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Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together 
explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show 
that the most strongly associated ~2,000, ~3,700 and ~9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance. 
Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for 
genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in 
earlier efforts, such as signaling by fibroblast growth factors, WNT/b-catenin and chondroitin sulfate–related genes. We identified 
several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding 
of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite 
number (thousands) of causal variants.

in GCTA8 (Online Methods), which takes linkage disequilibrium 
(LD) between SNPs into account (Supplementary Figs. 2 and 3, and 
Supplementary Table 1). The 697 SNPs clustered in 423 loci, with a 
locus defined as one or multiple jointly associated SNPs located within 
a 1-Mb window. Most of these 697 SNPs were uncorrelated, although 
those in close physical proximity (for example, <1 Mb apart) might be 
in partial LD (see Supplementary Table 1 for LD between adjacent 
pairs of the 697 SNPs). The clustering of signals was non-random 
(empirical enrichment of 1.4-fold; P < 1 × 10−4) with 90, 26 and 31 loci 
containing 2, 3 and ≥4 signals, respectively (Supplementary Tables 1  
and 2, and Supplementary Note). We observed strong evidence of 
clustering of association signals within loci across a range of locus sizes, 
from 100 kb to 1.25 Mb, but the clustering was almost entirely driven 
by variants within 250 kb of index SNPs (Supplementary Table 2  
and Supplementary Note). In some loci, multiple signals clustered 
tightly around a single gene, whereas in other cases the clustering of 
associated variants was likely due to multiple different height-related 
genes being in close proximity (Fig. 1 and Supplementary Fig. 4).

Of the 697 SNPs, 403 were represented on the Metabochip array9. 
Using data from 80,067 individuals genotyped on the Metabochip 
array from 37 independent studies, we observed very strong evidence 
of concordance of effect sizes between the Metabochip and GWAS 
samples (P = 1.9 × 10−160): >99% of variants had directionally con-
sistent effects in the Metabochip and GWAS data (Online Methods, 
Supplementary Table 3 and Supplementary Note).

We observed a large genome-wide ‘inflation’ of the test statistic for 
association, even after we corrected each study’s test statistics by its 
individual inflation factor (single λGC = 1.94). At least two phenom-
ena could have contributed to this observation. First, as described 
previously10, highly polygenic models of inheritance are expected to 
increase the genomic inflation factor to levels comparable to what we 
observe. Second, height is particularly susceptible to confounding by 
population ancestry (stratification), which can also lead to inflation 
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Height is a classical polygenic trait that has provided general insights 
into the genetic architecture of common human traits and diseases 
and into the prospects and challenges of different methods used to 
identify genetic risk factors. Studies consistently estimate that the 
additive genetic contribution to normal variation in adult height  
(‘narrow-sense heritability’) is approximately 80% (refs. 1–3). Previous 
analysis of genome-wide association studies (GWAS) of adult height 
showed that common variants together account for 50% of this her-
itable contribution to variation in height4,5. The most recent GWAS 
of adult height identified 180 loci, which together highlighted many 
genes relevant to human skeletal growth that had not been implicated 
in previous studies6. Common variants in these loci, however, only 
accounted for 10% of the phenotypic variation (~12% of heritability). 
Here we report the results from a GWAS meta-analysis of adult height 
in 253,288 individuals of European ancestry. We show that the addi-
tive contributions of fewer than 10,000 SNPs (at P < 5 × 10−3) can 
account for 36% of the heritability of adult height. Variants reaching 
genome-wide significance (P < 5 × 10−8) in this larger study (697 
SNPs) clustered in loci, were substantially enriched for regulatory 
variants and implicated multiple known and previously unknown 
genes and pathways relevant to growth. More broadly, our results 
provide evidence that increasing GWAS sample sizes to the order of 
105 individuals, now plausible for many common traits, will likely 
continue to identifying associated variants and loci while improving 
knowledge of the biology of these traits.

RESULTS
The overall analysis strategy is illustrated in Supplementary Figure 1.  
We first performed a GWAS meta-analysis of adult height using 
the summary statistics from 79 studies consisting of 253,288 indi-
viduals of European ancestry (Online Methods). We identified 697 
SNPs that reached genome-wide significance (P < 5 × 10−8) using an 
approximate conditional and joint multiple-SNP (COJO) analysis7 
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of the test statistics. We addressed these possibilities by comparing 
our results with those obtained using more stringent corrections for 
stratification (linear mixed models; LMMs) and with results obtained 
in subsets of studies in which a purely family-based analysis was fea-
sible, and by performing a within-family prediction analysis that  
partitioned the variance in the genetic predictor into the contribu-
tions of true associations and population stratification.

Our LMM analyses, performed in a subset of 15 individual studies  
comprising 59,380 individuals, provided strong evidence that the 
inflated statistics were driven predominantly by the highly polygenic 
nature of the trait. This approach uses a genomic relationship matrix 
(GRM) calculated from genome-wide SNP data to correct for distant 
relatedness between all pairs of individuals in a study. We obtained 
a single λGC of 1.20. This value is entirely consistent with the single 
λGC of 1.20 obtained from the standard GWAS analysis of the same 
individuals and a single λGC of 1.94 obtained from the analysis of all 
253,288 individuals (Supplementary Table 4). Because this approach 
might be overly conservative for a strongly genetic and highly poly-
genic trait, each study additionally repeated the analyses for each 
chromosome using a GRM generated from the remaining 21 chro-
mosomes or, in the case of the largest study (WGHS), repeated the 

analyses for all odd-numbered chromosomes using a GRM generated 
from the even-numbered chromosomes and vice versa. The single-
λGC inflation factor for this analysis, 1.23, is also entirely consistent 
with the standard GWAS results (Online Methods, Supplementary 
Table 4 and Supplementary Note).

Our family-based analyses also provided strong evidence that the 
inflated statistics were driven predominantly by the highly poly-
genic nature of height. We assessed whether variants that reached 
genome-wide significance after single-λGC correction replicated in 
family-based analyses of up to 25,849 samples (effective sample size 
of 14,963; using methods that are immune to stratification (Online 
Methods, Supplementary Tables 5 and 6, and Supplementary 
Note)). We identified genome-wide significant associations from a 
meta-analysis that excluded the family-based samples and tested these 
associations for replication in the family-based samples; a lower rate 
of replication than expected could be due to inflation of effect sizes 
in the discovery sample from ‘winner’s curse’ and/or stratification. Of 
the 416 genome-wide significant SNPs representing multiple signals 
selected after the exclusion of the family-based studies, 371 SNPs had 
a consistent direction of effect (in comparison with 208 expected by 
chance and 400 expected in the absence of any inflation of estimated 

Figure 1 Regional association plots for loci with multiple association signals. (a–d) Examples of multiple signals after approximate conditional joint 
multiple-SNP (GCTA-COJO) analysis. SNPs are represented by colored symbols according to the index SNP with which they are in strongest LD  
(r2 > 0.4). In some loci, the majority of signals cluster in and around a single gene, for example, at ACAN (a), ADAMTS17 (b) and PTCH1 (c),  
whereas at some loci multiple signals cluster through proximity (d).
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effect sizes) and 142 SNPs replicated with P < 0.05 (in comparison 
with 21 expected by chance and 210 expected in the absence of effect 
size inflation; Supplementary Table 5). These analyses (particularly 
the directional consistency) show that most of the loci represent true 
associations but also show that there is a modest inflation in the effect 
size estimates, due to stratification and/or winner’s curse. To distin-
guish between these possibilities, we repeated this analysis, substitut-
ing for the family-based samples a random set of studies with similar 
total effective sample sizes. The number of replicating loci was only 
slightly lower in the family-based cohorts than in the random sam-
ples (12–17 fewer replications attributable to stratification at different 
P-value thresholds; Supplementary Table 5). This finding indicates 
that most of the modest inflation in effect estimates is due to winner’s 
curse, that a small amount of inflation is due to residual stratifica-
tion and that few (upper limit of ~15–25; Supplementary Table 5 
and Supplementary Note) if any of the loci that reach genome-wide 
significance after single-λGC correction are likely to be complete false 
positives due to stratification (that is, with no real association what-
soever with height).

Variance explained by SNPs at different significance levels
Having established that single-λGC correction is sufficient to identify 
SNPs that are likely to be truly associated with height, we next per-
formed a series of analyses using the GWAS data from five independ-
ent validation studies to quantify the fraction of phenotypic variance 
explained by SNPs selected from the GCTA-COJO analyses7 of the 
meta-analysis data, which excluded data from the validation studies, 
at a range of statistical thresholds and to quantify the accuracy of pre-
dicting height using these selected SNPs (Online Methods). We first 
developed a new method that uses within-family prediction to parti-
tion the variance of the SNP-based predictor into components due 
to real SNP effects, errors in estimating SNP effects and population 
stratification (Online Methods), and we applied the method to data 
on full-sibling pairs from three of the five validation studies (Online 
Methods). Consistently across the three studies, all the partitioned 
variance components increased in size as a less stringent significance 
level was used for SNP selection in the discovery sample, and the 
error variance increased more dramatically than the genetic variance 
when more SNPs selected at a less significant level were included 
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Figure 2 Quantifying the variance explained by height-associated SNPs at different levels of significance. SNPs were selected from the GCTA-COJO 
analysis with the target cohort excluded from the meta-analysis. (a–c) Partitioning of the variance of the SNP-derived genetic predictor using a 
within-family analysis in three studies: TwinGene (a), QIMR (b) and Framingham (c). The SNP-based predictor was adjusted by the first 20 principal 
components. The four variance and covariance components Vg, Ve, Cg and Ce are defined in the Online Methods. (d) Accuracy of predicting phenotype 
with the genetic predictor in unrelated individuals. The prediction R2 value shown on the y axis is the squared correlation between the phenotype and 
predictor. The SNP-based predictor was adjusted by the first 20 principal components. The solid line is the average prediction R2 value weighted by 
sample size over the five cohorts. The dashed line is the prediction accuracy inferred from the within-family prediction analysis (equation (19) in the 
Online Methods). (e) Estimate of variance explained by the selected SNPs from the GCTA-GREML analysis. The phenotype was adjusted by the first 
20 principal components. Each error bar represents the standard error of the estimate. The estimates from all five cohorts (B-PROOF, FRAM, QIMR, 
TwinGene and WTCCC-T2D) were averaged by the inverse variance approach. The dashed line is the variance explained inferred from the within-family 
prediction analysis. In d and e, the number shown in each column is the number of SNPs used in the analysis.
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in the predictor (Fig. 2a–c). We demonstrated the partitioning of 
variance due to population stratification by the within-family predic-
tion analyses with and without adjusting for principal components 
(Supplementary Fig. 5). The results again confirmed that the impact 
of population stratification on the top associated SNPs was minor 
and demonstrated that the variation in the predictor due to true SNP 
effect, estimation error and population stratification was quantifiable. 
We next inferred, using these partitioned variance components from 
the within-family prediction analysis, how well different selected sets 
of SNPs would predict height in independent samples. We showed 
that the observed prediction accuracy (squared correlation between 
phenotype and predictor, or R2) in five different population-based 
cohorts was highly consistent with the values inferred from the within-
family analyses, with prediction accuracy peaking at ~17% using the 
~1,900 SNPs reaching P < 5 × 10−5 (Fig. 2d). Finally, we estimated the 
variance explained by the selected SNPs in population-based studies 
using the GCTA-GREML method4,8 (Fig. 2e). The results showed that 
~670 SNPs at P < 5 × 10−8 and ~9,500 SNPs at P < 5 × 10−3 captured 
~16% and ~29% of phenotypic variance, respectively (Table 1), find-
ings that were also consistent with the estimates inferred from the 
within-family prediction analysis. As shown in equation (19), predic-
tion R2 is not equal to the variance explained but is a function of the 
variance of true SNP effects and the error variance in estimating SNP 
effects, in the absence of population structure. At thresholds below 
genome-wide significance, the variance explained is higher than the 
prediction accuracy because the latter is deflated both by imprecise 
estimates of effect sizes (estimation errors) and the inclusion of SNPs 
that are not associated with height (Fig. 2). The estimate of variance 
explained by all the HapMap 3 (ref. 11) SNPs without SNP selection 
was ~50% (Table 1), consistent with previous estimates4,5. Thus, a 
group of ~9,500 SNPs (representing <1% of common SNPs) selected 
at P < 5 × 10−3 explained ~29% of phenotypic variance. Because 
~50% of phenotypic variance is explained by all common SNPs the 
selected set of SNPs, despite being limited to <1% of common SNPs, 
accounts for the majority of the variance attributable to all common 
SNPs (29/50; ~60%). This set of ~9,500 SNPs strongly clustered with 
the newly established height loci: 1,704 (19%) variants were located 
within 250 kb of one of the 697 genome-wide associated SNPs, sug-
gesting that a substantial fraction of ‘missing heritability’ is within 
already-identified loci. This clustering of additional variants within 
identified loci was confirmed in a parallel analysis based on two left-
out studies where we observed that SNPs in closer physical proximity 
to the top associated SNPs explained disproportionally more variance 
(Online Methods and Supplementary Fig. 6).

The larger GWAS identifies new biologically relevant genes 
and pathways
Having shown that ~1% of variants can account for the majority 
of heritability attributable to common variation, we next consid-
ered whether the expanded set of height-associated variants could 
be used to identify the genomic features and biological pathways of 
most relevance to normal variation in adult height. To test whether 
our GWAS could implicate new biology, we used established 
and novel approaches to test whether the height-associated loci 
were enriched for functionally relevant variants, genes, pathways  
and tissues.

Similar to the 180 variants identified in our previous analysis, the 
697 variants were non-randomly distributed with respect to functional 
and putatively functional regions of the genome (Online Methods). 
We observed that the height-associated variants were enriched for 
nonsynonymous SNPs (empirical enrichment of 1.2-fold; P = 0.02), 
cis-regulatory effects in blood (empirical enrichment of 1.5-fold;  
P = 0.03), overlap with a curated list of genes that underlie monogenic 
syndromes of abnormal skeletal growth12 (empirical enrichment of 
1.4-fold; P = 0.013), associations with apparently unrelated complex 
traits in the National Human Genome Research Institute (NHGRI) 
GWAS catalog (empirical enrichment of 2.6-fold; P < 1 × 10−4) and 
functional chromatin annotations in multiple tissues and cell types 
(empirical enrichment of 1.8-fold; P < 1 × 10−3) (Supplementary 
Tables 7–11 and Supplementary Note).

The greater resolution for the height-associated variants provided 
by increased sample size, in combination with improved gene priori-
tization and gene set enrichment approaches, resulted in the iden-
tification of multiple new tissues, gene sets and specific genes that 
were highly likely to be involved in the biology of skeletal growth. 
Specifically, using a variety of established and novel pathway methods, 
we identified ~3 times as many enriched pathways and prioritized ~5 
times as many genes (including genes newly prioritized in previously 
identified loci) in comparison to the results derived from identical 
pathway methods applied to the previous GWAS of 133,000 individu-
als (Table 2).

We first focused on existing pathway and gene prioritization 
methods: (i) MAGENTA13, a method designed to identify gene 
sets enriched in GWAS data, and (ii) GRAIL14, which uses the pub-
lished literature to highlight connections between likely relevant 
genes within GWAS-identified loci. As expected, the GRAIL and 
MAGENTA analyses confirmed several previously identified gene 
sets and pathways clearly relevant to skeletal growth, but in the larger 
sample they also provided evidence for additional known and new 

table 1 estimates of variance explained by sNPs selected at different significance levels.

Threshold

QIMR (n = 3,924) FRAM (n = 1,145) TwinGene (n = 5,668) WTCCC-T2D (n = 1,914) B-PROOF (n = 2,555)
Weighted  
averagea Pred.b

Number of 
SNPs hg

2 SE
Number 
of SNPs hg

2 SE
Number 
of SNPs hg

2 SE
Number 
of SNPs hg

2 SE
Number 
of SNPs hg

2 SE hg
2 SE hg

2

5 × 10−8 675 0.164 0.016 656 0.190 0.040 670 0.159 0.013 679 0.143 0.025 691 0.152 0.021 0.159 0.008 0.149

5 × 10−7 887 0.187 0.017 862 0.210 0.045 866 0.170 0.013 890 0.184 0.028 886 0.162 0.022 0.176 0.009 0.166

5 × 10−6 1,245 0.196 0.018 1,202 0.207 0.050 1,186 0.188 0.014 1,256 0.201 0.030 1,232 0.175 0.024 0.190 0.009 0.186

5 × 10−5 1,950 0.212 0.020 1,891 0.183 0.060 1,918 0.208 0.015 1,985 0.208 0.037 1,947 0.194 0.029 0.206 0.010 0.218

5 × 10−4 3,754 0.248 0.024 3,671 0.239 0.080 3,689 0.239 0.017 3,771 0.201 0.047 3,661 0.248 0.037 0.240 0.013 0.259

5 × 10−3 9,693 0.297 0.035 9,403 0.171 0.126 9,548 0.287 0.025 9,677 0.267 0.070 9,174 0.341 0.055 0.292 0.018 0.339

HM3c 1.08  
million

0.473 0.086 1.06 
million

0.313 0.291 1.12 
million

0.522 0.060 0.97 
million

0.534 0.170 1.09 
million

0.463 0.126 0.498 0.044

SNPs were selected by an approximate conditional and joint multiple-SNP analysis (GCTA-COJO) of the summary statistics from the meta-analysis. The target cohort for variance 
estimation was excluded from the meta-analysis. h2, heritability; SE, standard error. Values in bold highlight the averages of five studies.
aThe estimates from all five cohorts were averaged by the inverse variance approach, where ( / ) / ( / )( )h ii i iig SE SE2 2 21∑ ∑ . bThe predicted variance explained by the selected SNPs (Vg) from the 
within-family prediction analysis. cSNPs from the HapMap 3 project11.
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associated genes, gene sets and protein complexes not identified in our 
previous smaller study (for example, fibroblast growth factor (FGF) 
signaling, WNT signaling, osteoglycin and other genes related to bone 
or cartilage development) (Supplementary Fig. 7 and Supplementary  
Tables 12 and 13).

To obtain more detailed insight into height biology, we applied 
DEPICT, a novel data-driven, integrative method that uses gene sets 
reconstituted on the basis of large-scale expression data to prioritize 
genes and gene sets and also to identify tissues enriched in highly 
expressed genes from associated loci (T.H.P., J. Karjalainen, Y. Chan, 
H. Westra and A.R.W. et al., unpublished data; Online Methods 
and Supplementary Note). The DEPICT analysis highlighted 2,330 
reconstituted gene sets (after pruning for high levels of redundancy). 
These gene sets both confirmed and extended the MAGENTA and 
GRAIL findings and identified new pathways not identified in our 
previous height GWAS (for example, regulation of β-catenin, biol-
ogy related to glycosaminoglycans such as chondroitin sulfate and 
hyaluronic acid, and mTOR signaling) (Supplementary Table 14). 
The gene sets identified on the basis of 327 strictly new height vari-
ants (>1 Mb from the 180 known variant loci) highly resembled the 
gene sets highlighted by the 180 already-known loci (Spearman’s 
rank correlation coefficient between gene set enrichment z scores, 
r = 0.91; P = 2 × 10−16). Thus, the variants discovered through 
increased sample size continued to highlight specific and relevant 
growth-associated gene sets, and the combined analysis of both old 
and new loci provided the additional power needed to identify new 
gene sets (Table 3 and Supplementary Table 14).

The DEPICT analysis also prioritized tissues and individual genes. 
We found that genes within loci associated with height were enriched 

for expression in tissues related to chondrocytes (cartilage, joint cap-
sule, synovial membrane and joints; P < 5.5 × 10−9, false discovery 
rate (FDR) < 0.001) and other musculoskeletal, cardiovascular and 
endocrine tissue types (FDR < 0.05) (Fig. 3, Supplementary Fig. 8 
and Supplementary Table 15). We also showed that a subset of the 
697 height-associated SNPs that represented lead cis expression quan-
titative trait loci (eQTLs) in blood defined 75 genes that were collec-
tively enriched for expression in cartilage (P = 0.008) (Supplementary 
Table 8 and Supplementary Note).

We used DEPICT to prioritize 649 genes (at FDR < 0.05) within 
height-associated loci (Table 3 and Supplementary Table 16). Of 
these 649 genes, 202 genes (31%) were significant in the GRAIL analy-
sis (Supplementary Tables 13 and 16) and/or overlapped with a list of 
genes involved in abnormal skeletal growth syndromes that we assem-
bled from the Online Mendelian Inheritance in Man (OMIM) data-
base12 (n = 40; Supplementary Tables 9 and 16). Many other newly 
prioritized genes had additional supporting evidence (Supplementary 
Table 16), including specific expression in the growth plate12 and/or 
connections to relevant pathways (for example: GLI2 and LAMA5 
(Hedgehog signaling); FRS2 (FGF signaling); AXIN2, NFATC1, 
CTNNB1, FBXW11, WNT4, WNT5A and VANGL2 (WNT/β-catenin 
signaling); SMAD3 and MTOR (transforming growth factor (TGF)-β 
and/or mTOR signaling); WWP2-MIR140, IBSP, SHOX2 and SP3 (the 
corresponding genes are required in mice for proper bone and car-
tilage formation); CHSY1, DSE and PCOLCE2 (glycosaminoglycan/
collagen metabolism); and SCARA3, COPZ2, TBX18, CRISPLD1 and 
SLIT3 (differential expression in growth plate and predicted to be in 
highly relevant pathways)).

DEPICT also prioritized the genes that were new candidates for 
having a role in skeletal growth. The genes newly and strongly impli-
cated in this study included not only genes with obvious relation-
ships to skeletal biology, such as SOX5 and collagen genes, but also 
genes that have no clear published connection to skeletal growth and 
likely represent as-yet-unknown biology (Table 3 and Supplementary 
Table 16). DEPICT strongly prioritized genes that did not have pub-
lished annotations related to growth pathways but were predicted 
to be in gene sets that were both enriched in the associated loci and 
clearly connected to growth. These included genes newly predicted to 
be in pathways related to cartilage or bone development (FAM101A, 
CRISPLD1 and the noncoding RNA LINC00476), collagen or extracel-
lular matrix (GLT8D2, CCDC3 and ZCCHC24), histone demethyla-
tion (ATAD2B and TSTD2) and other genes predicted to have skeletal 
phenotypes but not currently annotated as belonging to relevant 
pathways (ARSJ, PSKH1, COPZ2, ADAMTS17 and the microRNA 
cluster MIR17HG). Of note, mutations in both ADAMTS17 and 
MIR17HG have been identified as causes of syndromic short stature 
in humans15,16.

As suggested by the prioritization of ADAMTS17 and MIR17HG, 
it is possible that some of the newly highlighted genes might also 
underlie new syndromes of abnormal skeletal growth. As a fur-
ther proof of principle, the second entry on our list of prioritized 
genes (Table 3 and Supplementary Table 16), CHSY1, was not a 
known monogenic gene in the OMIM database12 when we assem-
bled our list, but mutations in this gene have since been shown to 
cause a syndrome including brachydactyly and short stature17,18.  
Thus, the novel DEPICT method, applied to the larger GWAS data 
set, not only identified similar biology to GRAIL and MAGENTA 
but also implicated a large number of additional genes, gene sets 
and pathways that are likely important in skeletal biology and  
human growth.

table 2 comparison of prioritized variants, loci, biology and 
variance explained from GWAs on human stature

Height GWAS with  
130,000 samples  

(Lango Allen et al.6,  
Yang et al.4)a

Height GWAS with 
253,288 samples  

(this study)

sNP-based comparisons
GWAS significant SNPS 199 697

Genomic locib (±1 Mb) 180 423

Locib with multiple signals 19 147

Secondary associations in locib 19 273

Biological annotation (DePict at FDr < 0.05)

Prioritized genes 92 649

Locic with a prioritized gene  74 (43%) 422 (75%)

Pruned gene sets and protein-protein 
complexesd

813 2,330

Tissues and cell types 5 43

Variance explained

GWAS significant SNPs 10% 16%

Deep list of SNPs at P < 1 × 10−3 13% 29%

All common SNPs 45%e 50%

Heritability explained

GWAS significant SNPs 12.5% 20%

Deep list of SNPs at P < 1 × 10−3 16% 36%

All common SNPs 56%e 62.5%

Comparison is shown for data from GWAS on human stature with 130,000 individuals 
(previously published) and with 250,000 individuals (this study).
aCounts, numbers and estimates for Lango Allen et al.6 are taken from the respective  
publication. bGenomic loci defined by distance: ±1 Mb from the index SNP for height. 
cGenomic loci defined by LD: r2 > 0.5 with the index SNP for height. dAfter clumping of 
similar gene sets and pathways. eYang et al.4.
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table 3 significantly prioritized new human growth-associated genes

Locus (height SNP) Gene
New  
locus

Prioritization  
P value

Lines of supporting 
evidence Top-ranking reconstituted gene sets

Genes with previous literature support (GrAil)
rs10748128 FRS2 No 1.0 × 10−16 7 PI3K cascade (REACTOME, P = 6.2 × 10−13)  

Chronic myeloid leukemia (KEGG, P = 1.6 × 10−12)  
Response to fibroblast growth factor stimulus (GO, P = 5.4 × 10−11)

rs2166898 GLI2 Yes 4.4 × 10−16 7 Growth factor binding (GO, P = 2.6 × 10−14)  
Regulation of osteoblast differentiation (GO, P = 2.3 × 10−11)  
WNT protein binding (GO, P = 1.9 × 10−12)

rs526896-rs9327705 TBX4 No 9.9 × 10−9 7 Short mandible (MP, P = 3.3 × 10−19)  
Respiratory system development (GO, P = 3.1 × 10−17)  
Abnormal ulna morphology (MP, P = 1.9 × 10−15)

rs16860216 SOX8 No 0.016 7 Small thoracic cage (MP, P = 6.9 × 10−14)  
Short ribs (MP, P = 2.7 × 10−8)  
Short sternum (MP, P = 6.5 × 10−7)

rs1199734 LATS2 Yes 1.0 × 10−16 6 Partial lethality throughout fetal growth and development (MP, P = 1.2 × 10−18)  
Growth factor binding (GO, P = 2.6 × 10−14)  
TGFB1 protein complex (InWeb, P = 6.3 × 10−12)

rs12323101 PDS5B No 1.0 × 10−16 6 Chromatin binding (GO, P = 6.4 × 10−17)  
Nuclear hormone receptor binding (GO, P = 2.4 × 10−12)  
RBBP4 protein complex (InWeb, P = 1.3 × 10−11)  
WNT16 protein complex (InWeb, P = 1.9 × 10−8)

rs6746356 SP3 Yes 1.0 × 10−16 6 BCOR protein complex (InWeb, P = 2.7 × 10−17)  
AFF2 protein complex (InWeb, P = 4.5 × 10−7)  
Intracellular steroid hormone receptor signaling pathway (GO, P = 9.0 × 10−6)

rs3923086 AXIN2 Yes 2.2 × 10−16 6 Signaling by transforming growth factor β (KEGG, P = 3.8 × 10−15)  
WNT receptor signaling pathway (GO, P = 6.9 × 10−14)  
Polydactyly (MP, P = 1.5 × 10−10)

rs3790086 LTBP1 No 1.3 × 10−13 6 Abnormal skeleton morphology (MP, P = 1.1 × 10−15)  
TGF β signaling pathway (KEGG, P = 3.8 × 10−15)  
Growth factor binding (GO, P = 2.6 × 10−14)

rs2034172 WNT5A Yes 4.3 × 10−13 6 Partial lethality throughout fetal growth and development (MP, P = 1.2 × 10−18)  
Tissue morphogenesis (GO, P = 4.1 × 10−20)  
Abnormal skeleton morphology (MP, P = 1.1 × 10−15)

rs3915129 CTNNB1 Yes 3.5 × 10−12 6 AR protein complex (InWeb, P = 8.9 × 10−17)  
TCEB1 protein complex (InWeb, P = 1.5 × 10−11)  
GTF2I protein complex (InWeb, P = 4.6 × 10−11)

rs12330322 BMP2 No 5.6 × 10−10 6 Transcription factor binding (GO, P = 4.7 × 10−26)  
Complete embryonic lethality during organogenesis (MP, P = 4.9 × 10−21)  
Short mandible (MP, P = 3.3 × 10−19)

rs10958476-rs6999671 BMP6 No 2.9 × 10−8 6 Small basisphenoid bone (MP, P = 8.9 × 10−17)  
TGF β signaling pathway (KEGG, P = 3.8 × 10−15)  
Growth factor binding (GO, P = 2.6 × 10−14)

rs564914 SOX5 Yes 4.6 × 10−7 6 Disproportionate dwarf (MP, P = 1.8 × 10−13)  
Abnormal cartilage morphology (MP, P = 1.9 × 10−13)  
Short limbs (MP, P = 2.8 × 10−13)

rs17807185 WNT4 Yes 4.6 × 10−7 6 Morphogenesis of an epithelium (GO, P = 2.3 × 10−17)  
Gland development (GO, P = 5.4 × 10−16)  
Basal cell carcinoma (KEGG, P = 1.5 × 10−12)

New genes without previous evidence
rs8042424 CHSY1 No 1.0 × 10−16 7 Abnormal cartilage morphology (MP, P = 1.9 × 10−13)  

Abnormal bone ossification (MP, P = 2.1 × 10−12)  
Signaling by transforming growth factor β (REACTOME, P = 5.9 × 10−9)

rs7652177 FNDC3B No 1.0 × 10−16 5 Abnormal spongiotrophoblast layer morphology (MP, P = 3.2 × 10−16)  
Decreased length of long bones (MP, P = 2.7 × 10−12)  
ITGB1 protein complex (InWeb, P = 5.2 × 10−8)

rs7284476 TRIOBP Yes 1.0 × 10−16 5 Negative regulation of cell proliferation (GO, P = 4.3 × 10−17)  
Abnormal vitelline vasculature morphology (MP, P = 1.7 × 10−15)  
β-catenin binding (GO, P = 3.0 × 10−5)

rs2149163-rs3927536 BNC2 No 1.0 × 10−16 5 Short ulna (MP, P = 4.7 × 10−13)  
Abnormal joint morphology (MP, P = 8.6 × 10−11)  
Regulation of chondrocyte differentiation (GO, P = 2.9 × 10−9)

rs3790086 WWP2 Yes 1.0 × 10−16 5 Cartilage development (GO, P = 2.0 × 10−19)  
Chondrocyte differentiation (GO, P = 3.0 × 10−15)  
Signaling by platelet-derived growth factor (REACTOME, P = 4.8 × 10−10)

The table lists 20 genes prioritized by DEPICT. Genes are ranked by the number of lines of supporting evidence and the DEPICT P value (supplementary table 16). Lines of  
supporting evidence for a gene included (1) annotation by GRAIL, (2) differential expression within the growth plate, (3) specific expression within the growth plate, (4) a mouse 
skeletal growth phenotype, (5) DEPICT FDR < 0.05, (6) membership in a DEPICT-prioritized gene set, (7) being the nearest gene to the lead SNP, (8) the lead SNP being an 
eQTL for the gene and (9) the lead SNP being a missense SNP for the gene. Because 20 of the 30 top-ranked genes were in a curated list of genes known to cause syndromes of 
abnormal skeletal growth12, these ‘OMIM genes’ are not shown here. The top 15 genes with previous literature support (based on GRAIL) are shown, followed by the top 5 new 
genes. Each gene is accompanied by the significantly enriched reconstituted gene sets in which it appears (DEPICT gene set enrichment analysis). GO, Gene Ontology; MP, Mice 
Phenotypes from Mouse Genome Informatics database; InWeb, protein-protein interaction complexes; KEGG and REACTOME databases.
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DISCUSSION
By performing a large GWAS on adult height, a highly heritable poly-
genic trait, we have provided answers to several current questions of 

relevance to the genetic study of polygenic diseases and traits. First, 
we showed that, by conducting larger GWAS, we can identify SNPs 
that explain a substantial proportion of the heritability attributable 
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Figure 3 Tissue enrichment combined with pruned gene set network synthesis. Genes within genome-wide significant height-associated loci were 
enriched for several relevant tissue annotations as well as gene sets. (a) Genes in associated loci tended to be highly expressed in tissues related to 
chondrocytes and osteoblasts (cartilage, joints and spine) and other musculoskeletal, cardiovascular and endocrine tissue types. The analysis was 
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to common variants. As hypothesized by Yang et al.5, the heritability 
directly accounted for by variants identified by GWAS and inferred by 
whole-genome estimation approaches are converging with increasing 
sample size. The variance explained by genome-wide significant SNPs 
has increased from 3–5% with discovery samples of ~25,000 (ref. 19) 
to 10% with a discovery sample size of ~130,000 (ref. 6) and 16% 
with a discovery sample size of 250,000 (this study), and the variance 
explained from all captured common SNPs is ~50% (refs. 4,5). The var-
iance explained by genome-wide significant SNPs on a chromosome 
is also proportional to chromosome length, consistent with the con-
clusion made by Yang et al.5 using all SNPs (Supplementary Fig. 9).  
Our new results show that ~21%, ~24% and ~29% of phenotypic 
variance in independent validation samples is captured by the best 
~2,000, ~3,700 and ~9,500 SNPs, respectively, selected in the discov-
ery samples (Table 1), and that the correlation between actual and 
predicted height in independent samples from the same population 
has increased to 0.41 (maximum prediction R2 = 0.412 = 0.17; Fig. 2d). 
The results are consistent with a genetic architecture for human height 
that is characterized by a very large but finite number (thousands) 
of causal variants, located throughout the genome but clustered in 
both a biological and genomic manner. Such a genetic architecture 
may be described as pseudo-infinitesimal and may characterize many 
other polygenic traits and diseases. There is also strong evidence of 
multiple alleles at the same locus segregating in the population and 
for associated loci overlapping with mendelian forms, suggesting  
a large but finite genomic mutational target for height and effect  
sizes ranging from minute (<1 mm; ~0.01 s.d.) to gigantic (>300 mm; 
>3 s.d.; in the case of monogenic mutations).

It has been argued that the biological information emerging from 
GWAS will become less relevant as sample sizes increase because, as 
thousands of associated variants are discovered, the range of impli-
cated genes and pathways will lose specificity and cover essentially 
the entire genome20. If this were the case, then increasing sample sizes 
would not help to prioritize follow-up studies aimed at identifying and 
understanding new biology and the associated loci would blanket the 
entire genome. Our study provides strong evidence to the contrary: 
the identification of many hundred and even thousand associated 
variants can continue to provide biologically relevant information. In 
other words, the variants identified in larger sample sizes both display 
a stronger enrichment for pathways clearly relevant to skeletal growth 
and prioritize many additional new and relevant genes. Furthermore, 
the associated variants are often non-randomly and tightly clustered 
(typically separated by <250 kb), resulting in the frequent presence 
of multiple associated variants in a locus. The observations that genes 
and especially pathways are now beginning to be implicated by mul-
tiple variants suggests that the larger set of results retain biological 
specificity but that, at some point, a new set of associated variants will 
largely highlight the same genes, pathways and biological mechanisms 
as have already been seen. This endpoint (which we have clearly not 
reached for height) could be considered analogous to reaching ‘satu-
ration’ in model organism mutagenesis screens, where new alleles 
typically map to previously identified genes21.

We have identified a large number of gene sets and pathways that 
are enriched for associations with height. Although the number of 
gene sets and pathways is large, many overlap and likely represent 
multiple annotations of a much smaller set of core biological mecha-
nisms. We also highlight individual genes within associated loci as 
being relevant to skeletal growth, including candidates that might 
contribute to syndromes of abnormal skeletal growth; for example, we 
strongly implicated CHSY1, recently identified as an underlying cause 
of a monogenic syndrome with short stature and brachydactyly17,18. 

The lists of prioritized genes and pathways should therefore provide a 
rich trove of data for future studies of skeletal growth; to facilitate such 
studies, we have made our results (including the genome-wide associ-
ation results and the complete list of highlighted genes and pathways) 
publicly available. On the basis of the results of large genetic studies 
of height, we anticipate that increasing the number of associated loci 
for other traits and diseases could yield similarly rich lists that would 
generate new biological hypotheses and motivate future research into 
the basis of human biology and disease.

URLs. Genetic Investigation of Anthropometric Traits (GIANT) 
Consortium, http://www.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium; Mouse Genome Informatics, http://
www.informatics.jax.org/.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
A summary of the methods, together with a full description of genome-wide 
association analyses and follow-up analyses, can be found here and in the 
Supplementary Note. Written informed consent was obtained from every partic-
ipant in each study, and the study was approved by relevant ethics committees.

Genome-wide association study meta-analysis. We combined the height 
summary association statistics from 79 GWAS in a meta-analysis of 253,288 
individuals using the same methods and studies as previously described6 and 
additional studies as described in Supplementary Tables 17–19. Meta-analysis 
was performed on a total of 2,550,858 autosomal SNPs using the inverse vari-
ance fixed-effects method with METAL22.

GCTA-COJO: conditional and joint multiple-SNP analysis. We used 
GCTA-COJO analysis7,8 to select the top associated SNPs. This method uses 
the summary statistics from the meta-analysis and LD correlations between 
SNPs estimated from a reference sample to perform a conditional association 
analysis7. The method starts with an initial model of the SNP that shows the 
strongest evidence of association across the whole genome. It then implements 
the association analysis conditioning on the selected SNP(s) to search for the 
top SNPs iteratively one by one via a stepwise model selection procedure until 
no SNP has a conditional P value that passes the significance level. Finally, all 
the selected SNPs are fitted jointly in the model for effect size estimation. We 
used 6,654 unrelated individuals from the ARIC cohort as the reference sam-
ple for LD estimation. There were ~3.0 million SNPs included in the original 
meta-analysis. We included in this analysis only the SNPs (~2.48 million) in 
HapMap 2 for which we had a sample size of >50,000. We used the genome-
wide significance level P < 5 × 10−8 (as reported in Supplementary Table 1).

Metabochip replication. We combined the height summary association sta-
tistics from 37 independent studies genotyped using the Illumina Metabochip 
array9 in a meta-analysis of 80,067 individuals of European ancestry 
(Supplementary Tables 20–22). Each study tested the association for each 
genotyped SNP using the same quality control procedures, height transforma-
tion, adjustment and inheritance model as described for the GWAS analysis. 
Genomic control correction was applied to the results for each study before 
meta-analysis, using a set of 4,427 SNPs associated with QT interval to control 
study-specific inflation factors. We used the inverse variance fixed-effects 
meta-analysis method.

Validation: linear mixed model–based association analysis. Each of 15 studies 
(59,380 individuals) used genome-wide SNP information to calculate a GRM 
for all pairs of individuals and used this matrix to correct association statistics 
for cryptic relatedness and population stratification. Each study used an LMM 
as implemented in the software EMMAX23. Meta-analysis was performed as 
described for the standard GWAS using a single-λGC correction. Each study 
additionally repeated the analyses for each chromosome using a GRM gener-
ated from the remaining 21 chromosomes or, in the case of the largest study 
(WGHS), repeated the analysis for all odd-numbered chromosomes using a 
GRM generated from the even-numbered chromosomes and vice versa. Each 
study then combined the association results from the 22 or 2 parts of the genome 
into a single set of data, and the single-λGC meta-analysis was repeated.

Validation: within-family (transmission) association analyses. A pure trans-
mission-based analysis was performed in 7 cohorts for SNPs representing 416 
signals of association (Supplementary Note), selected after repeating meta-
analysis excluding these studies with single-λGC correction. The filtering out of 
SNPs with low imputation quality in the studies was followed by applying the 
inverse variance method of meta-analysis to the family-based results. Because 
of the presence of related individuals, family-based studies have lower power at 
a given sample size. For each study, we calculated the effective sample size (the 
size of a sample of unrelated individuals that would have equivalent power; see 
the Supplementary Note and Winkler et al.24). Estimation of winner’s curse 
in our data set was performed by repeating the meta-analysis excluding either 
the family-based studies or random sets of studies from GIANT matched by 
effective sample size to the family-based studies. Independent genome-wide 
significant loci were selected from each meta-analysis. Power for replication 

in the excluded samples was estimated at different P-value thresholds, and 
the deficit in replication (number of replications expected minus the number 
observed replications) was calculated. The contribution of winner’s curse to 
the deficit in replication was estimated as the average deficit across the three 
sets of random non-family-based cohorts. By subtracting this deficit from 
the deficit observed for the family-based cohorts, we estimated the lack of 
replication that could be attributed to stratification (either inflation of effect 
size for true associations or false positive associations).

Variance and heritability explained. We used GCTA-COJO analysis to select 
the top associated SNPs at a range of stringent significance levels (5 × 10−3,  
5 × 10−4, 5 × 10−5, …, 5 × 10−8) for estimation and prediction analyses. We 
then quantified the variance explained by the selected SNPs using a three-
stage analysis—within-family prediction, GCTA-GREML analysis and popula-
tion-based prediction—in five validation studies (B-PROOF, FRAM, QIMR, 
TwinGene and WTCCC-T2D). To avoid sample overlap, we repeated the main 
GWAS meta-analysis and the multiple-SNP analysis five times, each time 
excluding one of the five validation studies. This approach ensured complete 
independence between the data used to discover SNPs and the data used to 
estimate how much variance in height these SNPs explained and how well they 
predicted height. For the within-family prediction analyses, we selected 1,622, 
2,758 and 1,597 pairs of full siblings from the QIMR, TwinGene and FRAM 
cohorts, respectively, with 1 sibling pair per family. For the whole-genome 
estimation and prediction analyses, we used GCTA-GRM8 to estimate the 
genetic relatedness between individuals and selected unrelated individuals 
with pairwise genetic relatedness of <0.025 in each of the 5 studies: B-PROOF 
(n = 2,555), FRAM (n = 1,145), QIMR (n = 3,627), TwinGene (n = 5,668) and 
WTCCC-T2D (n = 1,914).

Within-family prediction analysis. We used the SNPs selected from GCTA-
COJO analysis to create a genetic predictor (also called a ‘genetic profile score’) 
for each of the full-sibling pairs using PLINK25. We then adjusted the genetic 
predictor by the first 20 principal components generated from principal-
 component analysis (PCA)26. By comparing the predictors within and between 
families, we partitioned the variance in the predictor analysis into components 
due to real SNP effects (Vg), errors in estimating SNP effect (Ve) and popula-
tion structure (Cg + Ce).

We calculated the weighted average of each of the four (co)variance com-
ponents over the three cohorts by their sample size:

V n ni ii iig( ) / ( )∑ ∑

with the subscript i indicating the cohort and n indicating the sample size. 
From the results of these partitioning analyses within families, we can infer 
what the prediction R2 value (equation (19)) and what the proportion of the 
variance explained by SNPs (Vg/Vp, with Vp being the phenotypic variance) 
would be in a sample of unrelated individuals when using the same set of SNPs. 
We then tested these inferred values in unrelated samples.

GCTA-GREML analysis. We performed GREML analysis4 in GCTA8 to esti-
mate the variance explained by the selected SNPs (hg

2) in each of the five 
validation studies. This method fits the effects of a set of SNPs simultaneously 
in a model as random effects and estimates the genetic variance captured by 
all the fitted SNPs without testing the significance of the association of any 
single SNPs. We combined the estimates of hg

2 from the five studies by the 
inverse variance approach:

( / )/ ( / )( )h ii i iig SE SE2 2 21∑ ∑  

Population-based prediction analysis. We created a genetic predictor using 
the selected SNPs for the unrelated individuals in each of the five validation 
studies. We then calculated the squared correlation (R2) between the pheno-
type and predictor in each validation study and calculated the average predic-
tion R2 value weighted by the sample size across the five studies:

( )/ ( )R n nii i ii
2∑ ∑  
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Theory and method to partition the variance in a genetic predictor. Under 
the assumption of an additive genetic model, the phenotype of a quantitative 
trait can be written as:

y g x bi ii= + = +∑e e

where y is the trait phenotype, g is the total genetic effect of all SNPs, x is an 
indicator variable for SNP genotypes, b is the SNP effect and ε is the residual.

From this model, the additive genetic variance is:

var( ) var( ) cov( , )
( )

g x b x x b bi ii i j i j
j i ji

= +∑ ∑∑
≠

2

with the first component being the expected value of additive genetic variance 
under linkage equilibrium (LE) and the second component being deviation 
from the expected value that could be caused by LD, population structure or 
selection27.

Considering a pair of full siblings in a family, the additive genetic covari-
ance between the siblings is:

cov( , ) cov , ,

cov( , ) cov(

g g x b x b

x x b x

i ii i ii

i ii i i

1 2 1 2

1 2
2

1

= ( )
= +

∑ ∑
∑ ,, )

( )
x b bj i j

j i ji
2

≠
∑∑

For full siblings:

cov( , ) / var( )x x xi i i1 2 1 2=

cov( , ) / cov( , )x x x xi j i j1 2 1 2=

for SNPs that are in LD and

cov( , ) cov( , )
( ) ( )

x x b b x x b bi j i j
j i ji

i j i j
j i ji

1 2 =
≠ ≠

∑∑ ∑∑

for SNPs that are not in LD (as shown by both empirical and simulation 
results).
Let:

V x b x x b bi ii i j i j
j i ji

g = +∑ ∑∑
≠

var( ) cov( , )
( )

2  | SNPs are in LD

C x x b bi j i j
j i ji

g =
≠

∑∑ cov( , )
( )

 | SNPs are not in LD but are correlated owing 

to population structure
Then, the genetic variance is:

var( )g V C= +g g

The genetic covariance between a pair of full siblings is:

cov( , ) /g g V C1 2 1 2= +g g

If we take a set of SNPs with their effects estimated from GCTA-COJO analysis 
and create a predictor using these SNPs in an independent validation sample, 
we can write the predictor as:

ˆ ˆg x bi ii
= ∑

where b̂  is the estimate of b, with b̂ b e= +  where e is the error in  
estimating b.

If we assume b and e to be independent and denote

V x eiie = ∑ var( ) 2

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(5)(5)

(6)(6)

and

C x x e ei j i j
j i ji

e =
≠

∑∑ cov( , )
( )

the variance of the predictor is:

ˆ var( ) var ˆ var( )ˆ cov( , )ˆ ˆ

( )

a g x b x b x x b bi ii i ii i j i j
j i j

= ( ) = +∑ ∑
≠

2 ∑∑∑

∑ ∑= + + +

i

i ii i ii i j i j i j ix b x e x x b b x x evar( ) var( ) cov( , ) cov( , )2 2 ee

V V C C

j
j i jij i ji ( )( ) ≠≠
∑∑∑∑

= + + +g e g e

The covariance between the predictors of a pair of full siblings is:

ˆ cov( ˆ , ˆ ) cov ˆ , ˆ var( )ˆ cov(a g g x b x b x bi i i iii i ii1 2 1 2
21

2= ( ) = +∑∑ ∑ xx x b b

V V C C

i j
j i ji

i j1 2

1
2

1
2

, )ˆ ˆ

( )≠
∑∑

= + + +g e g e

The covariance between the true phenotype and the predictor for the same 
individual is:

ˆ cov( , ˆ) cov( , ) var( )a y g g g g V C= + + = = +e e g g

The covariance between the true phenotype of one sibling and the predictor 
of the other sibling is:

ˆ cov( , ˆ ) cov( , )

var( ) cov( , )

a y g g g

x b x x bi ii i j i

1 2 1 1 2 2

21
2

= + +

= +∑
e e

bb V Cj
j i ji

= +
≠

∑∑
( )

1
2 g g

If we define ̂ ˆ ˆ ˆa g g g∆ = −1 2 and ∆y = y1 − y2,

ˆ var( ˆ) var( ˆ ) var( ˆ ) cov( ˆ , ˆ )a g g g g g V V∆ = + − = +1 2 1 22 g e

ˆ cov( , ˆ) cov( , ˆ ) cov( , ˆ ) cov( , ˆ ) cov( , ˆa y g y g y g y g y∆ ∆ = + − −1 1 2 2 1 2 2 gg V1) = g

We then can calculate the four parameters as:

ˆ cov( , ˆ)aV y gg = ∆ ∆

ˆ var( ˆ)aV g Ve g= −∆

ˆ cov( , ˆ)aC y g Vg g= −

ˆ cov( ˆ , ˆ ) var( ˆ)aC g g g Ce g= − −2 1 2

where Vg can be interpreted as the variance explained by real SNP effects, Cg 
is the covariance between predictors attributed to the real effects of SNPs that 
are not in LD but are correlated owing to population stratification, Ve is the 
accumulated variance due to errors in estimating SNP effects and Ce is the 
covariance between predictors attributed to errors in estimating the effects of 
SNPs that are correlated owing to population stratification.

To assess prediction accuracy, we usually perform a regression analysis of 
the real phenotype against the predictor:

ˆ ˆa y g= + +b b e0 1

so that the regression slope is actually

ˆ cov( , ˆ)/ var( ˆ) ( )/( )a y g g V C V V C Cb = = + + + +g g g e g e

with the regression R2 being

R V C V V C C2 2= + + + +( ) /( )g g g e g e

(7)(7)

(8)(8)

(9)(9)

(10)(10)

(11)(11)

(12)(12)

(13)(13)

(14)(14)

(15)(15)

(16)(16)

(17)(17)

(18)(18)

(19)(19)
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In the absence of population structure:

R V V V2 2= +g g e/( ) 

Variance explained by SNPs in proximity to the top associated SNPs. We 
performed analyses to quantify the variance explained by SNPs in close physi-
cal proximity to the top associated SNPs in 9,500 unrelated individuals (pair-
wise genetic relatedness < 0.025) from a combined data set of the QIMR and 
TwinGene cohorts. As in previous analyses, to avoid sample overlap between 
the discovery and validation studies, we repeated the discovery meta-analysis 
excluding the QIMR and TwinGene cohorts and identified 643 genome-wide 
significant SNPs from the GCTA-COJO analysis of the summary statistics 
using ARIC data for LD estimation. We used GCTA-GREML analysis4,8 to 
quantify the phenotypic variance explained by all the common SNPs (minor 
allele frequency (MAF) > 0.01) within 100 kb, 500 kb or 1 Mb of the 643 
genome-wide significant SNPs. There are 104,000, 423,000 and 745,000 SNPs 
within 100 kb, 500 kb and 1 Mb of the top associated SNPs, respectively, which 
explain 20.8% (SE = 1.3%), 25.7% (SE = 1.8%) and 29.5% (SE = 2.2%) of pheno-
typic variance (Supplementary Fig. 6a). We then applied a regression-based 
approach28 to adjust for LD between SNPs. The estimates of variance explained 
after LD adjustment were slightly higher than those without adjustment, and 
the ratio of the estimates with and without LD adjustment was consistently 
~1.05, regardless of the window size (Supplementary Fig. 6a). However, this 
difference is small.

We then sought to investigate whether there was an enrichment of addi-
tional associated signals at the top associated loci. We varied the window 
size, using windows of 20 kb, 50 kb, 100 kb, 150 kb, 200 kb, 300 kb, 400 kb,  
500 kb, 750 kb and 1 Mb, and fitted a two-component model in GCTA-GREML 
analysis, with the first component being the top associated SNPs and the sec-
ond component being the rest of the SNPs in the window. We found that 
the per-SNP variance explained excluding the top SNPs (variance explained 
by the second component divided by the number of SNPs included in this 
component) decreased with the size of the window (Supplementary Fig. 6b), 
implying that SNPs in closer physical proximity to the top associated SNPs 
tend to explain disproportionally more variance.

Enrichment of associated SNPs in ENCODE regions, loci containing OMIM 
genes, eQTLs and nonsynonymous SNPs. To identify putative causal vari-
ants among the height-associated markers, we explored whether the height-
 associated SNPs were in strong LD (r2 > 0.8) with nonsynonymous coding 
variants in 1000 Genomes Project CEU Phase 1 data (Utah residents of 
Northern and Western European ancestry), showed an effect on whole-blood 
gene expression levels, were located within Encyclopedia of DNA Elements 
(ENCODE)-annotated regions, were within loci harboring monogenic 
growth genes or had previously been associated with other complex traits 
in the NHGRI GWAS catalog (P < 5 × 10−8) (Supplementary Tables 7–11).  
To estimate the empirical assessment of enrichment for listed features,  
we used 10,000 permutations of random sets of SNPs matched to the LD-pruned  
(r2 > 0.1) 628 height-associated SNPs by the number of nearby genes (within an 
LD distance of r2 > 0.5), the physical distance to the nearest gene and MAF.

Enrichment of genes in associated loci in known and new pathways. Data-
Driven Expression-Prioritized Integration for Complex Traits (DEPICT) analysis.  
The DEPICT method (T.H.P., J. Karjalainen, Y. Chan, H. Westra and A.R.W. et al.,  
unpublished data; see Geller et al.29 for an earlier application of DEPICT) 
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relies on precomputed predictions of gene function based on a heterogeneous 
panel of 77,840 expression arrays (Fehrmann et al., unpublished data; ref. 30), 
5,984 molecular pathways (based on 169,810 high-confidence experimentally 
derived protein-protein interactions31), 2,473 phenotypic gene sets (based 
on 211,882 gene-phenotype pairs from the Mouse Genome Informatics; see 
URLs), 737 REACTOME pathways32, 5,083 Gene Ontology terms14 and 184 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways33. The method 
leverages these predictions to extend the functional annotations of genes, 
including genes that previously had only a few or no functional annotations. 
DEPICT facilitates the analysis of GWAS data by (i) assessing whether genes 
in associated loci are enriched in tissue-specific expression, (ii) identifying 
reconstituted gene sets that are enriched in genes from associated loci and 
(iii) systematically identifying the most likely causal gene(s) at a given locus 
(see the Supplementary Note for a more detailed description of DEPICT). To 
run DEPICT, we first clumped the summary statistics from the meta-analysis 
using 500-kb flanking regions with r2 > 0.1 and excluded SNPs with P ≥ 5 × 
10−8, which yielded 628 SNPs. We then mapped genes to each of the 628 most 
strongly associated SNPs. For a given SNP, this mapping was accomplished by 
including all genes that resided within the boundaries of r2 > 0.5 of that SNP 
and always including the nearest gene to its locus gene set. We used a locus 
definition that was calibrated using the GWAS data for height levels presented 
in this report and optimized the capture of known monogenic genes for those 
traits. We merged overlapping loci and excluded loci that mapped near or 
within the major histocompatibility complex locus (chromosome 6, 20–40 
Mb), which resulted in a list of 566 non-overlapping loci that were used as 
input for DEPICT. HapMap Project Phase 2 CEU genotype data were used 
for all LD calculations.

GRAIL and MAGENTA analyses. The GRAIL14 algorithm was run using the 
LD-pruned (r2 > 0.1) 628 SNPs, without correcting for gene size and using text-
mining data available up to December 2006 (default setting). MAGENTA13 was 
run with the adjusted summary statistics with single λGC as input using default 
settings and excluding the human leukocyte antigen (HLA) region.
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