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Abstract Apart from parent-offspring pairs and clones,

relative pairs vary in the proportion of the genome that they

share identical by descent. In the past, quantitative genet-

icists have used the expected value of sharing genes by

descent to estimate genetic parameters and predict breeding

values. With the possibility to genotype individuals for

many markers across the genome it is now possible to

empirically estimate the actual relationship between rela-

tives. We review some of the theory underlying the

variation in genetic identity, show applications to esti-

mating genetic variance for height in humans and discuss

other applications.
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Introduction

Quantitative genetics theory has a solid foundation in

mathematics and statistics and is well established following

the ground breaking work by Fisher and Wright nearly a

century ago. Estimation of genetic parameters, such as

heritability and genetic correlation coefficients, and appli-

cations in human genetics, evolutionary biology and

plant and animal breeding programmes, are based upon

the specific theory of the resemblance between relatives

due to genetic factors. The resemblance between relatives

depends on the number of alleles that they share identical-

by-descent (IBD) at loci influencing the trait of interest.

Due to segregation and linkage, the actual number of

alleles shared IBD is the outcome of a stochastic process.

Until quite recently, IBD sharing between relatives could

not be observed, and the theoretical expected value, based

upon probabilities, is typically used in applications. If there

are many (strictly infinite) independent loci influencing a

phenotype, then there is no difference between the expec-

ted and actual proportion of alleles shared IBD between

relatives. The infinitesimal model of quantitative genetics

leads to appealing theoretical consequences (e.g., multi-

variate normality of additive genetic values) and its

application has been highly successful, particularly in

animal breeding selection programmes.

Nevertheless, genes reside on a finite, relatively small

number of chromosomes, and recombination events during

meiosis are relatively infrequent, typically 1–3 per 100 cM.

This implies that large segments of chromosomes segregate

from parents to progeny, which creates variation in the

proportion of the genome shared between pairs of relatives

around the expected value.

In this article, we will review the theory of the variation

in the proportion of genomes shared IBD between relatives,

and discuss applications that utilise this variation.

Theory

The covariance between relatives due to genetic factors is

based upon the probability of identity by descent. For

individuals X, Y with relationship a (=29 probability of

identity by descent of random alleles) and probability of

IBD at both alleles at a locus d, the genetic covariance is

covðX; YÞ ¼
X

n

X

m

andmVAðnÞDðmÞ;
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where VA(n)D(m) denotes the component with n A and m D

terms, and A and D denote additive and dominance effects,

respectively (Falconer and Mackay 1996; Lynch and

Walsh 1998). The additive genetic covariance is simply

aVA. The genetic covariance therefore depends on allele

sharing probabilities, which can be derived from the

pedigree relationships using probability theory.

However, if the actual proportion of genes that account

for quantitative trait variation in the genome varies

between pairs of relatives with the same values of a and d,

then the phenotypic covariance will vary accordingly.

Hence, among all pairs of relatives with the same expected

genetic identity, the pairs that share more alleles at trait

loci IBD are expected to be phenotypically more similar.

Genetic covariance would be the same for all pairs of

relatives with the same value of a and d if there were a very

large number of loci independently segregating in the

pedigree. But the number of loci is finite and loci do not

segregate independently due to genetic linkage, so we can

expect variation in genetic identity.

Variation in genetic identity

The theory underlying the variation in the proportion of the

genome shared IBD between relatives in crosses from inbred

lines and in outbred populations was developed by several

authors (Franklin 1977; Guo 1994, 1995, 1996; Hill 1993a, b;

Risch and Lange 1979; Stam 1980; Stam and Zeven 1981),

mostly for different reasons and with different applications

in mind. I will give an example derivation for halfsibs (fol-

lowing Hill 1993a; Visscher et al. 2006).

Twice the kinship coefficient for halfsibs, equal to the

coefficient of additive relationship, is a = 1/4. Let p be the

actual or realised coefficient of additive relationship for a

pair of halfsibs. In a non-inbred population, this is equal to

the actual proportion of the genome shared IBD. p is a

random variable with E(p) = a and we wish to quantify the

variance of p. Let di be an indicator variable for locus i,

which is 1 if both halfsibs have inherited the same allele

from the common parent and 0 otherwise. For halfsibs, the

probability that di = 1 and di = 0 is 1/2 and 1/2, respec-

tively, and pi = 1/2di. Hence, E(pi) = 1/4 and var(pi) = 1/

16. These are the mean and variance of the coefficient of

identity at a single locus for halfsibs. For two loci i and j

and recombination fraction c, E(pi, pj) = (1/16) [2(1 -

c)2 + 2c2]. Hence, the covariance of the indicator variables

at two loci is,

covðpi; pjÞ ¼ Eðpi; pjÞ � EðpiÞEðpjÞ ¼ ð1=16Þð1� 2cÞ2:

Assuming the Haldane mapping function, i.e. that

recombination events are continuously distributed with no

interference, the covariance can be written as:

covðpi; pjÞ ¼ ð1=16Þ expð�4dijÞ;

with dij the distance (in Morgan) between the loci. For n

loci, the variance of chromosome-wide sharing between

two halfsibs is:

varðpÞ ¼ ð1=n2Þð1=16ÞRR expð�4dijÞ

(following Hill 1993a; Stam and Zeven 1981). If n

becomes very large this equation can be expressed as an

integral (Hill 1993a; Stam and Zeven 1981),

varðpÞ ¼ 1

16

Z l

0

Z l

0

e�4jx1�x2jdx1dx2 ¼
1

32l2
ðl� r2l=2Þ;

with l the length of the chromosome (in Morgan) and r2l

the recombination fraction for a segment of length 2l (=1/

2(1 - exp(-4l)). Hence, the total variance in IBD sharing

between two half siblings for a chromosome of length l is

(Guo 1996; Hill 1993b):

varðpÞ ¼ ð128l2Þ�1½4l� 1þ expð�4lÞ�:

Finally, genome-wide p from k chromosomes is,

pg = (1/L) R(li pi), with L = R(li), and

varðpaÞ ¼ ½1=ð128L2Þ�½4L� k þ R expð�4liÞ�:

These results are the same as those of Hill (1993b) and

Guo (1996). Derivation of the latter was based upon

Markov chains. For human autosomes (k = 22 and L = 35

(Kong et al. 2004)), the variance of genome-wide IBD

sharing of halfsibs is approximately 1/(32L) - 22/

(128L2) = 0.00089 - 0.00014 = 0.00075, or a standard

deviation of 0.027 about the mean of 0.25. To a first order

approximation, the variance is determined by the total map

length (L), and the number of chromosomes and the

distribution of their lengths are less important. For

example, the standard deviation of identity from the

above prediction or that from taking the actual

distribution of the 22 autosomes or that assuming 22

autosomes all with the same length (l = 35/22) all give the

same value to the fourth decimal (0.0272).

The genome-wide variance can be compared to the

variance at a single locus to calculate an equivalent number

of independent segments (loci) that would give the same

genome-wide variance (Gagnon et al. 2005; Visscher et al.

2006). For halfsibs in humans, this number is (1/16)/

0.00075 = 83.3.

For fullsibs, the variance in the genome-wide additive

coefficient of relationship is twice that of halfsibs because

paternal and maternal chromosomes are inherited inde-

pendently. In humans (k = 22) (Guo 1994; Visscher et al.

2006),

varðpaÞ � 1=ð16LÞ � 22=ð64L2Þ:
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Dominance

The coefficient of dominance is a function of the proba-

bility that two relatives share both alleles IBD (= IBD2). In

a non-inbred population, this probability is also called the

coefficient of fraternity (Lynch and Walsh 1998). Here I

consider the variation in the coefficient of dominance for

fullsibs. The prior probability that full sibs share two

alleles IBD is 1/4, and the mean and variance of an indi-

cator variable that is one if both alleles are shared IBD and

zero otherwise is 1/4 and 3/16, respectively. Hence the

variance of the coefficient of dominance at a single locus

is 1.5 times the variance in the additive coefficient of

relationship (which is 1/8). The probability that the sibs

share two alleles IBD at a linked locus, given that they are

IBD2, is (1 - c)4 + 2[(1 - c)c]2 + c4 = [(1 - c)2 + c2]2

(Visscher et al. 2006). Using the same methodology as

before gives the genome-wide variance in the coefficient of

fraternity as,

varðpdÞ ¼ ½1=ð16L2Þ�½ð5=4ÞL� 1=2Rr2l � ð1=16ÞRr4l�

&5/(64L) - 99/(256L2) & 5/(64L) - 1/(3L2) (Visscher

et al. 2006). The variance of the dominance coefficient is

larger (by about 30% if L = 35) than the variance of the

genome-wide additive coefficient of relationship. The

correlation between mean genome-wide allele sharing

and mean genome-wide IBD2 sharing is the ratio of the

SD because the regression of pa on pd is unity (Visscher

et al. 2006),

rðpa; pdÞ ¼ rðpaÞ=rðpdÞ � ½1=ð16LÞ=f5=ð64LÞg�0:5:

For L = 35, this correlation is 0.89. Hence the genome-

wide additive and dominance coefficients of relatedness are

highly correlated.

X-chromosome

The previous calculations for genome-wide relationships

were done ignoring the contribution of the X-chromosome

to variation in genome-wide IBD sharing between rela-

tives. For mammals, the X-chromosome constitutes 3–5%

of the genome, so the error made in calculating the vari-

ance of identity by ignoring the X-chromosome is not

large. For the X-chromosome, the sex of the pair of rela-

tives determines the definition and properties of the

coefficient of relationship (Lynch and Walsh 1998). Here I

consider a pair of mammalian full siblings. Sister–sister

(ss) pairs always share the allele inherited from the father

and have a probability of 1/2 in sharing the allele inherited

from the mother. Therefore, at a single locus, E(p) = 3/4

and var(p) = 1/16. Although the mean coefficient of rela-

tionship is larger than for halfsibs, the variance of the

coefficient of relationship is exactly the same as for half-

sibs. Therefore,

varðpssÞ ¼ ð128l2XÞ
�1½4lX � 1þ expð�4lXÞ�:

For humans (lX = 185 cM), the SD of X-chromosome

sharing between sister pairs is 0.121. Brother–brother (bb)

pairs either share the allele on the X-chromosome IBD

(p = 1) or they do not (p = 0), both with a probability of 1/2.

Therefore, at a single locus, E(p) = 1/2 and var(p) = 1/4.

The segregation and recombination processes are again the

same as for halfsibs but with a four-fold larger variance.

Hence,

varðpbbÞ ¼ ð32l2XÞ
�1½4lX � 1þ expð�4lXÞ�:

For humans, the SD of X-chromosome sharing between

brother pairs is 0.242. Finally, for brother–sister (bs) pairs

the allele on the X-chromosome in the male is either IBD

with one of the two alleles in the female (p = 1/2) or it is

IBD with neither allele in the female (p = 0), both with a

probability of 1/2. It follows that the mean and variance of

p are 1/4 and 1/16, respectively, and the variance var(pbs)

is the same as for sister–sister pairs.

Note that these coefficients of relationship are also the

coefficient of additive genetic covariance for the brother–

brother and sister–sister pairs, but not for the brother–sister

pairs. The coefficient of additive relationship for brother–

sister pairs is (1/H2)pbs (Bulmer 1985; Kent et al. 2005;

Lynch and Walsh 1998). In addition, the above definition

of coefficients of relationship does not take dosage com-

pensation for expression of the phenotype into account.

Comparison of relative pairs

Using the theoretical derivations from (Guo 1996) and the

map length of autosomes in humans (Kong et al. 2004), the

SD of whole genome coefficients of relatedness were cal-

culated for a number of relative pairs. Results are shown in

Table 1. These results correspond closely to those in

Table 2 of Guo (1996).

The variance in genome-wide sharing is small relative

to the mean, with coefficients of variation ranging from

8% (fullsibs) to 17% (first cousins). It was noted previ-

ously that although halfsibs and grandparent–grandchild

have the same expectation, the variance in genome-wide

sharing is larger for grandparent–grandchild pairs (Hill

1993b). For halfsibs, the probability of them sharing

alleles IBD at two loci is 1/2(1 - c)2 + 1/2c2, whereas

the probability that a grandchild inherits the same alleles

from the grandparent is 1/2(1 - c) (Hill 1993b). For a

small value of c, these probabilities are (1/2 - c) and

(1/2 – 1/2c), respectively. The latter is closer to 1/2 and

has therefore larger variance.
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For non-collateral (ancestor-descendant) relatives it can

be seen that the more distant the relatives, the larger the

CV. The expectation and variance of p at a single locus for

relatives m generations apart (e.g., m = 2 for grandparent–

grandchild pairs) are (1/2)m and 1/2(1/2)m[1 - 2(1/2)m],

respectively, or a and 1/2a(1 - 2a), with a the additive

coefficient of relatedness (twice the kinship coefficient).

Hence CV(p) = H[1/(2a) - 1], so the smaller the coef-

ficient of relationship, the larger the SD of sharing as a

proportion of the mean. Similarly for genome-wide

sharing, using results from (Hill 1993b), CVðpÞ ¼

1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

Pm�1

j¼1

m� 1

j

� �
1
j2 2jL� k þ

Pk

i¼1

e�2jli

� �s
; which increa-

ses with increasing m.

Validation of theory

Previously we showed a comparison of the theory with

empirical data from 4,401 pseudo-independent fullsib pairs

from Australian families (Visscher et al. 2006). The sib-

lings and their parents were genotyped for microsatellite

markers and additive and dominance coefficients of rela-

tionships were estimated at each cM and genome-wide

using exact multi-point probability calculations (Abecasis

et al. 2002). Figures 1 and 2 show the empirical distribu-

tion of the additive and dominance genome-wide

relationships. The mean and SD were 0.0498 and 0.036 for

the additive coefficients and 0.248 and 0.040 for the

dominance coefficients (Visscher et al. 2006). Both the

mean and variance are close to expectation. The extreme

values for the additive coefficients are *0.37 and *0.63,

so that at the low range some fullsibs are in between

average halfsibs and average fullsibs and at the high range

the sibs are in between average fullsibs and monozygotic

twins. For dominance coefficients, the range is from *0.12

to *0.41.

The empirical variances are approximately 85 and 83%

of the theoretical values. The ratio of empirical to theo-

retical value can be seen as a measure of genome-wide

multimarker information content, analogous to that ratio at

a single location. A multimarker information content of

*0.8 is expected given that the estimates were based upon

a *5 cM genome-scan from microsatellite markers, but

this concordance does not prove that the assumptions made

in the theoretical prediction of the variance are correct.

Quantification of the ratio of empirical to theoretically

predicted variance is useful because the variance of locus

or genome-wide coefficients of relationship is proportional

to the power to detect QTL or genome-wide variance

(Visscher and Hopper 2001; Visscher et al. 2006).

Empirical and theoretical values can also be different

because of the assumptions made in the theory, in partic-

ular the assumption of map function. For example, a

localised distribution of chiasma positions gave an esti-

mated standard deviation of identity of human full siblings

of 0.055 (Suarez et al. 1979), whereas the use of Haldane’s

mapping function on the same data resulted in an estimate

of 0.04 (Risch and Lange 1979). The increasing use of very

Table 1 Predicted variance in

genome-wide coefficients of

additive relationship of human

relative pairs

Relatives Single locus Genome-wide Equivalent no. loci

E(p) var(p) var(p) SD(p)

Fullsibs 1/2 1/8 0.00147 0.039 84

Halfsibs 1/4 1/16 0.00075 0.027 84

Grandparent–grandchild 1/4 1/16 0.00122 0.035 50

Uncle–niece 1/4 1/16 0.00063 0.025 99

First cousin 1/8 3/64 0.00044 0.021 102

Double first cousin 1/4 3/32 0.00090 0.030 102

Fig. 1 Empirical distribution of genome-wide coefficients of additive

relationships from 4,401 pairs of fullsibs (Visscher et al. 2006)

Genetica

123



dense SNP arrays will allow a more accurate estimation of

variation in identity in the near future.

Figure 3 shows the relationship between the additive

and dominance coefficients for the 4,401 pairs. Again, the

correlation is close to expectation.

Applications

Estimation of genetic variance components

How can the variation in genetic identity be used in prac-

tice? One possibility that we explored recently in human

populations (Visscher et al. 2007; Visscher et al. 2006) is

to estimate additive genetic variance from the deviations of

the average coefficients of relationship. In a simple design

for which all pairs of relatives with a phenotype have the

same expected coefficient of relationship (a), a model of

the covariance of the relatives is, cov(yi,yj) = VC + pijVA,

with E(pij) = a and VC the variance of between-pair effects

not accounted for by the proportion of the genome shared

IBD. This model is equivalent to cov(yi,yj) = aVC + pijVA,

so clearly VA is estimated from the deviation of the actual

from the expected coefficient of relationship, independent

of average between-family effects. Genetic variance can

then be estimated from the covariation of the phenotypic

resemblance of relatives and their actual genome-wide

relationship. We used sibling pairs that had microsatellite

marker genotype scans, typically 400–800 markers per

individual, and the phenotype of interest was height.

Maximum likelihood was used by fitting in addition to the

usual A-matrix a matrix with realised genome-wide rela-

tionships. When the data structure is simple, e.g. pairs of

fullsibs with no additional pedigree information and a

small number of fixed effects in the model, the estimates of

variance components from ML and REML are very similar.

The reason for fitting the average relationship too was that

we wished to estimate heritability free of assumptions

regarding the between-family variance. The estimate of

heritability from our method was 0.8 (Visscher et al. 2006)

but with a large standard error (95% CI 0.5–0.9). The

reason that the SE is so large is because the sampling

variance of additive genetic variance is proportional to 1/

var(p). For full siblings and a single locus, this is 1/8, but

genome wide, as shown before, this value is *0.0382,

about 80 times smaller. Therefore, large sample sizes are

needed to estimate genetic variance from the deviations of

actual relationships about their expected values, because

the variation in actual relationships is small.

We subsequently increased the sample size to 11,214

sibling pairs with genome-wide marker data and a mea-

surement on height, by combining samples from Australia,

the USA and The Netherlands (Visscher et al. 2007). For

each sibling pair we estimated realised additive relation-

ship coefficients for each of the 22 autosomes and the

X-chromosome and estimated the proportion of additive

genetic variance associated with each chromosome using

maximum likelihood. (Data were pre-adjusted for the fixed

effects of sex and age, and with so few fixed effects the

estimates from REML are almost identical to those from

ML). We found that longer chromosomes contributed more

additive genetic variance, that at least 6 chromosomes

contributed to additive genetic variance for height, could

not reject the hypothesis that additive variance was

explained in proportion to the length of the chromosome

and found no evidence for non-additive genetic variance

(Visscher et al. 2007). If the distribution of genetic

Fig. 2 Empirical distribution of genome-wide coefficients of dom-

inance relationships from 4,401 pairs of fullsibs (Visscher et al. 2006)
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Fig. 3 Empirical relationship between genome-wide additive and

dominance relationship from 4,401 pairs of fullsibs (Visscher et al.

2006)
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variance in the genome is approximately proportional to

the length of the chromosome then this implies some kind

of infinitesimal model and has implications for gene

mapping by linkage and association.

Chromosome and whole-genome approaches

and the number of trait loci

One possible disadvantage of a genome-wide approach to

estimating genetic variance and breeding values is that the

loci that explain genetic variance may not be uniformly

spread across the genome and that their effect sizes varies

(Xu 2006). Does the estimation of heritability from gen-

ome-wide sharing depend on a polygenic model? The

derivation below for full siblings suggests that the estimate

of genetic variance is not biased but inaccurate when there

are not a large number of loci each with small effect.

Let n = number of loci (assumed unlinked); pi = pro-

portion of alleles shared IBD at locus i (for a given pair of

sibs); p = genome-wide IBD = (Rpi)/n; ri
2 = proportion

of (additive) genetic variance due to locus i; r2 = total

(additive) genetic variance = Rri
2

pi (and p) are random variables, and for all loci var(-

pi) = var(pj) {=1/8 for sibpairs}. Hence var(p) = var(pi)/

n. A maximum likelihood estimation procedure can be

approximated by considering the (Haseman and Elston

1972) approach. Let D2 = (y1 - y2)2, the squared differ-

ence of the phenotypes of the sibs. Then,

EðD2jpiÞ ¼ Rf2r2
i ð1� piÞg:

For analysis, the linear regression D2 = a + bp + e is

used.

b ¼ covðD2; pÞ=varðpÞ / cov Rpir
2
i ; ðRpiÞ=n

� ��
varðpiÞ=n½ �

¼ cov Rpir
2
i ;Rpi

� ��
varðpiÞ½ �

¼ R varðpiÞr2
i

� ��
varðpiÞ½ �

¼ Rr2
i ;

assuming no covariance between pi and ri
2. Hence, the

regression coefficient b is proportional to the total genetic

variance, independent of the number of loci and their

effects. This implies that there is no bias in the estimate

when, for example, there are a few loci (or even a single

one) of large effect. However, the sampling variance of the

estimate of the regression coefficient would be greatly

increased by the inefficient regression on the mean IBD of

several loci, rather than directly on the IBD at the QTL.

This reasoning is similar to saying that the estimate of QTL

variance, when looking at the correct location, is not biased

in the absence of complete IBD information. (Haseman and

Elston 1972) derive the latter in a different way.

Prediction of breeding values from realised relationship

Previous applications were for a simple pedigree (sibling

pairs) and to estimate and partition genetic variance. With

sufficient marker data, realised relationships can be esti-

mated between any pair of relatives in a complex pedigree

and prediction of breeding values in an artificial selection

programme can be made using the realised relationship

matrix. The estimation of the realised relationship offers

new opportunities in breeding programmes, in particular

for species with large family sizes (e.g., livestock). For

example, the breeding value of an individual without a

phenotype can in principle be estimated with 100% accu-

racy on the basis of a large number of collateral relatives

each with a phenotype (Meuwissen et al. 2001).

If genotyping is cheap relative to phenotyping then how

much extra response to selection can we obtain from

measuring the actual relationships between relatives? Here

we consider a simple example of sib selection. All sibs are

assumed to be genotyped but only one individual gets

phenotyped (for example, because phenotyping is much

more expensive than genotyping). For the derivation below

we assume that the individual that gets phenotyped cannot

be used for breeding (e.g., the phenotype is a carcass trait

in a meat enterprise). Without genotype information, the

choice of individual to be phenotyped is random and the

choice of which sibling(s) are selected for breeding is

random. With cheap genome-wide genotyping of n sib-

lings, there are n(n - 1)/2 pairs of siblings for which we

know the proportion (p) of their genome-wide IBD sharing.

We suggest to pick out the pair with the largest genome-

wide IBD sharing and to phenotype one of these two

siblings. For full siblings, the mean and SD of the random

variable p is 1/2 and, approximately, 0.04, respectively. We

assume that p is normally distributed and that the genetic

covariance between sibs is proportional to p. In the absence

of genotypic information, the EBV of unphenotyped

siblings are,

EBV ¼ ð1=2Þh2P;

with P the phenotype of the sibling. The variance of the

EBV is 1/4h2VA. With genotyping,

EBV ¼ psh
2P;

with ps the observed genome-wide IBD sharing between

the phenotyped individual and its sib with which it shares

the largest proportion of the genome.

ps ¼ ð1=2Þ þ irp

with i the selection intensity of pairs within a family.

Response to selection is proportional to E(ps), so the gain

in response by using genotyping is,
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Gain ¼ EðpsÞ=EðpÞ ¼ ðð1=2Þ þ irpÞ=ð1=2Þ ¼ 1þ 2irp:

Below are some examples of the extra gain, using the

small sample values of i from (Falconer and Mackay 1996).

n Sibs # Pairs i % Gain

2 1 0 0

3 3 0.85 7

4 6 1.27 10

8 28 2 16

10 45 2.2 18

Although this example is artificial and probably not

practical, it illustrates that substantial gains in the accuracy

of selection can be made. Note that even with 2 sibs in a

family there is a tiny increase in response to selection if

both sibs are genotyped because of the increase in accu-

racy; the variance in EBV is increased by 1 + 4var(p) but

this increase is trivial.

Using genome-wide identity-by-state sharing

In principle, genome-wide approaches as applied to known

pedigrees can be applied to ‘unrelated’ individuals by

estimating the proportion of the genome identical-by-state

(IBS) as a proxy for identical-by-descent. This approach

has been used to estimate genetic parameters in natural

populations, usually in a two-stage procedure in which

relationships are first inferred and genetic parameters are

estimated subsequently (Lynch and Walsh 1998; Thomas

2005; Thomas et al. 2002; Thomas et al. 2000). There are

two potential problems related to statistical power with

such approaches. Firstly, the more distant the actual rela-

tionship between a pair of individuals, the larger the

number of markers required to accurately estimate the

relationship. Distant relatives have a low probability of

sharing alleles IBD and look like random pairs drawn from

the population, so many markers are needed to estimate

allele sharing in excess of what would be expected by

chance. Secondly, given an accurate estimation of genome-

wide IBS sharing, the precision with which quantitative

genetic parameters are estimated is inversely proportional

to the variation in estimated relationships. In a population

of large effective size this variation is likely to be very

small (say, \0.012) so large sample sizes are needed

([100,000s). Recent estimates of co-ancestry of suppos-

edly unrelated individuals from four human populations

from millions of SNPs showed that there were pairs of

relatives with surprisingly large coefficients of relatedness

([0.01) (Frazer et al. 2007).

Discussion and conclusions

We have given a brief overview of the theory of variation

in genetic identity, have given a number of applications

and have hinted at possible future applications. No doubt

that there are many more opportunities to exploit the var-

iation in coefficients of relationship. For example, if the

sample size is large enough it may become feasible to

estimate dominance and other non-additive variance

accurately and unbiased, finally getting round the curse of

confounding between dominance variance and non-genetic

sources of family resemblance (Visscher et al. 2006).

The main caveat of the suggested applications is that

very large sample sizes are needed, both in terms of the

number of genetic markers per individual and the number

of individuals with a phenotype. Such sample sizes are now

emerging in human genetics and should be achievable in

livestock populations. In natural populations, the absence

of pedigree information should not be an obstacle to

applying genome-wide approaches, provided that there is

sufficient variation in relatedness that can be sampled.

The merging of quantitative and population genetics,

driven by data generated by large-scale high-throughput

genomics platforms, offers new approaches to classical

problems in quantitative genetics.
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