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ABSTRACT 

 

Genetic and environmental factors affect white matter 

connectivity in the normal brain, and they also influence 

diseases in which brain connectivity is altered. Little is 

known about genetic influences on brain connectivity, 

despite wide variations in the brain’s neural pathways. Here 

we applied the “DICCCOL” framework to analyze 

structural connectivity, in 261 twin pairs (522 participants, 

mean age: 21.8 y ± 2.7SD). We encoded connectivity 

patterns by projecting the white matter (WM) bundles of all 

“DICCCOLs” as a tracemap (TM). Next we fitted an A/C/E 

structural equation model to estimate additive genetic (A), 

common environmental (C), and unique environmental/error 

(E) components of the observed variations in brain 

connectivity. We found 44 “heritable DICCCOLs” whose 

connectivity was genetically influenced (𝑎2 >1%); half of 

them showed significant heritability (𝑎2>20%). Our analysis 

of genetic influences on WM structural connectivity 

suggests high heritability for some WM projection patterns, 

yielding new targets for genome-wide association studies. 

 

Index Terms—DICCCOL, heritability 

 

1. INTRODUCTION 

 

Genetic and environmental factors contribute to individual 

differences in brain connectivity, and understanding their 

contributions is of fundamental importance in neuroscience. 

For two decades, a large number of studies [2-3, 5-10] have 

shown moderately high heritability for many brain measures 

derived from magnetic resonance imaging (MRI), diffusion 

tensor imaging (DTI) [1], and other neuroimaging methods. 

Early genetic studies of brain MRI examined gray matter 

(GM) similarities in pairs of monozygotic (MZ) and 

dizygotic (DZ) twins [2], and white matter (WM) integrity 

in the corpus callosum [3]. More recently, genome-wide 

association studies of over 30,000 individuals [16] have 

revealed common genetic variants that consistently affect 

brain structure worldwide. Similar large-scale genetic 

analyses are also now focusing on DTI [5], relating imaging 

differences to clinical diagnosis for a range of 

neuropsychiatric diseases [17-19]. Even so it is crucial to 

discover which brain measures show significant heritability, 

to prioritize them for in-depth genetic screens. Some studies 

have shown moderate to strong genetic effects on DTI 

derived measures such as FA [5, 10], but we still know little 

about genetic influences on the structural connectivity of the 

brain’s major neural pathways, which we examine here.  

 

 
Fig.1. Flowchart of the proposed study. 

 

      In prior work, we introduced the “tracemap” (TM) 

model [11] and DICCCOL [12] - novel methods to represent 

and discover WM connectivity. The tracemap is a 

computational model that transforms the directional 

information in the trajectory of an arbitrary WM bundle to a 

standard spherical surface, for quantitative comparison of 

structural connectivity patterns. The DICCCOL method 

identifies a group of cortical surface landmarks in each 

individual’s coordinate space, and a correspondence across 

different individuals based on WM structural similarity, 

measured by TM distance. Here we combine the TM 

approach with the DICCCOL model, to investigate genetic 

influences on WM pathways in 522 twins. As illustrated in 

Fig. 1, after preprocessing (section 2.1), 358 DICCCOLs 
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were identified in the twin dataset (section 2.2). Then we 

calculated the TM offset (section 2.3), defined as the 

difference between individual TM and the model TM. 

Finally, we performed an ACE analysis [21] (section 2.4) to 

estimate the additive genetic (A), common environmental 

(C), and unique environmental (E) components of variance 

for the computed TM measures. We detected 44 “heritable 

DICCCOLs” displaying underlying genetic influences 

( 𝑎2 >1%, p<0.037 after FDR). These DICCCOLs were 

spread over the whole cortical surface, and included 

landmarks in the superior, middle and inferior frontal gyri, 

orbital gyri, sensorimotor areas, temporal lobe and visual 

cortex. Half of them showed significant heritability 

(𝑎2>20%) and these were primarily located in the temporal 

lobes and visual cortices. WM tracts connecting to the 

“heritable DICCCOLs” with the largest 𝑎2  came from the 

inferior fronto-occipital fasciculus (IFOF). This study offers 

a new approach to explore genetic influences on brain 

connectivity, by considering the connection patterns of WM 

pathways. It also provides promising targets for genome-

wide association analyses. 

 

2. METHODS 

 

2.1. Data acquisition 

 

We analyzed brain DTI data from 261 twin pairs (522 

participants, M/F: 196/326, MZ/DZ: 214/308, mean age: 

21.8 y ± 2.7SD).  Diffusion-weighted images were collected 

with a 4T Siemens Bruker Medspec MRI scanner, using 

single-shot echo planar imaging with a twice-refocused spin 

echo sequence to reduce eddy-current induced distortions. 

Scan parameters were: 23 cm FOV, TR/TE 6090/91.7 ms, 2-

mm axial slice thickness and 1.79 x1.79 𝑚𝑚2  in-plane 

resolution. More information on acquisition and 

preprocessing may be found in [6, 12]. 

 

2.2. DICCCOL prediction 

 

DICCCOL is an acronym that stands for Dense 

Individualized and Common Connectivity-based Cortical 

Landmarks [12]. It includes 358 cortical landmarks defined 

in the individual space; each represents the locations that 

share the most consistent WM wiring patterns across 

different individuals. Several studies [13-15] have shown 

that this is an effective and robust ROI modeling 

framework, which may offer advantages compared to other 

registration methods [12]. DICCCOL prediction is very 

similar to the DICCCOL optimization procedure [12] as the 

cost function also aims to minimize the group-wise variation 

in structural connectivity, measured by TM [11]. The 

difference is that we only optimize the locations of 

DICCCOL candidates that need to be predicted in individual 

subject. This process may be summarized as: 

                      E (𝑆𝑀, 𝑆𝑁) =min ( ∑ |𝑇𝑀𝐷𝑀𝑁| )                   (1) 

𝑆𝑀  represents the DICCCOL models, 𝑆𝑁  is the new brain 

that needs to be predicted, 𝑇𝑀𝐷𝑀𝑁  is defined as the 

tracemap distance. We applied the above prediction to all of 

the 522 twin participants; each of the predicted DICCCOLs 

yields an automatically computed correspondence across all 

subjects. 

 

2.3. TraceMap offset representation 

 

 
Fig.2.Illustration of tracemap offset for single DICCCOL. 

 

After we computed DICCCOLs (locations) on every twin 

participant, we extracted the WM bundle connecting to each 

DICCCOL and transformed it as a TM, which may be 

represented as a vector describing a specific points- 

distribution. Then we calculated the mean TM (𝑇𝑀𝑚𝑜𝑑𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

from the model and computed the offset (difference) 

between twin participants and 𝑇𝑀𝑚𝑜𝑑𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (Fig. 2). The TM 

offset (TMO) can be defined as: 

                   𝑇𝑀𝑂𝑠,𝑑 = ||𝑇𝑀𝑠,𝑑 − 𝑇𝑀𝑚𝑜𝑑𝑒𝑙,𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ||2

2                  (2) 

S and d are the indices of the participant and DICCCOLs. 

The calculation of TMO is conducted for each DICCCOL 

independently. Note that if two participants have similar 

WM wiring patterns for some DICCCOLs, their TMO will 

also be similar. 

      Compared to other DTI-derived scalar measures, such as 

FA and MD (mean diffusivity), the TM representation can 

effectively capture the overall wiring patterns in the WM. At 

the same time, it is not over-sensitive to small variations or 

noise introduced by tractography errors (i.e., false positive 

fibers). Hence, it is a promising approach to characterize 

brain WM connection patterns for genetic analysis.   

 

2.4. Genetic analysis 

 

The classical A/C/E model assumes that the variance in a 

brain measure (F) can be partitioned into three components: 

variance due to additive genetic factors (A), shared 
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environment (C), and unshared environment (E) or 

measurement errors: 

                             F = aA + cC + eE                                   (3) 

In the above formula, a, c and e are the weights of each 

factor and the total variance of F (𝑎2+𝑐2+𝑒2) should be one. 

As we know, MZ twins share all the same genetic variants 

and the DZ twins, on average, share 50% of their genetic 

polymorphisms. Both MZ and DZ twins share the same 

environment (C). Because of this, we can estimate how 

much additive genetic factors (A) contribute to the variance 

in the observed variable (F). 

The full A/C/E structural equation model, or its simpler sub 

models (i.e., AE or CE) can be preferred based on their 

relative goodness-of-fit. Here we modelled the TMO 

measures (section 2.3) using the full A/C/E model to 

estimate genetic effects. 

      Prior studies have shown genetic influences on the 

volumes of GM [2] and WM structures [5, 10] in the brain. 

Here, DICCCOL derived TMO measures provide a novel 

approach to study WM heritability in two respects: 1) the 

TMO reflects the similarity of WM wiring patterns in 3D 

space; and 2) DICCCOLs are defined on cortical surface, 

but they are closely related to the underlying WM structures. 

Therefore, DICCCOL derived measures (i.e., TMO) have 

the potential to link the GM and WM features together. 

 

3. RESULTS 

 

3.1. Genetic analysis 

 

We predicted 358 DICCCOLs (Section 2.2) on all the 512 

twin participants. For each pair of twins we calculated the 

tracemap offset (TMO) for each DICCCOL with Eq. 2 

(Section 2.3). Then we performed the A/C/E variance 

components analysis on the TMO. The classical ACE model 

estimates the proportion of different factors contributing to 

the observed phenotype measure (here, TMO). We 

compared the full model (A/C/E) to the simpler AE model, 

as in [5, 10, 20]. At almost 1/3 of the DICCCOLs (100+), 

the ACE model showed a better fit than the AE model 

(p<0.05). That means for those 100+ DICCCOLs, the shared 

environmental (C) factor was detectable. As such, we chose 

the full A/C/E model to report our results. To adjust for 

multiple hypothesis testing, all p-values used to screen 

DICCCOLs were corrected using the false discovery rate 

(FDR) [22] (0.037 after correction) at the 5% significance 

level. We also considered the goodness-of-fit of A/C/E to all 

DICCCOLs: in structural equation models (SEM), the 𝜒2 

(goodness-of-fit) term determines a significance value, 

which indicates whether the model is a good fit to the data. 

Hence, we screened all DICCCOLs and only those with 

good fit (P>0.05) were considered. In total, 44 DICCCOLs 

were found to be heritable (𝑎2>1%, 95% CI (0-0.03, 0.33-

0.72)), and these are subsequently referred to as “heritable 

DICCCOLs”. 

      Fig. 3 summarizes the results of the A/C/E analysis. The 

proportions of A/C/E, 𝑎2 , 𝑐2 and 𝑒2 , for 44 “heritable 

DICCCOLs” are shown in Fig. 3(a) as red, orange and blue 

columns, respectively. Even though unshared environment 

(E) has significant contributions to many “heritable 

DICCCOLs”, the additive genetic factor (A) and shared 

environment (C) also play critical roles. We also showed the  

𝑎2 and the corresponding 95% confidence interval (CI) as 

the white triangle and shadow in Fig. 3(b). No CI included 

zero, but for some of them the lower bounds were close to 

zero. The distribution of 𝑎2 is shown in Fig. 3(c). From the 

distribution, we can see that the 𝑎2 for half of the “heritable 

DICCCOLs” is larger than 0.2, so they are substantially 

influenced by genetic factors. 

 

 
Fig.3. (a) A/C/E components of 44 “heritable DICCCOLs”. 

(b) The white triangles and the ranges shown represent 𝑎2 

and the corresponding 95% confidence interval (CI). (c) The 

distribution of 𝑎2 for “heritable DICCCOLs”.  

 

3.2. Visualization of “Heritable DICCCOLs” 

As mentioned already, we identified 44 “heritable 

DICCCOLs” that were influenced by genetic factors 

(𝑎2 >0.1). We projected them onto the cortical surface as 

shown in Fig. 4(a). The bubbles represent “heritable 

DICCCOLs” and the colors show the value of 𝑎2 . In 

general, these “heritable DICCCOLs” are spread over the 

whole cortical surface, including superior, middle and 

inferior frontal gyri, orbital gyri, sensorimotor areas, 

temporal lobes and the visual cortex. This result is 

consistent with prior reports that volumes of frontal, 

sensorimotor and temporal brain regions are significantly 

influenced by genetic factors [2]. From the color 

information, we can see that the “heritable DICCCOL” with 

the highest 𝑎2  is located on the middle frontal gyrus 

(DICCCOL# 255, highlighted by the black arrow) and this 

DICCCOL is part of the emotional regulation network [12].  

Other “heritable DICCCOLs” with relatively high 𝑎2  are 

mainly located in the temporal lobe and visual cortices 

(highlighted with yellow circles). 

       To examine the underlying WM structures, we 

extracted the WM tracts connecting to these “heritable 

DICCCOLs”. In Fig. 4(b), we show fiber tracts according to 
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the different 𝑎2 for the “heritable DICCCOLs” that they are 

connected to. For example, the left subfigure shows WM 

tracts connecting to the “heritable DICCCOLs” with 𝑎2 

larger than 0.1. The middle WM tracts belong to those with 

𝑎2  larger than 0.3. The “heritable DICCCOLs” are also 

displayed accordingly. From this figure, we can clearly 

identify different WM tracts based on the hierarchy of 

“heritable DICCCOLs”. The final WM tracts are connected 

to the “heritable DICCCOLs” with the largest 𝑎2  (>0.5). 

Most of the fibers are from inferior fronto-occipital 

fasciculus (IFOF). Interestingly, this result is surprisingly 

consistent with the previous finding that IFOF may be the 

most heritable tract when considering FA- derived measures 

[10]. 

 

 
Fig.4. (a) The spatial distribution of “heritable DICCCOLs”. 

The bubbles represent “heritable DICCCOLs” and the 

colors reflect the value of 𝑎2. The “heritable DICCCOLs” 

with larger 𝑎2 are highlighted with black arrows and yellow 

circles. (b) A visualization of WM tracts, according to 

different 𝑎2  of “heritable DICCCOLs” they are connected 

to.  

      

      For better understanding the “heritable DICCCOLs” and 

the corresponding WM bundles, we randomly picked one 

“heritable DICCCOL” as an example to illustrate its 

structural connectivity profile, in Fig. 5. This DICCCOL is 

located at the junction of the temporal and parietal lobes.  

Each column shows two members of the same twin pair. 

Based on the figure, we have two observations: first, since 

we are showing the WM fibers extracted from the same 

DICCCOL, their overall shape and patterns are very similar. 

Second, even though there are some differences due to 

individual structural variability and the tractography 

method, the WM structural connectivity patterns within the 

same twin pair (same column) are more consistent compared 

to the members of other twin pairs. Of course, this cross-

twin structural similarity may also be influenced by non-

genetic factors. However, for these identified “heritable 

DICCCOLs”, additive genetic effects clearly play a critical 

role in influencing WM structural similarity. 

 

 
Fig. 5. WM structural connectivity profiles for 10 twin 

participants. The yellow bubbles represent the selected 

“heritable DICCCOL”, which is located at the junction of 

the temporal and parietal lobes. Each column shows two 

subjects who belong to the same twin pair; there are 5 twin 

pairs in total.  

 

4. CONLUSION 

 

In this paper, we used a novel method to investigate white 

matter connectivity and its heritability. By applying 

DICCCOL as the structural foundation, we proposed a new 

DTI derived measure, TMO, and assessed the extent that 

genetic and environmental factors that influence it using 

structural equation modeling (the classical A/C/E twin 

model). We identified 44 “heritable DICCCOLs” exhibiting 

significant heritability. Both the spatial distribution patterns 

of these “heritable DICCCOLs”, and the WM tracts that 

they connect, are consistent with prior reports of moderately 

high heritability for GM and WM volumes. Therefore, the 

proposed method has the potential to link GM and WM 

features together and further provide promising targets for 

genome-wide association studies. 
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