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Abstract 

Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common 

variants explain ~25% of the heritability of the phenotypes. To date, no unbiased screen for gene–environment 

interactions for circulating lipids has been reported. We screened for variants that modify the relationship between 

known epidemiological risk factors and circulating lipid levels in a meta-analysis of genome-wide association (GWA) 

data from 18 population-based cohorts with European ancestry (maximum N = 32,225). We collected 8 further cohorts 

(N = 17,102) for replication, and rs6448771 on 4p15 demonstrated genome-wide significant interaction with waist-to-hip-

ratio (WHR) on total cholesterol (TC) with a combined P-value of 4.79×10−9. There were two potential candidate genes 

in the region, PCDH7 and CCKAR, with differential expression levels for rs6448771 genotypes in adipose tissue. The 

effect of WHR on TC was strongest for individuals carrying two copies of G allele, for whom a one standard deviation 

(sd) difference in WHR corresponds to 0.19 sd difference in TC concentration, while for A allele homozygous the 

difference was 0.12 sd. Our findings may open up possibilities for targeted intervention strategies for people 

characterized by specific genomic profiles. However, more refined measures of both body-fat distribution and metabolic 

measures are needed to understand how their joint dynamics are modified by the newly found locus.

Author Summary 

Circulating serum lipids contribute greatly to the global health by affecting the risk for cardiovascular diseases. Serum 

lipid levels are partly inherited, and already 95 loci affecting high- and low-density lipoprotein cholesterol, total 

cholesterol, and triglycerides have been found. Serum lipids are also known to be affected by multiple epidemiological 

risk factors like body composition, lifestyle, and sex. It has been hypothesized that there are loci modifying the effects 

between risk factors and serum lipids, but to date only candidate gene studies for interactions have been reported. We 

conducted a genome-wide screen with meta-analysis approach to identify loci having interactions with epidemiological 

risk factors on serum lipids with over 30,000 population-based samples. When combining results from our initial 

datasets and 8 additional replication cohorts (maximum N = 17,102), we found a genome-wide significant locus in 
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chromosome 4p15 with a joint P-value of 4.79×10−9 modifying the effect of waist-to-hip ratio on total cholesterol. In the 

area surrounding this genetic variant, there were two genes having association between the genotypes and the gene 

expression in adipose tissue, and we also found enrichment of association in genes belonging to lipid metabolism 

related functions.

Introduction 

Serum lipids are important determinants of cardiovascular disease and related morbidity [1]. The heritability of 

circulating lipid levels is estimated to be 40%–60% and recent genome-wide association (GWA) studies implicated a 

total of 95 loci associated with serum high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol 

(LDL-C), total cholesterol (TC), and triglyceride (TG) levels [2]. Currently identified common variants explain 10%–12% 

of the total variation in lipid levels, corresponding to ~25% of the trait heritability [2].

Epidemiological risk factors, such as alcohol consumption, smoking, physical activity, diet and body composition are 

known to affect lipid levels [3]–[5]. These risk factors also show moderate to high heritabilities, and over 120 loci with 

genome-wide significant association have been identified (http://www.genome.gov/26525384). To better understand the 

biological processes modifying lipid levels, several twin studies [6]–[8] and candidate gene studies [9]–[14] have tested 

for interactions between genes and epidemiological risk factors.

Interactions between genes and modifiable risk factors might help us develop new lifestyle interventions targeted to 

susceptible individuals based on their genetic information. The effects of genetic loci and risk factors have been studied 

widely separately, but to date no GWA studies for interactions on lipids have been reported.

Results 

We conducted a genome-wide screen for interactions between 2.5 million genetic markers and sex, lifestyle factors 

(smoking and alcohol consumption), and body composition (BMI and WHR) in association to serum lipid levels (TC, TG, 

HDL-C, and LDL-C) in 18 population-based cohorts (max N = 32,225; Table S1A, Text S1). We defined interaction as a 

departure from a linear statistical model allowing for the additive main effects of both the SNP and the epidemiological 

risk factor.

18 SNPs with suggestive interactions for at least one of the trait – epidemiological factor combinations (P-value for the 

interaction <10−6) in stage 1 analyses were taken forward to stage 2 analysis in eight additional cohorts (max N =

14,889; Table S1B, Text S1). In inverse variance meta-analyses combining the results from stage 1 and stage 2 (Table 

S2), the interaction between rs6448771 in chromosome 4p15 and WHR on TC ( ) was statistically genome-wide 

significant (stage 1 and 2 combined P = 9.08×10−9). This interaction was tested in stage 3 in two further cohorts (N =

7,813; Table S1C, Text S1), which showed an effect to the same direction. After combining results from all three stages 

(total N = 43,903), the P-value for interaction was 4.79×10−9. The association between WHR and TC was strongest for 

individuals carrying two G alleles of rs6448771, for whom a one standard deviation (sd) difference in WHR corresponds 

to 0.19 sd difference (confidence interval 0.13–0.25) in TC concentration, while for individuals homozygous for the A 

allele the difference was 0.12 sd (confidence interval 0.09–0.16) (Table S3A, Figure S1). The effect corresponds to 

0.5% and 0.2% of the total variance explained in a cohort of young individuals (YFS, mean age = 37.6) and an old 

cohort (HBCS, mean age = 61.49), respectively. Additionally, when looking at the effect of the SNP on TC in WHR 

tertiles, the estimates differed in a way that the estimated SNP effect is higher for the individuals with higher WHR 

(Table S3B). The SNP did not have a direct effect on either TC or WHR (P = 0.46 and P = 0.51, respectively, ). 

The SNP rs6448771 is located 249 kb downstream of the protocadherin 7 (PCDH7) gene.

Figure 1

Figure 1

Figure 1
Forest plot of main and WHR interaction effect sizes of rs6448771 on TC across the study cohorts. 
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Since the polymorphisms associated with complex phenotypes often influence gene expression, we examined whether 

individuals carrying different genotypes of rs6448771 have variation in their transcript profiles. As WHR reflects adipose 

tissue function, we selected 54 individuals from Finnish dyslipidemic families with available fat biopsies and GWA data. 

We used linear regression to find genes that were differentially expressed in adipose tissue depending on the rs6448771

genotype. We found two potential candidate genes with nominally significant cis-eQTL effects, PCDH7 (P = 0.027, 

distance from the rs6448771 250 kb) and CCKAR (P = 0.017, distance from the SNP 4.9 Mb). The region with CCKAR 

has previously been linked with obesity [15]. Additionally, using Ingenuity software (IPA), we conducted a pathway 

analysis for genes with eQTL P-value<0.01 (both trans- and cis-eQTLs). Among other diverse IPA-defined biological 

functions, there was an eQTL association enrichment among genes belonging to the ‘degradation of 

phosphatidylcholine’ (3 genes out of 6, P = 6.64×10−5, Benjamini-Hochberg corrected P = 0.0138) and ‘degradation of 

phosphatidic acid’ (4 genes out of 8, P = 4.71×10−4, B-H corrected P = 0.0349) functions, which are members of broader 

defined IPA categories “Lipid Metabolism” and “Carbohydrate Metabolism”. These pathways were up-regulated in 

individuals carrying the G allele of rs6448771, possibly indicating a role for rs6448771 in lipid and carbohydrate 

metabolism.

The associated SNP also shows evidence for interactions with WHR on LDL-C (effect estimate for the interaction = 0.03, 

P = 0.0016) and HDL-C (effect estimate = 0.02, P = 0.029) in our stage 1 meta-analysis and after adjusting for TC no 

residual interaction effect on LDL-C and a little on HDL-C remains (P = 0.834 and P = 0.131 respectively) when testing in 

data subset. Therefore we tested the SNP – WHR interaction also on a range of lipoprotein subclasses measured using 

NMR metabonomics platform [16] available in two cohorts (NFBC1966, N = 4624 mean age = 31.0; YFS, N = 1889, 

mean age = 37.6). The results show that the SNP has a positive interaction effect on large HDL particle concentration 

(combined effect for the interaction = 0.538, P = 0.0186) and a negative effect on large very-low-density lipoprotein 

(VLDL) particles (combined effect = −0.466, P = 0.0291) and total triglycerides (combined effect = −0.454, P = 0.0343) (

).Figure 2

Figure 2
Lipoprotein subclass particle and key serum lipid concentration correlations with WHR for different 
genotypes of rs6448771. 

Discussion 

Our genome-wide scan for interactions between SNP markers and traditional epidemiological risk factors in population-

based random samples found a genome-wide significant locus, rs6448771, modifying the relationship between WHR 

and TC. The effect of WHR is estimated to be 64% stronger for individuals carrying two copies of the G allele than for 

individuals carrying two A alleles. The interaction explains around half a percent of the TC variance that is in par with 

the main effects of the strongest previously identified TC SNPs individually. This SNP also shows similar interaction 

effects on a cascade of more detailed lipid fractions suggesting broad involvement in lipid metabolism, which was also 

suggested by our eQTL association enrichment analysis with adipose tissue expression data.

The eQTL analysis pointed towards two potential candidate genes in the region. The first one of these was 

protocadherin 7 (PCDH7) gene, which produces a protein that is thought to function in cell-cell recognition and 

adhesion. The other candidate gene, cholecystokinin A receptor (CCKAR) regulates satiety and release of beta-
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endorphin and dopamine in the central and peripheral nervous system. It has been previously shown that rats with no 

expressed CCKARs developed obesity, hyperglycemia and type 2 diabetes [17]. To test whether our eQTL finding was 

adipose tissue specific, we ran the eQTL analysis for PCDH7 and CCKAR in another dataset with genome wide 

expression data from blood leukocytes (N = 518) available. CCKAR could not be tested due to its negligible expression 

in blood leukocytes, and no association was found for the PCDH7 (P-value = 0.284) gene most likely indicating an 

adipose tissue specific eQTL for PCDH7 as a function of rs6448771.

One interesting aspect of this study, given our large sample size, is that only one signal achieved genome-wide 

significance, where previously published lipid GWA studies have found close to a hundred. Although power to detect 

interaction is typically lower than for main effects, especially for rare exposures and SNPs, several of the exposures 

considered here (such as WHR, BMI, and gender) were common and available for a large proportion of the study 

sample. This suggests that the contribution of two-way G×E interactions to lipid levels, at least for the risk factors we 

examined, is rather small, or that our current measures of risk factors may not be robust enough for identifying 

interactions. More specific measures of both phenotypes and interacting risk factors would give better statistical power 

in future screens of G×E interactions.

Our findings allow us to draw several conclusions. First, to our knowledge, this is the first time an interaction between a 

genetic loci and a risk factor has been identified in a genome-wide scan using a stringent statistical threshold for 

genome-wide significance. Second, in our samples, rs6448771 modified the relationship between WHR and TC, but 

was not associated with either WHR or TC alone. This observation suggests that genome-wide screens for interactions 

may be complementary to the current large-scale GWAS efforts for finding main effects. Third, in addition to careful 

harmonization of both risk factor data and phenotypes, large sample sizes are needed to identify interactions. In our 

study, 43,903 samples were combined to robustly identify the interaction. Our data, however, suggest that the 

contribution of G×E interaction using current phenotypes appears limited. Finally, from clinical point of view, the 

interaction may open up possibilities for targeted intervention strategies for people characterized by specific genomic 

profiles but more refined measures of both body-fat distribution and metabolic measures are needed to understand how 

their joint dynamics are modified by the newly found locus.

Materials and Methods 

Participating studies 

18 studies, with a combined sample size of over 30,000 individuals, participated in the discovery phase of this analysis; 

8 studies were available for replication with over 14,000 individuals. In the discovery stage, only population-based 

cohorts not ascertained on the basis of phenotype, with a wide variety of well-defined epidemiological measures 

available, were included. In the replication datasets, the NTR cohort was selected on the basis of low risk for depression 

and the Genmets samples were selected for metabolic syndrome. In further replication of rs6448771, the EPIC cases 

were ascertained by BMI. Descriptive statistics for these populations are detailed in Table S1A (discovery), S1B 

(replication) and S1C (further replication). Brief descriptions of the cohorts are provided in the Text S1 section “Short 

descriptions of the cohorts”. 

Phenotype determination 

Individuals were excluded from analysis if they were not of European descent or were receiving lipid-lowering 

medication at the time of sampling. TC, HDL-C, and TG concentrations were measured from serum or plasma extracted 

from whole blood, typically using standard enzymatic methods. LDL-C was either directly measured or estimated using 

the Friedewald Equation (LDL-C = TC – HDL-C – 0.45×TG for individuals with TG≤4.52 mmol/l, samples with TG level 

higher than 4.52 were discarded in the calculation of LDL-C) [18]. 

Covariates and epidemiological risk factors were ascertained at the same time that blood was drawn for lipid 

measurements. BMI was defined as weight in kilograms divided by the square of height in meters. Waist circumference 

was measured at the mid-point between the lower border of the ribs and the iliac crest; hip circumference was 

measured at the widest point over the buttocks. Waist-to-hip ratio was defined as the ratio of waist and hip 
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circumferences. Alcohol consumption and smoking habits were determined via interviews and/or questionnaires. Both 

behaviors were coded as dichotomous (abbreviations: ALC for drinker/abstainer and SMO for current smoker/current 

non-smoker) and semi-quantitative traits. Semi-quantitative alcohol usage (ALCq) was based on daily consumption in 

grams (0: 0 g/day; 1: >0 and ≤10 g/day; 2: >10 and ≤20 g/day; 3: >20 and ≤40 g/day; 4: >40 g/day). Semi-quantitative 

smoking (SMOq) was assessed based on the number of cigarettes per day (0: 0 cigarettes/day; 1: >0 and ≤10 

cigarettes/day; 2: >10 and ≤20 cigarettes/day; 3: >20 and ≤30 cigarettes/day; 4: >30 cigarettes/day). 

Genotyping and imputations 

Affymetrix, Illumina or Perlegen arrays were used for genotyping in the discovery cohorts. Each study filtered both 

individuals and SNPs to ensure robustness for genetic analysis. After quality control, these data were used to impute 

genotypes for approximately 2.5 million autosomal SNPs based on the LD patterns observed in the HapMap 2 CEU 

samples. Imputed genotypes were coded as dosages, fractional values between 0 and 2 reflecting the estimated 

number of copies of a given allele for a given SNP for each individual. Cohort specific details concerning quality control 

filters, imputation reference sets and imputation software are described in Table S4. 

In silico replication 

Replication cohorts utilized genome-wide imputed data, as described above, where available. Details on the genotyping 

methods implemented in the replication samples are described in Table S4. 

Serum NMR metabonomics, lipoprotein subclasses 

Proton NMR spectroscopy was used to measure lipid, lipoprotein subclass and particle concentrations in native serum 

samples. NMR methods have been previously described in detail [16], [19]. Serum concentrations of total triglycerides 

(TG), total cholesterol (TC) together with LDL-C and HDL-C were determined. In addition, total lipid and particle 

concentrations in 14 lipoprotein subclasses were measured. The measurements of these subclasses have been 

validated against high-performance liquid chromatography [20]. The subclasses were as follows: chylomicrons and 

largest VLDL particles (particle diameters from approx 75 nm upwards), five different VLDL subclasses: very large VLDL 

(average particle diameter 64.0 nm), large VLDL (53.6 nm), medium-size VLDL (44.5 nm), small VLDL (36.8 nm), and 

very small VLDL (31.3 nm); intermediate-density lipoprotein (IDL) (28.6 nm); three LDL subclasses: large LDL (25.5 

nm), medium-size LDL (23.0 nm), and small LDL (18.7 nm); and four HDL subclasses: very large HDL (14.3 nm), large 

HDL (12.1 nm), medium size HDL (10.9 nm), and small HDL (8.7 nm). 

Statistical methods 

Triglyceride concentrations were natural log transformed prior to analysis. BMI and WHR were transformed to normality 

using inverse-normal transformation of ranks. For analyses where sex was the epidemiological variable of interest, the 

phenotypes were defined as the rank-inverse normal transformed residuals resulting from the regression of the lipid 

measurement on age and age2. For the other analyses, the phenotypes were defined as the inverse normal transformed 

residuals resulting from the regression of the lipid measurement on age, age2, and sex. 

Associations between the transformed residuals and epidemiological risk factors/SNPs were tested using linear 

regression models under the assumption of an additive (allelic trend) model of genotypic effect. The models regressed 

phenotypes on epidemiological factor, SNP, and epidemiological factor×SNP terms

and tested if the effect for E×SNP was 0 using 1 df Wald tests. In family-based cohorts, linear mixed modeling was 

implemented to control for relatedness among samples [21]. Analysis software used by the individual cohorts is 

described in Table S1A and S1B. 

The interaction terms from the regression analyses were meta-analyzed using inverse variance weighted fixed-effects 
models [22]. Prior to meta-analysis, genomic control correction factors (λGC) [23], calculated from all imputed SNPs, 

were applied on a per-study basis to correct for residual bias possibly caused by population sub-structure. Meta-

analyses were performed by two independent analysts using METAL 
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(http://www.sph.umich.edu/csg/abecasis/Metal/index.html) and the R [24] package MetABEL (part of the GenABEL 

suite, http://www.genabel.org/). All results were concordant, reflecting a robust analysis. Results were selected for in 

silico replication if the meta-analysis P-value was less than 10−6. Results passing the threshold of suggestive genome-

wide association (P-value ≤5×10−7) were selected for further replication by direct genotyping. 

The commonly accepted genome wide level of significance (5×10−8) reflects the estimated testing burden of one million 

independent SNPs in samples of European ancestry [25]. To address the multiple testing arising from testing 

interactions with multiple risk factors, we set the genome wide significance threshold to 5×10−8/3 = 1.67×10−8 

corresponding to three principal components explaining 97.8% of the total variation of the risk factors (Table S5). 

Pathway analysis 

The functional analyses were generated through the use of Ingenuity Pathways Analysis (Ingenuity Systems, 

www.ingenuity.com).” The Functional Analysis identified the biological functions and/or diseases that were most 

significant to the data set. Molecules which met the P-value cutoff of 0.01 for the rs6448771 – expression association in 

dataset of 54 Finnish individuals with both genotype and adipose tissue expression data, and were associated with 

biological functions and/or diseases in Ingenuity's Knowledge Base were considered for the analysis. Right-tailed 

Fisher's exact test was used to calculate a P-value determining the probability that each biological function and/or 

disease assigned to that data set is due to chance alone and Benjamini-Hochberg multiple test correction [26] was 

applied. 

Supporting Information 

Figure S1

Effect of waist-to-hip ratio on total cholesterol as a function of rs6448771 genotypes. The bars in the plot are the effect 

estimates from three meta-analyzed linear models where total cholesterol (TC) has been explained using waist-to-hip 

ratio (WHR). The analyses were ran in three strata based on the rs6448771 genotypes. The whiskers in the plot 

correspond to the confidence intervals of the effect estimates. 

(DOC) 

Click here for additional data file.(31K, doc)

 

Table S1

Cohort characteristics. The number of study subjects with available phenotype and genotype (lower line) and summary 

statistics (upper line) for every cohort and trait. For continuous traits mean (standard deviation) is presented. For 

dichotomous traits number of individuals with phenotype present (%) is presented. TC: total cholesterol (mmol/l); HDL-

C: high-density lipoprotein cholesterol (mmol/l); LDL-C: low-density lipoprotein cholesterol (mmol/l); TG: triglycerides 

(mmol/l); BMI: body-mass index; WHR: waist-to-hip ratio; NA: not available. 

(DOC) 

Click here for additional data file.(69K, doc)

 

Table S2

Loci having P-value<1×10−6 in Stage 1 analyses and replication of the SNPs. Best SNP per locus having P-

value<1×10−6 in the Stage 1 analysis combining 19 cohorts. The bolded number is the genome-wide significant P-value. 

N: number of individuals; SE: standard error of the effect estimate, Beta; LDL-C: low-density lipoprotein cholesterol; TC: 

total cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; ALC: alcohol usage (drinker/abstainer); 

WHR: waist-to-hip ratio; BMI: body mass index; SMO: smoking (current/not);; SMOq: semi-quantitative smoking (0: 0 

cigarettes/day; 1: >0 and ≤10 cigarettes/day; 2: >10 and ≤20 cigarettes/day; 3: >20 and ≤30 cigarettes/day; 4: >30 

cigarettes/day); ALCq: semi-quantitative alcohol (0: 0 g/day; 1: >0 and ≤10 g/day; 2: >10 and ≤20 g/day; 3: >20 and ≤40 
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g/day; 4: >40 g/day). 

(DOC) 

Click here for additional data file.(69K, doc)

 

Table S3

Effect of rs6448771 on total cholesterol (TC) by waist-to-hip ratio (WHR) tertiles and effect of WHR on TC by SNP 

genotype classes. Section A shows the combined effect of waist-to-hip ratio (WHR) on total cholesterol (TC) stratified by 

the rs6448771 genotype class from five Finnish cohorts (FINRISK, NFBC1966, YFS, Genmets and HBCS, combined 

number of individuals is 12,782) and section B shows the combined effect of the SNP on TC stratified by WHR tertiles 

from the same cohorts. The limit values for the waist-to-hip ratio (WHR) tertiles have been calculated using WHR values 

from all five datasets. Both analyses were ran using untransformed and standardized scales and were adjusted with 

age, age2 and sex. Beta: effect estimate; CI: confidence interval. 

(DOC) 

Click here for additional data file.(40K, doc)

 

Table S4

Details of GWA data in discovery and replication cohorts. QC: quality control; MAF: minor allele frequency; HWE: Hardy-

Weinberg equilibrium. 

(DOC) 

Click here for additional data file.(65K, doc)

 

Table S5

Proportions of variance explained by principal components. Principal components analysis (PCA) was run for the seven 

risk factors used in the screening. PC: Principal Component. 

(DOC) 

Click here for additional data file.(33K, doc)

 

Text S1

Short descriptions of the cohorts and a full list of acknowledgements. 

(DOC) 

Click here for additional data file.(109K, doc)
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