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Purpose of review

Imaging genomics is an emerging field that is rapidly identifying genes that influence the
brain, cognition, and risk for disease. Worldwide, thousands of individuals are being
scanned with high-throughput genotyping (genome-wide scans), and new imaging
techniques [high angular resolution diffusion imaging and resting state functional
magnetic resonance imaging (MRI)] that provide fine-grained measures of the brain's
structural and functional connectivity. Along with clinical diagnosis and cognitive
testing, brain imaging offers highly reproducible measures that can be subjected to
genetic analysis.

Recent findings

Recent studies of twin, pedigree, and population-based datasets have discovered
several candidate genes that consistently show small to moderate effects on brain
measures. Many studies measure single phenotypes from the images, such as
hippocampal volume, but voxel-wise genomic methods can plot the profile of genetic
association at each 3D point in the brain. This exploits the full arsenal of imaging
statistics to discover and replicate gene effects.

Summary

Imaging genomics efforts worldwide are now working together to discover and replicate
many promising leads. By studying brain phenotypes closer to causative gene action,
larger gene effects are detectable with realistic sample sizes obtainable from meta-

analysis of smaller studies. Imaging genomics has broad applications to dementia,

mental illness, and public health.
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Introduction

Imaging genetics is a rapidly emerging field that is opening
up a new landscape of discovery in medicine and neuro-
science. The field is a hybrid effort that merges methods
and discoveries in both imaging and genetics; its power has
recently taken a quantum leap for a number of reasons.
First, many groups worldwide are scanning thousands of
individuals with structural and functional magnetic reson-
ance imaging (MRI). Samples are now large enough to
discover and verify effects of specific genes on the brain
[1-3]. Second, voxel-wise genomic methods are emerging
that search every location in a brain image for statistical
effects of genes [4°]. These approaches identify coherent
anatomical patterns of gene effects in 3D. Replication
efforts can then focus on selected brain measures that
show promise in preliminary analyses.

Finally, several imaging measures that may seem too
unstable to be measured reproducibly have been shown
to be highly heritable and feasible to collect in large
numbers of individuals. Recent functional MRI studies in
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healthy adults found that patterns of task-related brain
activation [5,6] and resting state functional connectivity
[7,8°] are heritable and highly reproducible, making it
more likely to discover genes that influence these traits.
MRI variants such as diffusion tensor imaging (D'TT) —
which is sensitive to the directional diffusion of water
along neural pathways — can be used to identify entirely
new measures of brain integrity and connectivity [9]. By
scanning large cohorts of twins with high angular resol-
ution diffusion imaging (HARDI), Chiang ez a/. [10°]
revealed that the fiber integrity of the brain is under
strong genetic control, and is highly correlated with
cognitive measures such as intelligence quotient. Bivari-
ate genetic analysis can also be used to show that common
sets of underlying genes affect cognition and fiber integ-
rity [10°] or cognition and regional brain volumes [11,12].

How can gene effects be studied?

Current efforts to relate genetic variation to imaging data
typically proceed in one of several directions. The most
direct method is to study an illness with a genetic basis,
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such as fragile X syndrome, Turner syndrome, Williams
syndrome, or 22q11.2 deletion syndrome [13]. Neuroima-
ging of groups of patients with neurodevelopmental
disorders has been extremely useful in discovering the
brain systems affected, when and where in the brain
abnormalities emerge, and where identifiable abnormal-
ities of brain structure and function fit on the pathway
from molecular dysfunction to behavior [14]. Fragile X
syndrome, for example, involves a genetic abnormality in
the expression of a protein, FMRP, which is involved in
dendritic pruning [15]. As such, blood levels of the
protein have been related to identifiable patterns of brain
hypertrophy in the caudate nucleus, when the normal
pruning process is derailed [16]. Brain mapping studies of
Williams syndrome have also revealed regionally altered
cortical complexity [17], cortical folding [18], and diffu-
sion anisotropy [19] in characteristic patterns that may be
related to the expression of genes in the deleted region of
the genome. Some of these genes, such as clastin, are
involved in cortical folding. In many of these studies,
imaging provides a quantifiable phenotype in the brain
that can be monitored over time, leading to a more
mechanistic understanding of behavioral abnormalities
in neurogenetic disorders, and a means to assess their
onset and progression.

A second approach to imaging genetics is to fit quanti-
tative genetic models to data from twins or other related
individuals [20]. This can identify features or traits that
are genetically influenced. Even the most associated
common genetic polymorphisms are individually
expected to explain less than 1-5% of the variation in
even the most heritable brain measures, so the first step in
an analysis is often to show that the brain measures of
interest are genetically influenced at all. T'win studies,
in particular, reveal that many aspects of brain structure
and function are highly heritable [21,22], even in carly
infancy [23°]. Some studies are also beginning to identify
common genetic underpinnings for different brain
measures and different brain regions [24]. The classical
twin design examines correlations between identical and
fraternal twins, and compares the observed data with
what would be predicted under different types of genetic
models. Bivariate modeling can also reveal how corre-
lations among brain phenotypes and cognitive measures
are underpinned by the same sets of genes [21]. Cur-
iously, different measures of the same structure — such as
cortical thickness and cortical surface area — can both be
highly heritable but determined by different sets of genes
[24-26]. Conversely, the diffuse effects of single genes
on the brain, such as brain-derived neurotrophic factor
(BDNF), are not necessarily localized, and may be
detected across many structures at once, due to the
observed covariance among brain volumes [27-29].
These genetic modeling efforts have been greatly accel-
crated by software packages for efficient computational

Imaging genomics Thompson et al. 369

analysis, such as Mx [30] and SOLAR [31] — which now
has 4000 registered users, and has spurred the widespread
use of quantitative genetic analysis.

Statistical brain maps

Early studies focused on single measures derived from an
MRI scan — such as the total volume of the brain, or the
total amount of gray or white matter in each lobe. Even
so, in the last decade the brain imaging fiecld has seen
increasingly widespread use of statistical brain mapping
methods. Statistical parametric maps, or SPMs, are now
widely used to plot profiles of statistical effects on the
brain in 3D. These include effects on brain morphometry
and functional activation. In this approach, automated
methods are first used to align brain images from hun-
dreds of individuals to a common digital image template.
In the aligned datasets, regression models may be used to
detect profiles of brain signals found consistently in a
population, and factors that influence them. Thompson
et al. [32] used this type of voxel-based analysis to make
3D maps of the heritability of cortical gray matter
volumes, across the cortical surface in 3D. This twin
study was the first to show the pattern of heritability
and other genetic statistics at each point in the brain, in
the form of a 3D map. This and subsequent analyses
showed that cortical gray matter volumes, especially in
the frontal lobes, were highly heritable, consistent with
reports of gray matter deficits in relatives of unaffected
patients with schizophrenia [33]. Hulshoff Pol ez a/. [34]
used an image warping method to deform over 100 twins’
MRI scans to a common brain template to estimate the
volumes of different parts of the brain. Most structure
volumes were highly heritable; other structures, such as
the cerebellum, were more environmentally influenced.
Statistical mapping methods may also be used to transfer
other types of imaging data to a common template, and
perform voxel-by-voxel genetic analysis. In one morpho-
metric study of twins, the degree of genetic control was
found to be higher for earlier-maturing regions of the
brain, such as the visual processing areas of the occipital
lobes. In line with expectation, frontal lobe white matter
structures with a more protracted maturational time-
course were more environmentally influenced [35]. Para-
doxically, however, there is some evidence for an increas-
ing genetic effect on cortical thickness with age [36], in
agreement, perhaps, with the rising heritability of intelli-
gence quotient with age [37,38]. Importantly, these
genetic mapping studies find anatomical and time-
dependent gradients in the pattern of genetic influences.
Mapping methods can then home in on selected regions
of the brain in which genetic effects were most likely to
be detected. This type of voxel-selection approach —
when candidate brain regions are prescreened for future
study — is the mainstay of functional brain imaging,
and avoids the need for heavy corrections for multiple
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statistical comparisons that occur when surveying the
entire brain.

Candidate genes

Given the enormous number of possible genes that could
influence the brain, candidate genes offer a more prin-
cipled method to focus on promising regions of the
genome. Perhaps the most studied polymorphism in
brain imaging is the apolipoprotein E4 (ApoE4) allele,
which is carried by approximately 25% of normal indi-
viduals; each allele confers a three-fold increased risk for
developing late-onset Alzheimer’s disease by 75 years of
age. ApoE4 is now widely recognized as leading to
reduced gray matter [39,40] and white matter [41]
volumes in the elderly, perhaps due to the toxic effects
of beta-amyloid burden, which is also higher in ApoE4
carriers [42,43]. Somewhat disturbingly, Shaw e a/. [44]
found that children carrying this common gene also
showed a pattern of cortical thinning and an altered
developmental trajectory; resting-state brain activity is
also altered in young ApoFE4 carriers (age 20—35; [45]). In
one of a series of studies associating BDNF variants with
alterations in brain structure, activation, and cognition
(e.g. [46]), Chiang ez al. [47] discovered that a common
polymorphism in the BDNF gene influences the fiber
integrity of the brain, as seen with D'TI. The BDNF
polymorphism accounted for around 15% of the variance
in diffusion anisotropy in the posterior outflow of the
corpus callosum [47], but even so, scans from 455 twins
were required to detect and replicate this association,
suggesting the need for large imaging databases.

Genes coding for common variants in monoamine neu-
rotransmitter receptors and transporters are a common
target of study [e.g. [48—51] on catechol-O-methyl trans-

ferase (COMT); [52] on the dopamine transporter, DATY;
and [53] relating variations in the dopamine D2 receptor
to functional connectivity]. Hariri ez /. [54] and others
have reported that people carrying one or two copies of
the short allele of the serotonin transporter (5-H77T)
promoter polymorphism, which has been associated with
reduced 5-HT'T expression and function and increased
fear and anxiety-related behaviors, exhibit greater
neuronal activity in the amygdala, as assessed by BOLD
functional MRI, in response to fearful stimuli. Other
candidate gene discoveries are relevant to public health.
Ho ez al. [55°] found that £70, an obesity-related gene
variant carried by nearly half of all Western Europeans,
may also be associated with brain degeneration. In 3D
maps based on over 200 healthy elderly Caucasian indi-
viduals’ MRI scans, carriers’ brains demonstrated 8%
lower volume than noncarriers in the frontal lobes and
12% lower volume in the occipital lobes. 70 may exert
an additive effect on brain degeneration beyond the
influence of an individual’s body mass index, which is
also associated with atrophy and differences in brain
structure [56].

Genome-wide association studies

Candidate gene studies can provide a better understand-
ing of the pathways involved in several brain diseases, but
the advent of high-throughput genotyping has offered
still greater potential to search the entire genome for
causative variants. Genome-wide association (GWA)
scanning, in particular, searches the entire genome for
single-nucleotide polymorphisms (SNPs) that may be
associated with certain behaviors, diseases, or, in the
case of imaging genomics, with imaging measures.
Figure 1 shows how such an approach works (adapted
from [57]).

Figure 1 Genome-wide association study of temporal lobe structure
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The GWA study identified a common glutamate receptor variant (GRIN2b) with suggestive evidence of association with temporal lobe volume and
increased risk for Alzheimer's disease in 740 brain MRI scans. The plot on the left is a standard output from the PLINK software [58] — it shows the
significance of association between the image-derived measure of interest (here temporal lobe volume) and variants at each of 600 000 locations on
the genome. By performing genetic association to assess the effects of variants in this SNP at millions of points in a brain image, associations were

detected and mapped in 3D (right). Adapted from [57].
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In this preliminary GWA study of neurodegeneration,
Stein ef al. [57] searched 546 314 genomic markers using
the PLINK software [58]. T'wo SNPs were suggestively
associated with temporal lobe volumes (P <5 x 1077),
and with increased atrophy in all three diagnostic
categories [Alzheimer’s disease, mild cognitive impair-
ment (MCI), and controls]. One SNP, with genome-wide
evidence, was in the GRINZB gene that encodes the N-
methyl-D-aspartate (NMDA) glutamate receptor NR2B
subunit. It was also over-represented in Alzheimer’s
disease and MCI patients versus controls [odds ratio
(OR)=1.273; P=0.039]. This protein, involved in learn-
ing and memory and excitotoxic cell death, has age-
dependent prevalence in the synapse, and is already a
therapeutic target in Alzheimer’s disease [59]. Voxel-by-
voxel, 3D maps of genetic association with regional brain
volumes revealed intense temporal lobe reductions of
around 1.5% per risk allele (Fig. 1).

Rare variants

Dickson ez al. [60°] have proposed, somewhat provoca-
tively, that uncommon or rare genetic variants can easily
create synthetic associations that are credited to common
variants, and this should be considered when interpreting
GWA scanning signals. Conventional GWA scans may
also miss a large component of causal variance due to rare
functional variation. With this in mind, Choi ez a/. [61] and
others have advocated finer-scale exome sequencing of
pedigrees, to identify all polymorphisms that might be
relevant to a brain phenotype. As sequencing becomes
less expensive, the relative contribution of rare versus
common variation to brain phenotypes is likely to be
better understood. Imputation to the 1000 Genomes
Project (up to 8 million SNPs) and the advent of much
denser SNP chips will provide cheaper options in the
short term.

Voxel-wise genomics: statistical and computational
challenges

Most genome-wide studies of brain images reduce the
dimension of one or both datasets to avoid performing
statistical tests on an astronomical scale. Meda ez a/. [62],
for example, advocated independent component analysis
to identify the association between sets of genomic
variations and phenotypic traits, identifying interactions
between patterns of brain function and genetic infor-
mation. Other multivariate methods, such as canonical
correlation analysis, have been used to find optimal
‘projections’ to best correlate the multivariate measures
of genotypes and phenotypes [63].

Stein e al. [4°], however, used a massively parallel
computer to associate approximately 600000 SNPs at
approximately 200000 voxels in the brain, requiring
approximately 1.2 x 10'" tests on data from 742 individ-
uals. To address the problem of multiple comparisons
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across both the genome and the image, only the ‘winning’
(most highly associated) SNP was retained at each voxel,
and its P value was plotted into the image. A beta
function was fitted to model the distribution of minimum
P values that would be obtained under the null hypo-
thesis. False discovery rate methods [64] were used to
adjust for multiple tests across the image. Although the
list of promising genes requires replication, clearly if
several centers perform such an analysis, the resulting
maps can be combined in several simple ways. Statistical
conjunction maps [65], for example, could identify sub-
sets of voxels and SNPs with weak or strong evidence of
association in multiple datasets. Clearly, genes are more
likely to operate in networks, and interactions are likely;
machine learning methods, such as adaptive boosting
have been proposed to identify sets of SNPs with large
combined effects that would be hard to detect indepen-
dently. Recognizing that individual variants are likely to
have small effect, risk profiling has also been proposed
[66] to identify sets of SNPs that jointly explain the
observed variance. Genes may also interact [e.g. BDNF
and SLC6A4 (5-HTTLPR)], or the dopamine receptor and
transporter [67], and tools to detect these interactions are
just beginning to be developed [68,69].

Replication by joining datasets

A major barrier in imaging genomics is replication; with-
out it, GWA findings are met with skepticism [70].
Recently, Chiang ez a/. [65] discovered, and replicated,
a finding that a nonsynonymous coding variant in the
BDNF gene affects white matter microstructure and
its relation to intelligence quotient. In parallel work,
Kochunov ¢z al. [3] performed GWA on a large diffusion
imaging dataset from a Mexican-American pedigree, and
revealed a list of promising genes that affect white matter
circuitry and brain structure. Given the large samples
needed to discover and verify promising hits, several
imaging genomics groups are now working collabora-
tively to replicate findings [71°]. The ENIGMA network
(Enhancing Neuroimaging Genetics through Meta-
Analysis; http://enigma.loni.ucla.edu) seeks to accelerate
replication by sharing information on promising findings,
and identifying cohorts with sufficient power for meta-
analysis. This approach has been fruitful in psychiatry
and behavioral genetics [72°°].

Conclusion

Imaging genetics is an emerging field evaluating imaging
measures as quantitative traits. Many imaging pheno-
types have high precision, and are readily standardized
across centers [73]. They may also require smaller sample
sizes to detect association [74] — and arguably, they may
be closer to the underlying biology of disease than
behavioral or standard diagnostic measures, making con-
tributing genes easier to identify.
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The flurry of recent discoveries in imaging genomics
underscores the fact that imaging datasets are now large
enough to discover single gene effects on brain structure
and function. Several candidate genes show reproducible
effects on the brain and risk for disease; long lists of new
candidates have been discovered by mining genetic data.
Replication is key and collaborations such as the
ENIGMA network have been set up to replicate promis-
ing findings across multiple independently collected
samples. In parallel, several groups have extended geno-
mic analysis to new types of images: diffusion-based
maps of fiber integrity and connectivity [9], and 3D maps
of task-related brain activation and ‘resting-state’ func-
tional connectivity [5,8°]. Together, these advances are
spurring many new discoveries, providing valuable
mechanistic information about the brain and behavior,
and about factors that affect the expression of neuro-
logical and psychiatric illnesses.
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