetes of the 
young23 and familial Parkinson’s disease24.There is also emerging evi-
dence that the cumulative effect of common variants can modify the 
penetrance of rare variants in complex phenotypes such as educational 
attainment25, schizophrenia26 and breast cancer27. Here we have shown 
that the same interplay between rare and common variation exists even 
in severe neurodevelopmental disorders that are typically presumed 
to be monogenic. Previous studies have shown that the penetrance 
and expression of these disorders are affected by the specific missense 
variant that is carried28 and the presence of mutations in secondary 
modifier genes29. Here we have demonstrated that phenotypic expres-
sion is also modified by common variants that influence neurodevel-
opmental traits in the general population. We analysed individuals of 
European ancestry—as do the vast majority of published GWAS—and, 
as the genetic architecture of neurodevelopmental disorders may differ 

Table 1 | Polygenic score analyses in the DDD study

Measured trait Polygenic score

Resultsa

β s.e. P value R2

Birth weight (n = 6,496) Birth weight 0.187 0.017 2.55 × 10−28 0.020

Height (n = 5,465) Height 0.408 0.033 1.18 × 10−35 0.033

Head circumference (n = 6,074) Intracranial volume 0.132 0.031 1.79 × 10−5 0.004

Autistic behaviour: affected (n = 1,121), unaffected (n = 5,866) Autism spectrum disorder 0.120 0.033 2.53 × 10−4 0.006c

Developmental delay or intellectual disability: severe (n = 911), mild or  
moderate (n = 1,902)b

Educational attainment 0.116 0.040 0.004 0.008c

aLinear or logistic regression of measured traits in the DDD study against the respective polygenic score, including ten ancestry principal components as covariates. P values are two-sided, from  
t-distribution (linear) and z-score distribution (logistic).
bSevere cases were labelled as 1 in the logistic regression.
cNagelkerke R2.

Fig. 2 | Patients recruited to the DDD study have diverse phenotypes. 
a, Examples of specific phenotypes that affect different organ systems, 
observed in the full DDD cohort (n = 13,598; green) and the subset 
of European patients with neurodevelopmental disorders (n = 6,987; 
orange). b, Distribution of the number of distinct organ systems that 
were affected in the set of 6,987 patients with neurodevelopmental 
abnormalities (Methods).
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Fig. 3 | Genetic correlations between neurodevelopmental disorder risk 
(6,987 cases and 9,270 controls) against nineteen other traits. Cognitive 
or psychiatric (purple), anthropometric (orange) and negative-control 
traits (green), with single-nucleotide polymorphism (SNP) heritability (h2) 
displayed for the trait. SNP heritability for dichotomous traits is displayed 
on the liability scale. Genetic correlation was calculated using bivariate LD 
score correlation14, with the bars representing 95% confidence intervals 
(using standard error) before correction for multiple testing. Uncorrected 
P values are from a two-sided z-score, and are shown only if they pass 
Bonferroni correction for 19 traits. Sample sizes for 19 other GWAS are 
shown in Extended Data Table 2.
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between populations20, further studies will be required to generalize 
our findings. Our findings suggest that fully understanding the genetic 
architecture of neurodevelopmental disorders will require considering 
the full spectrum of alleles, from those unique to an individual to those 
shared across continents.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0566-4.
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Methods
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and investigators were not blinded to allocation during 
experiments and outcome assessment.
Phenotypes of the DDD cohort. Recruitment and phenotyping of DDD patients 
is described in detail elsewhere6,7. The DDD study has UK Research Ethics 
Committee approval (10/H0305/83, granted by the Cambridge South Research 
Ethics Committee and GEN/284/12, granted by the Republic of Ireland Research 
Ethics Committee). Families gave informed consent for participation. In brief, 
the DDD study recruited patients with a previously undiagnosed developmental 
disorder, in the UK and Ireland. Patient phenotypes were systematically recorded 
by clinical geneticists using Human Phenotype Ontology (HPO) terms in a central 
database, DECIPHER21.

The DDD cohort is very heterogeneous in terms of patient phenotypes, and 
so we narrowed our analyses to singleton patients and trios where the proband 
had at least one of the following HPO terms (or daughter terms of these HPO 
terms): abnormal metabolic brain imaging by MRS (HP:0012705), abnormal 
brain positron emission tomography (HP:0012657), abnormal synaptic transmis-
sion (HP:0012535), abnormal nervous system electrophysiology (HP:0001311), 
behavioural abnormality (HP:0000708), seizures (HP:0001250), encephalopathy 
(HP:001298), abnormality of higher mental function (HP:0011446), neurodevel-
opmental abnormality (HP:0012759), abnormality of the nervous system morphol-
ogy (HP:0012639). This ‘neurodevelopmental’ subset included individuals who 
have—since their recruitment to the DDD study—been found to carry diagnostic 
exome mutations in protein-coding genes6,19,20,30, and individuals who are awaiting 
diagnosis. We therefore define our main phenotype (‘neurodevelopmental disorder 
risk’) as the risk of having a previously undiagnosed developmental disorder and 
being included in the DDD study, and having at least one neurodevelopmental 
HPO. In addition to HPOs, some DDD patients also had a clinical record of growth 
measurements such as height, birth weight and head circumference.

We counted the proportion of DDD patients with particular medically relevant 
HPOs, displayed in Fig. 2a. Individuals with the HPO were counted using a word 
search of the particular HPO and its daughter nodes. When counting the number 
of distinct organ systems affected in each DDD patient (Fig. 2b), we faced the issue 
that some HPOs fell under multiple organ systems: for example, microcephaly—
which is a common term in the cohort—falls under three categories, ‘nervous 
system’, ‘head or neck’ and ‘skeletal system’. To assign each HPO into only one 
organ system, we first ranked organ systems based on the number of raw counts 
of individuals with at least one term under that system (Extended Data Table 1) in 
the full DDD cohort. We then looked for individuals with at least one HPO under 
the organ system ranked most-commonly affected, and assigned these individ-
uals an organ system count of 1. We then removed these HPOs from the lists of 
patients, before continuing to identify individuals with at least one HPO in the 
organ system ranked second-most prevalently affected. We continued to count 
organs and remove HPOs until we had assigned all individuals a count of organs 
systems affected out of 19 non-overlapping systems.
Developmental disorder phenotypes in the Australian cohort. We obtained a 
replication cohort of 1,270 cases of developmental disorder from South Australia, 
originally genotyped (using the Illumina Infinium CytoSNP-850k BeadChip) as 
part of routine clinical care to ascertain pathogenic copy-number variants. The 
majority (>95%) were under 18 years old. Between 50% and 60% were recruited 
through clinical genetics units, and the rest through neurologists, neonatologists, 
paediatricians and cardiologists. Based on reviewing information on the request 
forms, the majority of patients had developmental delay or intellectual disability, 
and malformations involving at least one organ (for example, brain, heart and 
kidney). Between 15% and 20% were recruited as neonates with multiple mal-
formations involving brain, heart and/or other organs, and were too young to be 
diagnosed with developmental delay or intellectual disability.
Datasets and quality control. We genotyped 11,304 patients and 930 full 
trios recruited to the DDD study on Illumina HumanCoreExome and 
HumanOmniExpress chips, respectively. Genotyping was carried out by the 
Wellcome Trust Sanger Institute genotyping facility. As controls for the discov-
ery GWAS, we used genotype data for 10,484 individuals from the UK-based 
‘Understanding Society’ UK Household Longitudinal Study (UKHLS)31,32. 
Recruitment to this study was carried out through UK-wide household longitu-
dinal survey. For replication, we obtained GWAS data from a cohort of cases of 
neurodevelopmental disorder from South Australia, and population-matched con-
trols from the Brisbane Longitudinal Twin Study (Queensland Institute of Medical 
Research33,34). All data were on GRCh37, and detailed information of genotyping 
chips is shown in Supplementary Table 1.

We performed variant and sample quality control for each dataset separately. 
We removed samples of patients whose reported sex was inconsistent with the 
genotype data, who had high sample missingness (≥3% of minor allele frequency 
(MAF) ≥ 10% variants), samples with high or low heterozygosity (± 3 s.d. from  

the mean, using MAF ≥ 10% variants) to control for admixture and inbreeding, 
and sample duplicates (alleles identical by descent ≥ 98%, using MAF >10% vari-
ants). We removed one individual from pairs of related individuals (alleles identical 
by descent >12%, using PLINK) from the case–control cohorts. Individuals in the 
discovery cohort were not related to the independent DDD trios. We also removed 
trios with a high number of Mendelian errors (>2,000 errors). For variant qual-
ity control, we removed variants if they had high genotype missingness (≥3%), 
Hardy–Weinberg equilibrium test P < 1 × 10−5, no strand information, if they 
were duplicates, if the alleles were discordant between case and control datasets, or 
if alleles and their frequency in Europeans were discordant with HRC v.1.1 impu-
tation reference panel. We only included variants on chromosomes 1–22. For the 
HumanCoreExome data and the Australian data, we removed rare variants with 
MAF ≤ 0.5% before imputation. Post-imputation, we removed imputed variants 
with imputation quality score INFO ≤ 0.9 or high missingness (≥5%).

We defined sample ancestry based on a projection principal component analysis 
(PCA) using PLINK with 1000 Genomes Phase 3 populations, using SNPs that 
overlapped between the datasets (DDD + UKHLS and Australian cases + con-
trols separately) and the reference populations. For this, we used SNPs with a 
MAF ≥ 10%, excluded A/T and G/C SNPs, removed regions of extended linkage 
disequilibrium (including the HLA region), and thinned the SNPs by pruning 
those with pairwise r2 > 0.2 in batches of 50 SNPs with sliding windows of 5 
(‘–indep-pairwise 50 5 0.2’ in PLINK). This left 52,836 SNPs for the projection 
PCA with the DDD and UKHLS data, and 40,626 SNPs with the Australian data. 
For analyses described in this paper, we carried forward individuals of European 
ancestry, defined by selecting samples clustering around the 1000 Genomes Great 
British (GBR) samples in the PCA (Extended Data Figs. 1, 3). The distribution of 
ancestries was different between cases and controls, probably due to marked differ-
ences in ascertainment (for example, individuals from ancestries with high levels of 
consanguinity are more likely to be recruited to studies of rare genetic disorders). 
Because we tightly filtered based on PCA, these differences do not affect our results.
Phasing and imputation. After sample and variant quality control, we imputed 
European samples from all datasets to boost the coverage of the genome for asso-
ciation testing and to increase overlap of datasets genotyped on different chips. We 
used reference-based haplotype phasing and imputation. The discovery GWAS 
cohorts genotyped on the HumanCoreExome backbone were phased and imputed 
together using variants that intersected between the different versions of the chip. 
Trios were phased and imputed in a second batch because they were genotyped on a 
different chip. We phased and imputed the Australian GWAS data in a third batch, 
using variants that intersected between the CytoSNP-850K chip and the Illumina 
610K chip. None of the analyses in our paper were directly across batches, so there 
is no bias introduced by this approach. We used the Sanger Institute Imputation 
Service35 to carry out phasing (using Eagle2 (v.2.0.5)36) and imputation (using 
PBWT37) on the DDD discovery dataset, DDD trios dataset and Australian dataset, 
selecting the Haplotype Reference Consortium as the reference panel (release 1.1, 
chromosomes 1–22 and X)35.
Discovery GWAS of neurodevelopmental disorder risk. We carried out a GWAS 
for neurodevelopmental disorder risk in the discovery neurodevelopmental set of 
6,987 cases and 9,270 controls of European ancestry only, using BOLT linear mixed 
models38 with sex as a covariate. We included in our analysis genotyped variants or 
high-confidence imputed variants (INFO ≥ 0.9) with a MAF of ≥ 5%.
SNP heritability. From the discovery GWAS summary statistics, we removed the 
MHC region (chromosome 6 region 26–34 Mb), and estimated trait heritability 
using LD score8 in LD Hub39. Given the ascertainment of the DDD neurodevel-
opmental cases in this study, estimating the true population prevalence was not 
feasible. We therefore estimated SNP heritability for our discovery GWAS on the 
liability scale for a range of prevalence between 0.2% and 2%, and found that SNP 
heritability varies from 5.5% (s.e. = 1.5%) to 9.1% (s.e. = 2.5%). We report herita-
bility assuming a prevalence of 1% in the population. Heritability on the observed 
scale in our discovery GWAS was 13.8% (s.e. = 3.7%).
Polygenic transmission disequilibrium test. We used the previously described 
polygenic transmission disequilibrium test (pTDT) method11 to investigate trans-
mission disequilibrium of effect alleles for traits within DDD trios, using imputed 
genotype data. In brief, the test compares the means of two polygenic score dis-
tributions: one comprising the scores of the probands, and the other the average 
parent-pair scores. The test is equivalent to a one-sample t-test, assessing whether 
the mean of score distribution in probands deviates from the mean of parent-pair 
score average. We report a one-sided P value for over-transmission.
Genetic correlation. We carried out genetic correlation of the neurodevelopmen-
tal disorder risk in the discovery GWAS against multiple published traits, using 
bivariate LD score14. For traits included in LD Hub, we used the online server, and 
for traits not included in LD Hub, we used the LD score software. For genetic cor-
relation with neurodevelopmental disorder risk, we pre-selected a range of different 
types of traits and diseases: traits relating to cognitive performance, education, 
psychiatric traits and diseases, anthropometric traits and non-brain related traits 
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and diseases. Ninety-five per cent confidence intervals in Fig. 3 are shown before 
correction for multiple testing. We set the significance threshold to P < 0.0026 
(0.05 divided by the 19 tests).
Partitioned heritability. We used partitioned LD score17 to look for enrichment 
of heritability in cell-type groups and functional genomic categories. To do this, 
we used the baseline model LD scores and regression weights available online. 
For cell-type groups and functional categories, we set the significance threshold 
to P < 0.005 (0.05, divided by 10 tests) and P < 9.6 × 10−4 (0.05, divided by  
52 tests), respectively.
Polygenic scores. We constructed polygenic scores using summary statistics from 
our GWAS of neurodevelopmental disorder risk and seven published GWAS (edu-
cational attainment15, intelligence16, schizophrenia40, autism9, intracranial vol-
ume41, height42 and birth weight43). For all traits, we included only variants that 
had a MAF ≥ 5% and were directly genotyped or imputed with high confidence 
(INFO ≥ 0.9) in the respective study cohort (discovery case and control, trios or 
Australian). To construct the polygenic scores for individuals, we then multiplied 
the variant effects (β values) with the allele counts of each individual. For imputed 
variants, we used genotype probabilities rather than hard-called allele counts. To 
find independent variants for our scores, we pruned variants intersecting the orig-
inal study summary statistics and our GWAS data using PLINK, by taking the top 
variant and removing variants within 500 kb and that have r2 ≥ 0.1 with the top 
variant. We then repeated the process until no variant had a P value below a pre- 
defined threshold, which we based on prior knowledge of variance in the phenotype  
explained. For the neurodevelopmental disorder risk score, we tested seven P-value 
thresholds (P < 1, 0.5, 0.1, 0.05, 0.01, 0.005 and 0.001) and chose the one which 
resulted in a score that explained the most variance (Nagelkerke’s R2) in case and 
control status in an independent subset of DDD patients. Specifically, we repeated 
our GWAS of neurodevelopmental disorder risk having removed a random subset 
of 20% of cases and controls, then calculated a score in this ‘leave-out’ subset, and 
performed a logistic regression to assess association of case–control status with the 
score. The threshold P < 1 performed best in ten independent permutations, and 
we used this threshold to construct scores in pTDT and Australian case–control 
analyses. We additionally tested all seven thresholds when constructing scores in 
the Australian dataset; however, varying the threshold did not change our results. 
When deciding the P-value thresholds for published GWAS, we used the threshold 
that had been found to explain the most variation in other published studies for 
the trait (years in education44 P < 1, intelligence16 and schizophrenia40 P < 0.05, 
and autism11 P < 0.1). For traits for which we had phenotype data in the DDD, 
we used thresholds that explained the most variation in DDD cases (intracranial 
volume P < 1, birth weight P < 0.01 and height P < 0.005). Thresholds and the 
number of variants used for each score are shown in Extended Data Tables 3–5. 
All scores were normalized to a mean of 0 and variance of 1. To test for association 
between trait and score, we used R (version 1.90b3) to perform logistic regression 
for binary traits and linear regression for quantitative traits, including the first ten 
principal components from the ancestry PCA to control for possible population 
stratification.

To assess power for detecting differences in scores between diagnosed and undi-
agnosed patients, we tested the hypothesis that diagnosed patients were effectively 
a random sample of controls with respect to their polygenic scores. Specifically, we 
randomly sampled 1,127 controls (that is, the same number as we had diagnosed 
patients) and compared the polygenic scores between them and the undiagnosed 
patients using logistic regression. We repeated this 10,000 times and determined 
the proportion of times we detected a significant difference P < 0.007 (P < 0.05, 
divided by 7 (correcting for seven polygenic scores)) as proxy for power. This was 
99.1% of simulations for educational attainment, 93.6% of simulations for schizo-
phrenia and 61.2% of simulations for intelligence.

We used AVENGEME45 to calculate power to find significant association  
(at P < 0.05) between our polygenic score for neurodevelopmental disorders and 
case or control status in the Australian dataset. We assumed that the SNP herita-
bility is the same (7.7%) in both the Australian and British cohorts, and that the 
genetic correlation between them was 1.

The PGC-CLOZUK study of schizophrenia included some controls from the 
Australian cohort used in our study, and therefore we ran polygenic score analyses 
in the Australians using summary statistics from PGC-CLOZUK (obtained from 
A. Pardiñas, personal communication) after these samples had been removed.
Producing subsets from the DDD cohort. We defined a set of patients with an 
exonic diagnosis and a set with no likely diagnostic variants. This was based on a 
previously described clinical filtering procedure6—which focuses on identifying 
rare, damaging variants in a set of genes known to cause developmental disorders 
(https://www.ebi.ac.uk/gene2phenotype/)—that fit an appropriate inheritance 
mode. Variants that pass clinical filtering are uploaded to DECIPHER, where 
the patients’ clinicians classify them as ‘definitely pathogenic’, ‘likely pathogenic’, 
‘uncertain’, ‘likely benign’ or ‘benign’. This process of clinical classification is  
necessarily dynamic as new disorders are identified and patients manifest new 

phenotypes. Our ‘diagnosed’ set consists of 1,127 patients who fulfilled one of 
the following criteria: (a) among the diagnosed set in a recent reanalysis of the 
first 1,133 trios46; (b) had at least one variant (or pair of compound heterozygous 
variants) rated as ‘definitely pathogenic’ or ‘likely pathogenic’ by a clinician; or 
(c) had at least one variant (or pair of compound heterozygous variants) in a class 
with a high positive-predictive value that passed clinical filtering but had not yet 
been rated by clinicians. We considered de novo or compound heterozygous loss-
of-function (LOF) variants to have high positive-predictive value, as of the ones 
that had been rated by clinicians, 100% of compound heterozygous LOFs and 94.% 
of de novo LOFs had been classed as ‘definitely pathogenic’ or ‘likely pathogenic’. 
Our ‘undiagnosed’ set consists of 2,479 patients who had no variants that passed 
our clinical filtering, or in whom the variants that had passed clinical filtering 
had all been rated as ‘likely benign’ or ‘benign’ by clinicians, or who were among 
the undiagnosed set in the first 1,133 trios that have previously been extensively 
clinically reviewed6. Note that our diagnosed versus undiagnosed analysis excludes 
3,375 patients who had one or more variants that passed clinical filtering in a class 
with a relatively low positive-predictive value, but that have not yet been rated by 
clinicians.

We defined patients to present with autistic behaviours if their phenotype 
included autistic behaviour (HP:0000729) or any of its daughter nodes. We defined 
patients as having ‘mild/moderate intellectual disability or delay’ if their HPO phe-
notypes included borderline, mild or moderate intellectual disability (HP:0006889, 
HP:0001256, HP:0002342) and/or mild or moderate global developmental delay 
(HP:0011342, HP:0011343). Patients were included in the ‘severe ID or delay’ set 
if they had severe or profound intellectual disability (HP:0010864, HP:0002187) 
and/or severe or profound global developmental delay (HP:0011344, HP:0012736). 
We excluded patients with intellectual disability or global developmental delay of 
undefined severity.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The raw genotype data, post-quality-control genotype data and discovery GWAS 
summary statistics generated and/or analysed during the current study are avail-
able through European Genome-phenome Archive, under EGAS00001000775. 
This study makes use of data generated by the DECIPHER community: a full list 
of centres that contributed to the generation of the data is available from http://
decipher.sanger.ac.uk, and via email from decipher@sanger.ac.uk. Information 
on how to access the data from the UKHLS can be found on the ‘Understanding 
Society’ website, at https://www.understandingsociety.ac.uk/.
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Extended Data Fig. 1 | Ancestry principal components analysis of 
UK and Australian samples. a, b, Reference samples (n = 2,504) from 
1000 Genomes Phase 3, coloured by the five super-populations, used for 
a projection PCA of UK cohorts (DDD and UKHLS) (a) or Australian 
cohorts (b). c, d, All DDD cases (discovery n = 11,304 and from trios 
n = 930) (c) and all Australian cases (n = 2,283) (d) from their respective 
projection PCA with 1000 Genomes. Case samples from individuals  
with European ancestry are plotted in red and non-Europeans in grey. 

e, f, All UKHLS controls (n = 10,396) (e) and all Australian controls 
(n = 4,274) (f) from their respective projection PCA with 1000 Genomes. 
Control samples from individuals with European ancestry are plotted in 
blue and non-Europeans in grey. All cases and controls coloured in grey 
(in c–f) were excluded from analysis owing to non-European ancestry. UK 
cohorts are plotted after removal of samples that failed quality control, and 
Australian cohorts before removal of samples that failed quality control.
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Extended Data Fig. 2 | Discovery GWAS of neurodevelopmental 
disorder risk. a, Manhattan plot of discovery GWAS of 
neurodevelopmental disorder risk, with 6,987 DDD cases and 9,270 
ancestry-matched UKHLS controls (both for individuals with European 
ancestry), using 4,134,438 variants, MAF ≥ 5%, chromosomes 1–22.  

P values were from a two-tailed χ2 distribution. Red line represents the 
threshold for genome-wide significance (P = 5 × 10−8). b, Quantile–
quantile plot of discovery GWAS of neurodevelopmental disorder risk. 
Red line represents the expected values under the null hypothesis.

© 2018 Springer Nature Limited. All rights reserved.



Letter RESEARCH

Extended Data Fig. 3 | Ancestry principal components analysis of 
samples from the UK and Australian (principal components 2–5). 
Reference samples (n = 2,504) from 1000 Genomes Phase 3—coloured 
by the five super-populations—are plotted on the left hand side, from 
projection PCAs with UK cohorts. Middle panels show the principal 
components plotted for DDD cases (discovery n = 10,556 and from 
trios n = 911) (UK samples) and Australian cases (n = 2,283). Red, 
case samples from individuals with European ancestry. Grey, samples 

from individuals of non-European ancestry; these individuals were 
excluded from analyses. Right-hand panels show principal components 
for UKHLS controls (n = 10,396) (UK samples) and Australian controls 
(n = 4,274). Blue, control samples from individuals with European 
ancestry. Grey, samples from individuals of non-European ancestry; these 
individuals were excluded from analyses. UK cohorts are plotted after 
removal of samples that failed quality control, and Australian cohorts 
before removal of samples that failed quality control.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Table 1 | Proportions of patients with a neurodevelopmental disorder who have at least one HPO term that belongs to a 
particular organ-system category

The HPO tree descends from ‘phenotypic abnormality’ through different organ systems down to specific terms that describe particular phenotypes. Each HPO term used by clinicians to describe  
patients was traced up the tree to the organ-system level. However, some HPOs may belong to more than one organ-system category: for example, microcephaly will be counted under ‘nervous  
system’, ‘head or neck’ and ‘skeletal system’ in the HPO tree whereas global developmental delay will appear only under ‘nervous system’.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Table 2 | Genetic correlations between neurodevelopmental disorder risk and a range of traits, calculated using the LD score 
method

Trait 2 is the trait to which neurodevelopmental disorder risk is compared. Uncorrected P values are from a two-sided z-score.
aSNP heritability for dichotomous traits is on the liability scale.
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Extended Data Table 3 | Polygenic score analyses comparing 1,266 Australian cases of neurodevelopmental disorders and 1,688 controls

P values are uncorrected, two-sided and from z-score distribution.  Data were obtained from previous studies9,15,16,40–43.
aLogistic regression of case or control status on polygenic score, using ten ancestry principal components as covariates.
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Extended Data Table 4 | Polygenic score analyses comparing patients from the DDD with an exome diagnosis (n = 1,127) against 
undiagnosed patients (n = 2,479)

P values are uncorrected, two-sided and from z-score distribution.
aLogistic regression of diagnosed and undiagnosed status on polygenic score, using ten ancestry principal components as covariates.
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Extended Data Table 5 | Polygenic score analyses in patients from the DDD for measured traits

P values are uncorrected, two-sided and from t-distribution (linear) and z-score distribution (logistic). aLinear or logistic regression on polygenic score. using ten ancestry principal components as 
covariates.
bSevere cases were labelled as 1 in the logistic regression.
cNagelkerke R2.

© 2018 Springer Nature Limited. All rights reserved.
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heritability analysis. We used R v. 2.14.1 for logistic and linear regression analyses and AVENGEME for assessing  polygenic score power.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The datasets generated during and/or analysed during the current study are available through EGA under number EGAS00001000775. 
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Sample size Our primary goal in this study was to investigate whether there was significant SNP heritability to be found in our discovery GWAS for 
neurodevelopmental disorder risk. We used the method LD score regression, and the authors of the method describe how a sample size of 
more than 5,000 is required to have enough power to detect SNP heritability in a GWAS. Our discovery case and control datasets came to a 
total sample of 16,257, which was sufficient to test for SNP heritability using LD score regression. From all cohorts used in this study, we 
selected individuals who were not related (alleles identical by descent >12%) to each other, and who were of European ancestry based on a 
projection principal component analysis with 1000 Genomes data. Sample size for each analysis was the maximum number of individuals with 
available genotype data who filled these requirements. All patients had some phenotype data, but this was not always complete for every 
measured phenotype. Therefore, for logistic and linear regression analyses on particular phenotypes measured in the DDD Study against 
polygenic scores, the sample size was determined as all individuals in our study who had the particular phenotype data available. We estimate 
that we should have had 95% power (using AVENGEME) to detect a difference if the two cohorts had identical phenotypes. This suggests that 
there may be differential phenotypic ascertainment between the British and Australian cohorts, which has diluted our ability to quantify their 
shared genetics using the neurodevelopmental disorder polygenic score. 

Data exclusions We excluded the individual from each pair of related individuals (alleles identical by descent >12%) who had higher genotype missingness. We 
excluded individuals who had non-European ancestry based on their genotype. For analyses requiring phenotype data, we excluded 
individuals who did not have phenotype data. Both these requirements were pre-established and samples were removed in the quality 
control phase. 

Replication We show in an independent cohort of Deciphering Developmental Disorders trios that parents over-transmit variants to their affected child 
that increased disease risk in our discovery genome-wide association study, confirming that the common variant heritability we found in the 
discovery case-control GWAS was due to polygenic effects on the neurodevelopmental phenotype and not confounding. We replicate all 
three statistically significant findings from discovery GWAS genetic correlation analysis, by constructing polygenic scores for these traits in the 
Australian case-control cohort, where the scores showed the same direction of effect and were at least nominally significant. We also tried 
this method to test whether the neurodevelopmental disorder risk would replicate in the Australian case-control cohort, however we did not 
find significant replications, and we discuss this in the main text.

Randomization DDD participants were allocated into groups based on their known phenotypes, which were annotated by the clinical geneticist who assessed 
them. 

Blinding Investigators were not blinded because linking the phenotype data and genetic data was necessary to do sample filtering and analyses. 

Reporting for specific materials, systems and methods
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Population characteristics All patients in the Deciphering Developmental Disorders Study had a previously undiagnosed developmental disorder. Individual 
participants have heterogeneous phenotypes. Most patients are recruited at a young age with the mean decimal age at 
assessment being 7.7 years, although 6% of patients are recruited as adults. 41% of the patients are female. All individuals 
selected for analysis in this study had European ancestry in a projection principal component analysis with 1000 Genomes data. 

Recruitment DDD study recruited patients with a previously undiagnosed developmental disorder, in the UK and Ireland. All patients were 
recruited by senior clinical geneticists who had assessed their developmental disorder was of sufficient severity that it was likely 
monogenic. Patient phenotypes were systematically recorded by clinical geneticists using Human Phenotype Ontology (HPO) 
terms in a central database, DECIPHER. Families gave informed consent for participation.  
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