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Introduction
Epstein-Barr virus (EBV) is a double-stranded DNA 
human herpesvirus also known as HHV-4, which 
infects more than 90% of the world’s adults and per-
sists as a lifelong latent infection.1 It primarily 
infects B-lymphocytes and permanently transforms 
them into latently infected lymphoblastoid cell lines, 

which constantly produce a group of viral proteins, 
including EBV nuclear antigens (EBNAs) and latent 
membrane proteins.2 Infection with EBV has been 
associated with the development of autoimmune dis-
eases including multiple sclerosis (MS), systemic 
lupus erythematous, and rheumatoid arthritis.3 
Despite the high prevalence of EBV infection, only 

Genetic loci for Epstein-Barr virus nuclear 
antigen-1 are associated with risk of multiple 
sclerosis

Yuan Zhou, Gu Zhu, Jac C Charlesworth, Steve Simpson Jr., Rohina Rubicz, Harald HH 
Göring, Nikolaos A Patsopoulos, Caroline Laverty, Feitong Wu, Anjali Henders, Jonathan J Ellis, 
Ingrid van der Mei, Grant W Montgomery, John Blangero, Joanne E Curran, 
Matthew P Johnson, Nicholas G Martin, Dale R Nyholt and Bruce V Taylor; 
ANZgene consortium 

Abstract
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Conclusions: Our results suggest that apart from the confirmed HLA region, the association of anti-
EBNA-1 IgG titer with MS risk is also mediated through non-HLA genes, and that studies aimed at iden-
tifying genetic loci influencing EBNA immune response provides a novel opportunity to identify new and 
characterize existing genetic risk factors for MS.
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a small number of infected individuals will develop 
one of these diseases.4

EBV nuclear antigen-1 (EBNA-1) may act as an 
important viral antigen in MS pathogenesis.5,6 Recent 
work has suggested that human leukocyte antigen 
(HLA)-dependent and independent immune responses 
to EBNA-1 are important drivers of MS pathogenesis 
and may modulate effects on MS risk of protective 
and deleterious HLA antigens.7 Additionally, EBNA-
1-specific T-cells that cross-react with myelin have 
been demonstrated,8 and anti-EBNA-1 antibodies 
have been described in cerebrospinal fluid oligoclonal 
bands in MS cases.9 Higher anti-EBNA-1 titers have 
been associated with a worse outcome in MS, both 
clinically10 and radiologically.11

A number of studies have observed an association 
between anti-EBNA-1 IgG titers and MS risk.6,12,13 In 
a study of US military personnel who were anti-
EBNA-1 IgG positive at study entry, the relative risk 
of MS over an average follow-up of 5 years was 36 
times higher among those with high anti-EBNA titers 
compared with those with low titers. Importantly, in 
this study, in blood samples collected before the age 
of 20 years, the mean anti-EBNA-1 IgG titers were 
identical between participants who later developed 
MS and age- and sex-matched controls that remained 
healthy. However, after the age of 20 years, the anti-
EBNA-1 IgG titers in those that later developed MS 
increased four-fold, while that of controls remained 
constant.12 Similarly, in 10 cases who were seronega-
tive for anti-EBNA-1 IgG at their first blood sample 
who subsequently developed MS, all became sero-
positive generally within a few months of MS onset.14 
These findings suggest that the elevation in anti-
EBNA-1 IgG titers may either directly predispose to 
the development of MS or may be a biomarker of 
immune dysregulation that results in an increased risk 
of MS.15

Recent work in Mexican-American families16 sug-
gested that particular HLA variants are associated 
with elevated anti-EBNA-1 IgG titers. Thus, we 
hypothesized that an altered immune response to EBV 
infection—manifested by increased anti-EBNA-1 
IgG titers or a potentiated inflammatory response to 
EBV infection—may be influenced by genetic fac-
tors, and that these genetic variants may also predis-
pose to MS.

Materials and methods
A flow chart of the study design is shown in Figure 1.

Genome-wide association analysis
Queensland Institute of Medical Research (QIMR) 
twin families EBNA-1 genome-wide association study 
(QTFEGWAS). In all, 3760 individuals from 1020 
families in the QIMR Twin Family Cohort Study were 
studied. Details of the clinical protocol for blood col-
lection and processing have been described else-
where.17,18 For a more detailed description of the 
sample, please see Table S1. The ImmunoWELL 
EBNA IgG Test kit (GenBio, San Diego, CA, USA) 
was used for detection of anti-EBNA-1 IgG in human 
serum (N = 3760) at the Monash Antibody Technolo-
gies Facility, Monash University. The following val-
ues were used to determine the status for seropositive/
seronegative according to the manufacturer’s proto-
col: negative (<200 units/mL); equivocal (200–
300 units/mL); and positive (>300 units/mL). To 
check which data transformation should be used for 
analysis, the distribution of standardized residuals 
was examined by treating anti-EBNA-1 IgG titers as 
both continuous and categorical values (four groups: 
<250, 250–1001, 1001–2000, and >2000 units/mL). 
The residuals were derived from generalized linear 
model (GLM) analysis using box effect, row effect, 
and column effect as fixed factors while also control-
ling for sex, age, age × sex, age2, and age2 × sex. Since 

Figure 1. Study flowchart detailing cohorts used.
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the residuals were normally distributed (Figure S1), 
we utilized these modeled residuals as continuous 
outcomes and predictors in place of as-measured anti-
EBNA-1 IgG.

Genome-wide genotyping was performed using the 
Illumina 610-Quad BeadChip and imputed to extend 
the genomic coverage to 2.4 million single nucleotide 
polymorphisms (SNPs).19 As part of quality control, 
individuals from families with pedigree errors and a 
call rate <0.95 were excluded. SNPs with a call rate 
<0.95 or with a low imputation quality score (R2 < 0.3), 
minor allele frequency <0.01 in the population, or sig-
nificant deviation from Hardy–Weinberg equilibrium 
(pHWE < 1.0 × 10−6), were excluded. In total, the data 
from 3599 individuals from 992 families and 
2,428,106 SNPs passed that quality control were used 
for further analysis.

The association analysis of imputed dosage scores 
was performed using a family-based score test imple-
mented in Merlin-offline20 which corrects for related-
ness of twins and family members. To detect whether 
there were independent effects at significant loci, we 
carried out conditional analysis by including the most 
significant SNP as a covariate.

Mexican-American families EBNA-1 GWAS 
(MAFEGWAS). We used summary results from the 
MAFEGWAS.16 In brief, the SNPs were typed on sev-
eral versions of Illumina’s microarrays and quality 
controls were done according to standard require-
ments. A total of 944,565 genotyped SNPs from 1956 
individuals were available for analysis. The anti-
EBNA-1 quantitative antibody titer level was used for 
genome-wide joint linkage and association analysis in 
SOLAR.21

GWAS meta-analysis
EBNA-1 GWAS meta-analysis (EGMA). Summary 
results from the two EBNA-1 GWAS (QTFEGWAS 
(N = 3599) and MAFEGWAS (N = 1956)) were used 
to carry out a meta-analysis using an inverse variance 
fixed-effect model in META.22 To facilitate compari-
son with p values for all 110 established non-HLA 
risk loci recently published by the International Mul-
tiple Sclerosis Genetics Consortium,23 we used the 
Direct Imputation of summary Statistics (DIST)24 
program, to directly impute EGMA summary statis-
tics based on the 1000 genome project reference data. 
The DIST is achieved by employing a conditional 
expectation formula for multivariate normal variants 
and using the correlation structure from a relevant 

reference population. Default and recommended 
parameters of DIST were utilized in this study.

MS GWAS meta-analysis (MGMA). The MGMA was 
comprised of data from seven datasets of non-over-
lapping case and control subjects of European descent. 
A total of 5545 cases and 12,153 controls with 
2,529,394 SNPs were used for analysis. For a detailed 
description, see Patsopoulos et al.25

Shared polygenic risk between EBNA-1 GWAS 
and MS GWAS
To test whether the SNPs associated with anti-
EBNA-1 IgG titers may also contribute to MS risk, 
we first matched the genome-wide significant SNPs 
(p < 5 × 10−8) in the EGMA with MGMA results. We 
also matched EGMA p values for all 110 established 
non-HLA risk loci recently published.23 We then car-
ried out SNP effect concordant analysis (SECA) and 
genetic risk score (GRS) analysis to further examine 
the shared polygenic risk between the EBNA-1 
GWAS and the MS GWAS, including and excluding 
the extended HLA region (chr6: 25–35 Mb).

SNP effect concordant analysis. SECA was under-
taken using the EGMA and MGMA, utilizing one 
study as a discovery sample while the other acted as a 
target sample, and vice-versa. Subsets of independent 
autosomal SNPs were extracted via linkage disequi-
librium (LD) clumping. The approach iterated from 
the first to last SNP on each chromosome sorted from 
smallest (most significant) to largest p value (less sig-
nificant) in the discovery sample that had not already 
been clumped (denoting this as the index SNP) and 
formed clumps of all other SNPs that were within 
10 Mb of and not in LD with the index SNP (r2 > 0.1) 
based on HapMap2 CEU genotype data. In total, for 
autosomal SNPs including the HLA region, there 
were 24,722 SNPs clumped using the EGMA as a dis-
covery sample, and 24,642 SNPs clumped using the 
MGMA as a discovery sample. For autosomal SNPs 
excluding the HLA region, there were 24,688 SNPs 
clumped using the EGMA as a discovery sample, and 
24,621 SNPs clumped using the MGMA as a discov-
ery sample. To test for concordant SNP effects 
between the two datasets, a total of 144 key SNP sub-
sets were examined, each generated using 12 p value 
thresholds (p = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, and 1.0). Fisher’s exact test was applied 
to test whether the overlapping effects were in the 
same direction after conditioning on their GWAS p 
value, where a Fisher’s exact test p value (pFT < 0.05) 
means the SNP effects are nominally correlated. In 
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all, 1000 permutations were performed to examine the 
significance of observing a specific proportion of sub-
sets with correlated SNP effects—adjusted for testing 
all 144 subsets (pFTsig-permuted).26

GRS analysis. To further validate the SECA results, 
GRSs27 were constructed using the independent SNPs 
separated by <10 Mb that are not in LD (r2 < 0.1) and 
selected as having the smallest p value in the discovery 
sample with a nominally significant p < 0.05, and in the 
target sample with p < 1.0. GRS analysis requires indi-
vidual-level GWAS SNP genotype data for the target 
sample. As only part of the genotype data for the EGMA 
and MGMA could be obtained, the first GRS analysis 
(EGMA as a discovery sample) used 5862 clumped 
SNPs to generate EGMA-based GRSs in the MS GWAS 
obtained from dbGaP (phs000275, phs000171, and 
phs000139) and ANZgene (cases = 3252; con-
trols = 5725). For details on data cleaning, please refer 
to our previous paper.28 The second GRS analysis 
(MGMA as a discovery sample) used 5770 clumped 
SNPs to generate MGMA-based GRSs in the QTFEG-
WAS. For binary disease traits (cases and controls), the 
GRS was used as a predictor to test whether higher 
mean GRS were observed for cases (MS) than for con-
trols in the target samples. For quantitative traits, the 
GRS was used to test the correlation between GRS and 
the target phenotype (anti-EBNA-1 IgG titers).

Joint EBNA-1 and MS meta-analysis. To identify 
genetic risk factors contributing to both anti-EBNA-1 
IgG titer and MS risk outside the HLA region, a joint 
meta-analysis of EGMA results and MGMA results 
was carried out using a sample size-weighted method 
based on p values in METAL.29

Gene–gene interaction analysis. To check whether 
interactions existed between the loci that were found 

to contribute to both anti-EBNA-1 IgG titer and MS 
risk, we defined two logistic regression models, one 
taking into account only the marginal effects of both 
SNPs while the other was a full logistic regression 
model including a pairwise interaction between the 
two SNPs. A likelihood ratio test with four degrees of 
freedom was then used to test whether there was any 
statistical difference between the two models.30 The 
datasets used for the analysis were the MS GWAS 
obtained from dbGaP and ANZgene listed above 
(cases = 3252; controls = 5725).

Results

HLA region as major quantitative trait loci 
influencing anti-EBNA-1 IgG titer
The distributions of anti-EBNA-1 IgG titers using four 
groups (<250, 250–1000, 1001–2000, and >2000) in 
different age ranges are shown in Figure 2. As age 
increased, the percentage of individuals with higher 
anti-EBNA-1 IgG titers increased dramatically. 
Heritability for anti-EBNA-1 IgG titers was 42%. The 
HLA region on chromosome 6 contained multiple 
SNPs exceeding the threshold for a significant associ-
ation with anti-EBNA-1 IgG titers (p < 5 × 10−8) 
(Figure S2(a)). A Q-Q plot is shown in Figure S3(a). 
Of these HLA SNPs, the most significant imputed 
SNP was rs9268923 (p = 1.22 × 10−11), located between 
the genes HLA-DRA and HLA-DRB5. The most sig-
nificant genotyped SNP was rs2516049 (p = 4.11 × 10−9; 
Table 1), located between the genes HLA-DRB1 and 
HLA-DQA1. As the HLA region is genetically com-
plex, with a low rate of recombination and long-range 
LD, we carried out two conditional analyses to check 
whether there were independent peaks, first by condi-
tioning on rs9268923, and then on both rs9268923 
and rs2267647 (Figure 3). However, after conditional 

Figure 2. Anti-EBNA-1 IgG titer distribution in different age ranges for twins and their parents. For each age range, anti-
EBNA-1 IgG titers are divided into four groups (from left to right: <250, 250–1000,1001–2000, and > 2000).
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analysis, no other SNPs showed a significant associa-
tion, suggesting these top SNPs are within one haplo-
type block that contains all the variants modulating 
anti-EBNA-1 IgG titers.

Association analyses were also conducted separately 
for parents and children (Table S1). Analysis of par-
ents only (N = 1243), implicated the same SNPs in the 
HLA region (Figure S2(b)), that were found using all 
samples: imputed SNP rs9268923 (p = 1.37 × 10−13) 
and genotyped SNP rs2516049 (p = 1.31 × 10−9; Table 
1). In contrast, analysis of all children (N = 2356), did 
not identify any significant SNPs in the HLA region 
(Figure S2(c)). However, once we restricted analyses 
to only EBNA-1 positive (>300 units/mL) children 
(N = 1488), we again observed the same significant 
associations in the HLA region (Figure S2(d)). Q-Q 
plots are shown in Figure S3(b)–(d), respectively.

In the EGMA (inflation factor, λ = 1.017; Figure S3(e)), 
45 SNPs that reached genome-wide significance were 
found to be located in the HLA region (p < 5.0 × 10−8; 
Table S2). Of these, rs2516407 remained the most sig-
nificant (p = 3.32 × 10−20). No other loci were genome-
wide significant outside the HLA region (Figure S4). 
The inflation factors (λ) for the analyses were close to 
1, suggesting population stratification had minimal 
influence on test statistical distribution; therefore, we 
did not adjust for genomic control in our analysis.

Anti-EBNA-1 IgG titers as possible risk factors 
for the development of MS: the effect of HLA 
and non-HLA region genes
The Q-Q plot (Figure 4) shows a significant excess of 
smaller EGMA p values for the 110 non-HLA MS 

Figure 4. Q-Q plot for 110 non-HLA MS SNPs in the 
EBNA-1 GWAS meta-Analysis. The 95% confidence 
envelope (shaded grey) was formed by calculating, for 
each order statistic (p values ranked from smallest to 
largest), the 2.5th and 97.5th centiles of the distribution 
of the order statistic under random sampling and the null 
hypothesis.

Figure 3. Association analysis of HLA region and EBNA-1 titers in QIMR Twin Families EBNA-1 GWAS (N = 3599). 
Results are shown (a) unconditional analysis, (b) conditional analysis on rs9268923, and (c) conditional analysis on 
rs9268923 and rs2267647. The top significant genotyped SNP rs2516049 was also highlighted in red. SNPs with a 
p < 1.0 × 10−5 are highlighted in green.
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SNPs recently published by the International Multiple 
Sclerosis Genetics Consortium23 than expected by 
chance (λ = 1.25). In SECA, using the EGMA as a dis-
covery sample, the clumped SNP effects were posi-
tively correlated with MGMA effects, either including 
(pFTsig-permuted = 0.026; 95% confidence interval (CI): 
0.018–0.038) or excluding (pFTsig-permuted = 0.049; 95% 
CI: 0.037–0.064) the HLA region (Figure S5). 
However, using the MGMA as a discovery sample, 
the clumped SNP effects were not positively corre-
lated with the EGMA SNP effects, either including 
(pFTsig-permuted = 0.173; 95% CI: 0.151–0.197) or 
excluding (pFTsig-permuted = 0.157; 95% CI: 0.136–
0.181) the HLA region (Figure S6).

The SECA results (excluding the HLA) were further 
validated by GRS analysis. A significantly higher 
GRS, constructed using the EGMA as a discovery 
sample, was observed in MS cases than controls in the 
target dbGaP and ANZgene GWAS (p = 0.007; Figure 
S7). In contrast, a GRS constructed using MGMA as 
a discovery sample, did not correlate with anti-
EBNA-1 IgG titers in the target QTFEGWAS samples 
(p = 0.270, correlation coefficient = −0.030; Figure 
S8). Altogether, these results indicate that the genetic 
risk for elevated anti-EBNA-1 IgG titer is positively 
correlated with increased MS susceptibility, whereas 
the reverse does not hold. That is, the genetic risk for 
MS is not positively correlated with elevated anti-
EBNA-1 IgG titer level.

The combined meta-analysis of the EGMA and 
MGMA results (excluding the HLA region) (λ = 1.046; 
Figure S3(f)) showed several SNP associations that 
reached genome-wide significance (p < 5.0 × 10−8; 
Table S3). The approximate chromosomal location of 
the significant SNPs is shown in the Manhattan plot in 
Figure 5 and labeled with the nearest gene. These 

genes include EVI5(1p22.1), EOMES(3p24.1), 
ILDR1(3q13.33), and IL2RA(10p15.1). For detailed 
regional plots, see Figure S9. Of these, the most inter-
esting gene is Ecotropic viral integration site 5 (EVI5) 
on chromosome 1, in which a missense mutation SNP 
rs11808092 (p = 1.71 × 10−8) results in an amino acid 
change from glutamine to histidine. The impact of this 
amino acid substitution on the structure and function 
of the protein product was predicted as benign using 
PolyPhen-2,31 with a score of 0.003 (sensitivity: 0.98; 
specificity: 0.44). Sorting Intolerant From Tolerant 
(SIFT)32 gave similar results (tolerated), while 
MutationAssessor33 scored it as “medium” (2.255).

In the interaction analysis, tagged SNPs within each 
genome-wide significant peak were selected 
(r2 > 0.65). In total, we studied five SNPs: rs11808092 
(1p22.1), rs427221 (3p24.1), rs2255214 (3q13.33), 
rs2516049 (6p21.32), and rs12722561 (10p15.1). We 
observed a suggestive synergistic interaction between 
rs2516049 and rs11808092 (p = 0.006; Table S4).

Discussion
We have undertaken a large GWAS of anti-EBNA-1 
IgG titers and provide strong evidence that the HLA 
region serves as the main quantitative trait locus for 
anti-EBNA-1 IgG titers. Our results strongly suggest 
that there are shared genetic risk factors that influence 
both anti-EBNA-1 IgG titers and MS risk. Our results 
further indicate that the genetic risk for elevated anti-
EBNA-1 IgG titer is positively correlated with 
increased MS susceptibility but the reverse impor-
tantly is not supported, that is, MS risk genetic differ-
ences do not increase anti-EBNA-1 titers. In our study, 
the heritability of anti-EBNA-1 IgG titers is 42%, 
clearly suggesting that other factors besides genetic 
differences are also important in MS pathogenesis and 

Figure 5. Manhattan plot for the pooled meta-analysis of EGMA and MGMA (excluding the HLA region). The 22 
autosomal chromosomes separated by two different colors are displayed on the X-axis. The −log10(p) values are displayed 
on the Y-axis. Genome-wide association significance level is shown as the red line (p < 5.0 × 10−8).
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that there is still a clear strong association with prior 
EBV infection in MS risk modulated by the individu-
al’s genetic make-up.

In our results, the strongest non-HLA EBNA-1 asso-
ciation was found for EVI5. The major function of 
EVI5 is the modulation of cell cycle progression, 
cytokinesis, and cellular membrane traffic.34 Several 
studies have described the involvement of EVI5 in 
the risk and severity of MS using case–control and 
cross-sectional study designs. Using the candidate 
gene approach, Hoppenbrouwers et al. found that 
SNPs within EVI5 showed a moderate association 
with MS risk (odds ratio (OR) = 1.90–2.01; p = 0.01).35 
The ANZgene consortium found a significant inter-
action between SNPs in EVI5 and HLA-DR15 in pre-
dicting MS risk (p = 0.001).36 This finding is 
supported by recent work demonstrating that EVI5 
genotype is associated with a greater odds of having 
a more severe relapse among individuals who carry 
the risk allele of HLA-DRB1*1501.37 These studies 
showed associations with MS parameters, but did not 
consider genetic effects in concert with anti-EBNA-1 
IgG levels. Direct evidence of a link between EBV 
infection and gene expression changes has been pro-
vided by the work of van Aalderen et al.,38 who found 
that EOMES expression was altered after EBV infec-
tion. Also, in another study by Parnell et al.39 analyz-
ing the expression of MS-associated transcription 
factors using whole blood, EOMES expression was 
significantly lower in MS cases compared with 
healthy controls.

Further to the correlation in genetic risk between 
anti-EBNA-1 IgG titer and MS, the observed excess 
of smaller EGMA p values for the recently reported 
110 non-HLA MS risk SNPs23 (Figure 3) suggests 
that other genetic factors likely influence the interac-
tion between MS risk and EBV infection. Hence, 
analysis of larger EBNA-1 GWAS datasets and/or 
analysis of other markers of EBNA immune responses 
(e.g. anti-EBNA-2 or EBNA-3 titers) should provide 
a novel opportunity to identify new and characterize 
existing genetic risk factors for MS. Our findings 
indicate that these studies offer a powerful approach 
to identify the specific immune responses compo-
nents that contribute most to MS susceptibility. 
Indeed, considering the high cost and difficulty in 
amassing larger samples of MS cases, we suggest 
focus could switch to performing large studies, such 
as these, aimed at identifying genetic loci influencing 
anti-EBNA immune response. Such studies should 
also provide insight into other EBV-associated auto-
immune diseases such as Burkitt’s lymphoma and 
nasopharyngeal carcinoma.

In conclusion, our results suggest that genetic factors 
influencing differential immune system reactivity to 
EBV infection increase the risk of MS in genetically 
predisposed individuals exposed to EBV, most nota-
bly in adolescence or adult life.

Acknowledgements
The members of the ANZgene Consortium are as fol-
lows: Alan Baxter (School of Pharmacy and Molecular 
Sciences, James Cook University, Townsville, 
Australia), Allan Kermode (Department of Neurology, 
Sir Charles Gairdner Hospital, Nedlands, Australia), 
Melanie Bahlo (Bioinformatics Division, Walter and 
Eliza Hall Institute of Medical Research, Parkville, 
Australia), William Carroll (Department of Neurology, 
Sir Charles Gairdner Hospital, Perth, Australia), 
Jeanette Lechner-Scott (University of Newcastle, 
Newcastle, Australia), Jac C. Charlesworth, Bruce V 
Taylor (Menzies Institute for Medical Research, 
University of Tasmania, Hobart, Australia), Helmut 
Butzkueven (Department of Medicine, Royal 
Melbourne Hospital, Melbourne, Australia), David 
Booth (Westmead Millennium Institute, University of 
Sydney, Sydney, Australia), Graeme Stewart 
(Westmead Millennium Institute, University of 
Sydney, Sydney, Australia), James Wiley (Howard 
Florey Institute, University of Melbourne, Melbourne, 
Australia), Judith Field (Howard Florey Institute, 
University of Melbourne, Melbourne, Australia), 
Lotti Tajouri (Genomics Research Centre, Griffith 
University, Brisbane, Australia), Lyn Griffiths 
(Genomics Research Centre, Griffith University, 
Brisbane, Australia), Michael Barnett (Brain and 
Mind Research Institute, University of Sydney, 
Sydney, Australia), Pablo Moscato (Hunter Medical 
Research Institute, Newcastle, Australia), Robert 
Heard (Westmead Millennium Institute, University of 
Sydney, Sydney, Australia), Rodney Scott (School of 
Biomedical Sciences, University of Newcastle, 
Newcastle, Australia), Shaun McColl (School of 
Molecular & Biomedical Science, University of 
Adelaide, Adelaide, Australia), Simon Foote 
(Australian School of Advanced Medicine, Macquarie 
University, Sydney, Australia), Simon Broadley 
(School of Medicine, Griffith University, Gold Coast 
Campus, Australia), Mark Slee (School of Medicine, 
Flinders University of South Australia, Adelaide, 
Australia), Steve Vucic (Western Clinical School, 
University of Sydney, Sydney, Australia), Trevor 
Kilpatrick (Centre for Neurosciences, Department of 
Anatomy and Neuroscience, University of Melbourne, 
Melbourne, Australia). Authors Dale R Nyholt and 
Bruce V Taylor jointly directed the research. YZ, GZ, 
JCC, SSJ, RR, NAP, FW, JE BT and DRN were 
involved in the analysis and interpretation of data. CL 

 at Queensland University of Tech on January 28, 2016msj.sagepub.comDownloaded from 

http://msj.sagepub.com/


Y Zhou, G Zhu et al.

http://msj.sagepub.com 9

and AH did EBNA-1 ELISA assay analysis. HHHG, 
IVDM, GWM, JB, JEC, MPJ, NGM, DRN and BVT 
were involved in study design and concept. YZ 
drafted the paper. All authors read and approved the 
final manuscript.

Conflicts of interest
The author(s) declared no potential conflicts of inter-
est with respect to the research, authorship, and/or 
publication of this article.

Funding
QIMR Twin Family Cohort Study: We thank the 
Brisbane twins and their families for their participa-
tion. Funding: Australia National Health and Medical 
Research Council (NHMRC; grants 486682, 1009064, 
389875). Mexican-American families EBNA-1 GWAS: 
We thank the participants of the San Antonio Family 
Heart Study and San Antonio Family Diabetes/
Gallbladder Study. Funding: NIH R01 grant 
HL080149, HL045522, HL080149, DK053889, and 
DK047482. MS GWAS Meta-Analysis: We thank all 
the participants involved in the MS study and thank 
those who have contributed datasets to dbGaP and the 
ANZgene consortium for providing access to geno-
typed data. SSJ was supported by the MS Research 
Australia Postdoctoral Research Fellowship. DRN 
was supported by the Australian Research Council 
(FT0991022) and National Health and Medical 
Research Council (APP0613674). IvdM is supported 
by an Australian Research Council Future Fellowship. 
NAP is supported by a Career Independence Award 
from the National Multiple Sclerosis Society.

References
 1. Lucas RM, Hughes AM, Lay ML, et al. Epstein-Barr 

virus and multiple sclerosis. J Neurol Neurosurg 
Psychiatry 2011; 82: 1142–1148.

 2. Young LS and Rickinson AB. Epstein-Barr virus: 
40 years on. Nat Rev Cancer 2004; 4: 757–768.

 3. Pender MP. CD8+ T-cell deficiency, Epstein-Barr 
virus infection, vitamin D deficiency, and steps to 
autoimmunity: A unifying hypothesis. Autoimmun 
Dis 2012; 2012: 189096.

 4. Simpson S Jr, Blizzard L, Otahal P, et al. Latitude 
is significantly associated with the prevalence 
of multiple sclerosis: A meta-analysis. J Neurol 
Neurosurg Psychiatry 2011; 82: 1132–1141.

 5. Pakpoor J, Disanto G, Gerber JE, et al. The risk 
of developing multiple sclerosis in individuals 
seronegative for Epstein-Barr virus: A meta-analysis. 
Mult Scler 2013; 19: 162–166.

 6. Munger KL, Levin LI, O’Reilly EJ, et al. Anti-
Epstein-Barr virus antibodies as serological markers 
of multiple sclerosis: A prospective study among 
United States military personnel. Mult Scler 2011; 17: 
1185–1193.

 7. Strautins K, Tschochner M, James I, et al. Combining 
HLA-DR risk alleles and anti-Epstein-Barr virus 
antibody profiles to stratify multiple sclerosis risk. 
Mult Scler 2014; 20: 286–294.

 8. Lunemann JD, Jelcic I, Roberts S, et al. EBNA1-
specific T cells from patients with multiple sclerosis 
cross react with myelin antigens and co-produce IFN-
gamma and IL-2. J Exp Med 2008; 205: 1763–1773.

 9. Cepok S, Zhou D, Srivastava R, et al. Identification of 
Epstein-Barr virus proteins as putative targets of the 
immune response in multiple sclerosis. J Clin Invest 
2005; 115: 1352–1360.

 10. Lunemann JD, Tintore M, Messmer B, et al. Elevated 
Epstein-Barr virus-encoded nuclear antigen-1 immune 
responses predict conversion to multiple sclerosis. 
Ann Neurol 2010; 67: 159–169.

 11. Farrell RA, Antony D, Wall GR, et al. Humoral 
immune response to EBV in multiple sclerosis is 
associated with disease activity on MRI. Neurology 
2009; 73: 32–38.

 12. Levin LI, Munger KL, Rubertone MV, et al. 
Temporal relationship between elevation of Epstein-
Barr virus antibody titers and initial onset of 
neurological symptoms in multiple sclerosis. JAMA 
2005; 293: 2496–2500.

 13. Lucas RM, Ponsonby AL, Dear K, et al. Current and 
past Epstein-Barr virus infection in risk of initial CNS 
demyelination. Neurology 2011; 77: 371–379.

 14. Levin LI, Munger KL, O’Reilly EJ, et al. Primary 
infection with the Epstein-Barr virus and risk of 
multiple sclerosis. Ann Neurol 2010; 67: 824–830.

 15. Ascherio A, Munger KL and Lunemann JD. The 
initiation and prevention of multiple sclerosis. Nat 
Rev Neurol 2012; 8: 602–612.

 16. Rubicz R, Yolken R, Drigalenko E, et al. A genome-
wide integrative genomic study localizes genetic 
factors influencing antibodies against Epstein-Barr 
virus nuclear antigen 1 (EBNA-1). PLoS Genet 2013; 
9: e1003147.

 17. Zhu G, Montgomery GW, James MR, et al. A 
genome-wide scan for naevus count: Linkage to 
CDKN2A and to other chromosome regions. Eur J 
Hum Genet 2007; 15: 94–102.

 18. Wright MJ and Martin NG. Brisbane Adolescent 
Twin Study: Outline of study methods and research 
projects. Aust J Psychol 2004; 56: 65–78.

 19. Ferreira MA, Mangino M, Brumme CJ, et al. 
Quantitative trait loci for CD4:CD8 lymphocyte ratio 

 at Queensland University of Tech on January 28, 2016msj.sagepub.comDownloaded from 

http://msj.sagepub.com/


Multiple Sclerosis Journal 

10 http://msj.sagepub.com

are associated with risk of type 1 diabetes and HIV-1 
immune control. Am J Hum Genet 2010; 86: 88–92.

 20. Abecasis GR, Cherny SS, Cookson WO, et al. 
Merlin–rapid analysis of dense genetic maps using 
sparse gene flow trees. Nat Genet 2002; 30: 97–101.

 21. Almasy L and Blangero J. Multipoint quantitative-
trait linkage analysis in general pedigrees. Am J Hum 
Genet 1998; 62: 1198–1211.

 22. Liu JZ, Tozzi F, Waterworth DM, et al. Meta-analysis 
and imputation refines the association of 15q25 with 
smoking quantity. Nat Genet 2010; 42: 436–440.

 23. International Multiple Sclerosis Genetics Consortium; 
Beecham AH, Patsopoulos NA, Xifara DK, et al. 
Analysis of immune-related loci identifies 48 new 
susceptibility variants for multiple sclerosis. Nat 
Genet 2013; 45: 1353–1360.

 24. Lee D, Bigdeli TB, Riley BP, et al. DIST: Direct 
imputation of summary statistics for unmeasured 
SNPs. Bioinformatics 2013; 29: 2925–2927.

 25. Patsopoulos NA, Bayer Pharma MS Genetics Working 
Group, Steering Committees of Studies Evaluating 
IFNβ-1b and a CCR1-Antagonist, et al. Genome-
wide meta-analysis identifies novel multiple sclerosis 
susceptibility loci. Ann Neurol 2011; 70: 897–912.

 26. Nyholt DR. SECA: SNP effect concordance analysis 
using genome-wide association summary results. 
Bioinformatics 2014; 30: 2086–2088.

 27. International Schizophrenia Consortium; Purcell 
SM, Wray NR, Stone JL, et al. Common polygenic 
variation contributes to risk of schizophrenia and 
bipolar disorder. Nature 2009; 460: 748–752.

 28. Lin R, Charlesworth J, Stankovich J, et al. Identity-
by-descent mapping to detect rare variants conferring 
susceptibility to multiple sclerosis. PLoS ONE 2013; 
8: e56379.

 29. Willer CJ, Li Y and Abecasis GR. METAL: Fast and 
efficient meta-analysis of genomewide association 
scans. Bioinformatics 2010; 26: 2190–2191.

 30. Emily M, Mailund T, Hein J, et al. Using biological 
networks to search for interacting loci in genome-
wide association studies. Eur J Hum Genet 2009; 17: 
1231–1240.

 31. Adzhubei IA, Schmidt S, Peshkin L, et al. A method 
and server for predicting damaging missense 
mutations. Nat Methods 2010; 7: 248–249.

 32. Kumar P, Henikoff S and Ng PC. Predicting the 
effects of coding non-synonymous variants on protein 
function using the SIFT algorithm. Nat Protoc 2009; 
4: 1073–1081.

 33. Reva B, Antipin Y and Sander C. Predicting the 
functional impact of protein mutations: Application 
to cancer genomics. Nucleic Acids Res 2011; 39: 
e118.

 34. Lim YS and Tang BL. The Evi5 family in cellular 
physiology and pathology. FEBS Lett 2013; 587: 
1703–1710.

 35. Hoppenbrouwers IA, Aulchenko YS, Ebers GC, et al. 
EVI5 is a risk gene for multiple sclerosis. Genes 
Immun 2008; 9: 334–337.

 36. Australia New Zealand Multiple Sclerosis Genetics 
Consortium. Genome-wide association study 
identifies new multiple sclerosis susceptibility loci 
on chromosomes 12 and 20. Nat Genet 2009; 41: 
824–828.

 37. Mowry EM, Carey RF, Blasco MR, et al. Multiple 
sclerosis susceptibility genes: Associations with 
relapse severity and recovery. PLoS ONE 2013; 8: 
e75416.

 38. Van Aalderen MC, Remmerswaal EB, Verstegen NJ, 
et al. Infection history determines the differentiation 
state of human CD8+ T cells. J Virol 2015; 89: 
5110–5123.

 39. Parnell GP, Gatt PN, Krupa M, et al. The autoimmune 
disease-associated transcription factors EOMES and 
TBX21 are dysregulated in multiple sclerosis and 
define a molecular subtype of disease. Clin Immunol 
2014; 151: 16–24.

Visit SAGE journals online 
http://msj.sagepub.com

 SAGE journals

 at Queensland University of Tech on January 28, 2016msj.sagepub.comDownloaded from 

http://msj.sagepub.com/



